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Abstract

Integrating data from multiple regulatory layers across cancer types could elucidate addi-

tional mechanisms of oncogenesis. Using antibody-based protein profiling of 736 cancer

cell lines, along with matching transcriptomic data, we show that pan-cancer bimodality in

the amounts of mRNA, protein, and protein phosphorylation reveals mechanisms related to

the epithelial-mesenchymal transition (EMT). Based on the bimodal expression of E-cad-

herin, we define an EMT signature consisting of 239 genes, many of which were not previ-

ously associated with EMT. By querying gene expression signatures collected from cancer

cell lines after small-molecule perturbations, we identify enrichment for histone deacetylase

(HDAC) inhibitors as inducers of EMT, and kinase inhibitors as mesenchymal-to-epithelial

transition (MET) promoters. Causal modeling of protein-based signaling identifies putative

drivers of EMT. In conclusion, integrative analysis of pan-cancer proteomic and transcrip-

tomic data reveals key regulatory mechanisms of oncogenic transformation.

Author summary

Profiling molecular and phenotypic characteristics of large collections of cancer cell lines

can be used to identify distinct and common oncogenic pathways across cancer types. So

far, most large-scale data obtained from cancer cell lines have been at the genomic, tran-

scriptomic, and phenotypic levels. Recently, high-quality data at the level of cell signaling

through protein abundances and phosphorylation sites has become available. By integrat-

ing this newly generated protein data with prior transcriptomic data, and by visualizing all

cancer cell lines using dimensionality reduction techniques, pan-cancer cell lines are strik-

ingly shown to organize into a gradient of epithelial to mesenchymal types. Interestingly,

many of the measured proteins and transcripts display bimodality; the expression of

genes, proteins, and protein phosphorylations is either high or low, strongly suggesting

that they act as molecular switches. Focusing on further characterizing molecular switches

of epithelial-mesenchymal transitions, we identify candidate regulators and small mole-

cules that can induce or reverse such transition, as well as potential causal relationships

between proteins. Since the mesenchymal state of tumors is known to be associated with
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metastasis and later-stage cancer development, better understanding the regulatory mech-

anisms of epithelial-to-mesenchymal transition can lead to improved targeted

therapeutics.

Introduction

Central to the understanding of cancer cells are their epithelial or mesenchymal traits, which

are governed by epithelial-mesenchymal transition (EMT). Cells that have undergone EMT

display increased invasiveness and metastatic potential [1]. The transition is reversible, in that

cells can also undergo mesenchymal-to-epithelial transition (MET) [2]. This plasticity plays a

role in cancer progression and metastasis by increasing the capacity of cancer cells to invade

and colonize at remote tissue [3]. EMT is thought to be governed by a few master regulators

that induce epigenetic and transcriptional reprogramming, affecting the expression of multiple

downstream genes [4]. The transition is characterized by the down-regulation of E-cadherin,

which has been the gene most extensively studied, resulting in disruption of adherens junc-

tions [5]. The inhibition of E-cadherin expression is known to be mediated by the transcrip-

tion factor Snail [6]. At the CDH1 loci, Snail recruits protein complexes containing histone

deacetylases (HDACs) that deacetylate H3 and H4 histones, silencing the transcription of E-

cadherin [7]. Other key transcription factors implicated in EMT are ZEB1/2 and TWIST [8].

The regulation of EMT-TFs by miR200 and miR34 constitutes a double-negative feedback

mechanism [2], predicting a bistable system with binary transition between cellular states.

Essentially, EMT is controlled by multiple interconnected regulatory networks, which include

transcriptional and post-transcriptional mechanisms. Due to high regulatory complexity,

proteomic and transcriptomic technologies provide an opportunity to obtain a more global

understanding of EMT and MET, while possibly discovering additional molecular mecha-

nisms with implications for targeted cancer therapeutics.

The reverse phase protein array (RPPA) is a high-throughput proteomics method that uti-

lizes antibody binding to quantify protein expression and post-translational modifications

including phosphorylation, acetylation, and protein cleavage. Compared to mass spectrometry

proteomics, RPPA has higher sensitivity for low-abundance proteins and is characterized by

increased throughput; however, it relies on high-quality antibodies, so it cannot identify pro-

teins or post-translational modifications de novo [9]. Using RPPA, 736 cancer cell lines have

been assayed for 450 proteins and phosphoproteins covering well-established cancer-related

signaling pathways [10]. This data complements prior efforts to characterize basal mRNA

expression across many of the same cancer cell lines for different cancer types [11]. In addi-

tion, tumor samples have been characterized by similar RPPA experiments for samples from

the Cancer Genome Atlas (TCGA) [12], which are publicly available through the Cancer Pro-

teomics Atlas (TCPA) [13].

Most genome-wide studies of EMT in cancer cell lines and tumors have focused on particu-

lar cancer types. Combining EMT signatures based on cell lines and tumors of multiple cancer

types can identify general transcriptomic features of EMT in cancer cells, which are clinically

relevant for multiple types of cancer. More recently, transcriptomic data from TCGA and Can-

cer Cell Line Encyclopedia (CCLE) have been used to define a pan-cancer EMT signature

based on the expression of E-cadherin and Vimentin alone [14]. In this study, we integrate

transcriptomics and RPPA data from multiple cancer cell lines to study pan-cancer cellular

states associated with EMT.

CCLE and RPPA data reveal EMTmechanisms
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Results

Transcript and protein signatures of pan-cancer cell lines organize by E-
cadherin expression

The Cancer Cell Line Encyclopedia (CCLE) contains 1037 cancer cell lines with profiled tran-

scriptomes [11], and the MD Andersen Cell Line Project (MCLP) contains 736 cancer cell

lines profiled by RPPA [10]. Out of these cancer cell lines, 381 have both available RPPA and

microarray data. RPPA measurements are available for 450 proteins and phospho-proteins, of

which 311 genes can be matched to mRNAs measured in CCLE. In the RPPA data, 79 proteins

are measured both at the basal expression and phosphorylation levels (Fig 1A). To our knowl-

edge, this data set, although far from genome-wide at the protein level, represents the largest

collection of cancer cell line data measured at the transcriptional, translational, and post-trans-

lational levels.

Transcriptional profiling of human tumor samples accurately predicts the tissue of origin

for common cancer types [15]. This suggests that despite oncogenic transformation, cancer

cells retain cellular identity and molecular features of their ancestral cell lineage, which is a key

confounding factor in pan-cancer analyses. To assess how cancer cell lines relate based on

transcript and protein expression, we visualized distances between cell lines using the t-Dis-

tributed Stochastic Neighbor Embedding (t-SNE) method [16]. As expected, the cell lines are

clustered predominantly by their tissue of origin for both RPPA and transcriptomic data (Fig

1B, top). Cancer types with ill-defined or multiple clusters included breast and ovary as well as

cell lines from the most common targets of metastasis: liver, lung, and bone. Nonetheless,

most cell lines were correctly classified by nearest neighbor classification (S1 Fig), even when

the t-SNE perplexity parameter was varied widely. In addition, independently from the t-SNE

analysis, Gap statistics [17] from the average linkage hierarchical clustering at different tree

cuts resulting in clusters of varying cardinalities displays similar grouping of cell lines. Further-

more, the inflection points in the number of clusters formed at different thresholds demon-

strate that the cell lines are organized into distinct clusters based on expression vector

similarity (S3 Fig). Next, we asked: to what extent the RPPA and transcriptomic data is concur-

rent. Although the cell line distances for protein and mRNA data were correlated (r = 0.58),

they were surprisingly different for particular pairs of cell lines (Fig 1C). To quantify these dif-

ferences and rank cell lines with the most characteristic protein or transcript signatures, we

calculated the residuals of a linear regression between the protein and mRNA cell line dis-

tances. According to this model, we found that the 49 breast cancer cell lines had the largest

distances at the protein vs. mRNA levels compared with other sets of cells from other tissues of

origin, suggesting that the RPPA measurements better distinguish breast cancer subtypes.

Interestingly, hierarchical clustering based on the RPPA data supports three luminal breast

cancer subtypes compared with two subtypes identified by transcriptomic data (Fig 1D) here

and elsewhere [12]. More broadly, combining data from microarray and RPPA data strength-

ened the cancer type clustering of cell lines, further suggesting that these measurements of

global cellular states are complementary. Overall, clustering of cell lines by transcriptomic and

RPPA data is consistent with some cancer types being well-defined and others spanning a

wide spectrum of molecular states, while retaining few but important distinguishing differ-

ences at both the cancer type and subtype level.

To test the hypothesis that EMT governs the molecular states of cell lines across cancer

types, we colored the z-scores of E-cadherin expression on the points on the t-SNE maps. For

both transcripts and proteins, the cancer cell lines were globally organized by a gradient of E-

cadherin expression (Fig 1B, middle). This organization indicates a central role for EMT in

characterizing the molecular states of cancer cell lines. Most cancer types associated with

CCLE and RPPA data reveal EMTmechanisms
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common carcinomas had cell lines that spanned this E-cadherin gradient, with lung and breast

cancer displaying the largest span. In contrast, cell lines from skin, bone, blood, and kidney

were exclusively found in regions with low E-cadherin expression; whereas cell lines from pan-

creatic and large intestine cancers were found mostly in regions with high E-cadherin expres-

sion with only few cell lines expressing E-cadherin at low levels. To ensure the robustness of

these findings, we ran independent t-SNE analyses by varying the perplexity parameter, which

recapitulated both the E-cadherin gradient and the cancer type-specific clusters (S2 Fig). In

comparison, principal component analysis (PCA) yielded less separation of cancer types and a

less prominent gradient of E-cadherin expression (S4 Fig). Using cell line annotations from

the Catalogue of Somatic Mutations in Cancer (COSMIC), we found no obvious association to

whether the cell lines were derived from primary or metastatic tumors (Fig 1B, bottom). This

suggests that the arrangement of cell-lines on the t-SNE plots, and thus global expression at the

mRNA and protein levels, is dominated by tissue of origin much more than metastatic status.

Fig 1. Pan-cancer cell line data fromCCLE transcriptomic and reverse phase protein arrays (RPPA) cluster by
tissue of origin and E-cadherin expression but not by prior metastasis classification. (A) Overlap of available
RPPA and CCLE data with regard to cancer cell lines (left), measured transcripts and proteins (middle), and proteins
measured for both basal expression and phosphorylation levels (right). The colored areas indicate data used to calculate
and compare Euclidean distances between cell lines. (B) t-SNE plots of overlapping cancer cell lines based on protein,
transcript, and equally weighted combined data. Each point represents a cell line and is colored by the tissue of origin
(top), E-cadherin expression (middle), or tumor classification (bottom). NS: not specified. (C) Comparing pairwise
distances between all cell lines using a linear model at the mRNA or protein levels. The red points show the top-100
highest residuals of cell line pairs, and the blue points the top-100 lowest residuals. (D) Dendrograms of breast cancer cell
lines mapped for transcriptomic and RPPA data. The leaves of the trees were arranged to minimize the number of
crossing lines between leaves of the two trees. L1-5 represents clusters found within the luminal subtype of breast cancer
cell lines.

https://doi.org/10.1371/journal.pcbi.1005911.g001
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Nonetheless, we propose that collections of pan-cancer cell lines can be used to study aspects

of EMT related to E-cadherin expression, which is also clearly bimodal (Fig 2A).

Bimodal protein expression and phosphorylation indicate oncogenic
transitions

Oncogenesis is a multi-step process by which cells acquire cancerous traits, which often mimic

physiological cellular processes such as embryogenesis [14]. Such processes are governed by

molecular switches that turn on or off coordinated cellular programs. Hence, analyzing the

bimodality of protein expression can potentially illuminate cellular states of oncogenesis. To

evaluate this idea, we fit a univariate two-component Gaussian mixture model to each RPPA

measurement using the expectation-maximization (EM) algorithm. We evaluated bimodality

against unimodal distributions using the Bayesian Information Criterion (BIC). Out of the 450

antibody-based RPPA measurements, 260 were bimodal across 736 pan-cancer cell lines (Fig

2B, S1 Table). Among the most bimodal proteins were E-cadherin, Claudin7, and Rab25, all of

which have been previously associated with EMT or MET [18]. However, because of the pre-

ponderance of tissue-specific signatures among pan-cancer cell lines, bimodal protein expres-

sion could more simply be explained by cell type-specific expression. For example, LCK was

highly expressed only in a subset of blood cancer cell lines (Fig 2C) concordant with its specific

roles in T cell development [19]. To account for residual effects of ancestral cell types, we

quantified the tissue diversity of the cell lines assigned to the low- and high expression states

by the Shannon entropy of the tissue distributions. We then excluded the lower tertile of the

minimum tissue entropy of the low- and high expression states. This approach yielded 172

bimodal proteins and phosphosites (Fig 2B, S1 Table). Out of these, 90 had balanced bimodal

distributions including E-cadherin, Claudin7, and Rab25, indicating common pan-cancer

oncogenic switches, while 82 were classified as rare transitions (Fig 2D). This filtering and clas-

sification is likely prone to false positives due to other confounding factors such as different

stages of the circadian clock at time of measurement. Compared to non-bimodal proteins, the

proteins associated with the common switches were uniquely enriched for 107 Gene Ontology

terms (p< 0.05, after Benjamini-Hochberg correction) many of which can be linked to metas-

tasis and invasion (Fig 2E).

Coupled bimodality suggests transcript- and protein-based regulatory
basis for oncogenic switches

To identify whether the observed bimodal protein expression across cancer cell lines correlate

with transcriptional regulation, we evaluated the bimodality of matching transcripts from

CCLE (Fig 3A). We then defined bimodal coupling coefficients between mRNA and protein

measurements as the Spearman’s correlation between the posterior probabilities of the mixture

model. Overall, 14.0% of proteins measured in MCLP had highly coupled (rb> 0.5) bimodal

expression of mRNA and protein. Slightly fewer proteins (10.8%) were uniquely bimodal only

at the protein level, including important cancer-related proteins such as MEK1, mTOR, E2F1,

TTF1, EIF4G, and JAB1. Hence, these proteins are bimodally expressed due to post-transcrip-

tional regulatory mechanisms such as protein translation and degradation. In addition, we

compared the bimodality of proteins and their phosphosites as measured by antibody binding

in the RPPA data (Fig 3B). Here, we found weaker bimodal coupling, indicating that phospho-

signaling leading to bimodal phosphorylation is mostly independent from basal protein

expression. Interestingly, bimodal HER2 phosphorylation at Y1248 was moderately coupled to

HER2 protein expression (rb = 0.46), most likely due to autophosphorylation on increased

dimerization at higher expression [20]. The bimodal EMT proteins E-cadherin, Claudin7, and

CCLE and RPPA data reveal EMTmechanisms
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Fig 2. Bimodal protein expression and phosphorylation detected across cancer types associate with known oncogenic
processes including EMT. (A) Two-component Gaussianmixture model fit to E-cadherin protein expression. The lines indicate
the probability density contribution from the low (-) and high (+) expression components. The histogram represents the RPPA
measurements for the cell lines. (B) By comparing a two- versus one-component fit using the Bayesian Information Criterion
(BIC), 260 out of 450 RPPAmeasurements supported bimodal expression. (C) Heat map of the posterior probabilities of each
cell line belonging to the low (-, blue) or high (+, red) mixture component for the top-20 most bimodal proteins. The posterior
probabilities can be thought of as soft assignments for the cell lines to low or high expression. Shannon entropy of the tissues
assigned to low and high expression quantify the tissue diversity giving rise to the bimodal fits. (D) Overview of classification
approach of proteins in terms of bimodality, tissue diversity (Shannon entropy), and frequency of cell lines assigned to the fitted
distributions. (E) Significant GO terms for common bimodal proteins that were not found to be significant for non-bimodal proteins
(p < 0.05, Benjamini-Hochberg).

https://doi.org/10.1371/journal.pcbi.1005911.g002
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Rab25 all had high bimodal mRNA-protein coupling (Fig 3C), confirming that these EMT

switches are mostly determined by transcriptional regulation. Nonetheless, 30 cancer cell lines

had high expression of the E-cadherin transcript but low protein expression (Fig 3D and 3E),

suggesting that E-cadherin could be translationally or post-translationally controlled in some

cellular contexts. Among these cell lines, 3 out of 4 CDH1 genotyped cell lines in COSMIC had

either nonsense (MDA-MB-453 and HT115) or frameshift (MDA-MB-134-VI) mutations in

CDH1, which validate our ability to identify effects on E-cadherin translation. Inactivating

mutations in CDH1 are frequently observed in breast and gastric cancers with cancer type-spe-

cific mutational patterns and are associated with loss of cell-cell adhesion and increased cell

motility [21]. The nature of the low E-cadherin protein expression in the other 26 cell lines

remains unknown, but likely includes inactivating mutations and possibly translational or

post-translational regulation.

Fig 3. Bimodal coupling between regulatory layers. (A) Comparison of mRNA and protein bimodality
colored by the coupling (Spearman’s correlation) between posterior probabilities of two-component Gaussian
mixture models. The red percentage indicates the fraction of compared genes with coupled (rb > 0.5)
bimodalities at the transcript- and protein level. (B) Bimodal coupling of phosphosites and protein expression.
(C) High confidence assignments (p < 0.1) to low or high expression for selection of bimodally coupled mRNA-
protein pairs. (D) Scatter plot of E-cadherin mRNA and protein expression, indicating in red the 30 cell lines
assigned to high mRNA but low protein expression (+–). r is Pearson’s correlation and rb the bimodal coupling
coefficient. (E) Tissue of origin andCDH1 (E-cadherin) mutational status of 30 cell lines with high E-cahderin
mRNA but low protein expression. Of these cell lines, 3 out of 4 cell lines genotyped forCDH1 in COSMIC, all
had mutations in the coding sequence. fs: frameshift, *: missense.

https://doi.org/10.1371/journal.pcbi.1005911.g003
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Transcriptional mechanisms that determine molecular switches are regulated by

upstream signaling, such as phosphorylation cascades, which leads to coordinated expres-

sion of multiple genes. To detect candidates for such signaling and further characterize the

EMT-related states in cancer cell lines, we analyzed the network of bimodal coupling coeffi-

cients among bimodal protein and phosphosites associated with high tissue diversity. We

first trimmed the protein network by including only significant bimodal coupling coeffi-

cients (FDR < 5%, Bonferroni) with |rb|> 0.3. This yielded a network of 172 protein nodes

connected by 507 edges, from which network communities were defined based on the lead-

ing non-negative eigenvector [22]. In total, we detected 8 protein communities that likely

reflects shared underlying signaling or cellular events (Fig 4A). One community (EMT1)

was clearly linked to EMT, containing E-cadherin, β-catenin, Fibronectin and Twist among

several other EMT-related proteins (Fig 4A). E-cadherin was connected to EPPK1, INPP4B,

Stathmin, Jagged1, UGT1A, and PDCD1L1, indicating that these might be involved in

EMT. The strong bimodal coupling to EPPK1 could help explain why loss of E-cadherin is

associated with migratory phenotypes and not just loss of cell-cell adherence; in mice kerati-

nocytes, EPPK1 knockout cells exhibit faster migration and increased wound healing [23].

E-cadherin was also positively coupled to the phosphosite EGFR pY1068, which was in turn

positively coupled to SRC pY416 and STAT3 pY705, suggesting a role for phosphorylation

of these sites in EMT. Strikingly, all detected communities contained multiple proteins with

known mechanisms linking them to EMT but also identified potentially undiscovered com-

ponents (Fig 4A). The dispersion of these EMT-related proteins among the identified pro-

tein communities suggests that they are either part of separate biological processes, or that

their involvement in EMT depends on cancer subtypes. Another intriguing possibility is

that the multiple protein communities associated with EMT reflect partial cellular states in-

between epithelial and mesenchymal phenotypes (Fig 4B). In support of this idea, P-cad-

herin has previously been suggested as a marker of metastable EMT states [24]. Here we

find P-cadherin in the EMT2 community (Fig 4A). In addition, Claudin7 is highly coupled

to E-cadherin (rb = 0.70), but found in a separate community (EMT3), along with Rab25

and N-cadherin. Looking closer at this correlation, cell lines had high E-cadherin and low

Claudin7 expression but not conversely (Fig 4C). Two other communities are identified,

EMT4 and EMT5. The EMT4 cluster contains key cell-cycle transcription-factors such as

FoxM1, Cyclin-B1, and Elk1, together with protein kinases that are known to positively reg-

ulate their activity, including PLK1, MAPK, and MEK1. Consequently, this cluster indicates

changes in cell proliferation regulation. The EMT5 cluster contains a clique made of 3 pro-

tein kinases known to regulate the protein translation machinery: RICTOR, P70S6K, and

PDK1; and S6 a key protein in the 40S ribosomal subunit. Hence, this cluster likely repre-

sents changes in protein translation activity related to overall cell growth. It should also be

noted that highly studied proteins and phosphoproteins such pAKT, Cyclin D1, PTEN, and

PKC are known to be central to many other pathways, not just to EMT. Hence, labeling all

identified clusters as EMT clusters needs to be considered with such general functions in

mind. Altogether, it is possible that the protein communities EMT1 and EMT3 may reflect a

two-step transition (Fig 4B). In summary, the quintessential EMT marker E-cadherin was

found centrally in a large protein and phosphosite network community with clear associa-

tions to known EMT markers. For these reasons, we focused subsequent analyses around

the expression of E-cadherin, arguing that this approach reflects core aspects of EMT that

are invariant across cancer types.

CCLE and RPPA data reveal EMTmechanisms
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E-cadherin and bimodally coupled mRNA define genome-wide EMT
profile

Because E-cadherin is primarily transcriptionally controlled, we next sought to characterize

the coordinated transcriptional program associated with E-cadherin down-regulation. First,

we defined an EMT signature based on the bimodal coupling (|rb|> 0.5) between E-cadherin

protein expression and transcriptomic measurements from CCLE, resulting in 239 transcripts

—215 positively and 24 negatively coupled (Fig 5A, S2 Table). To our knowledge, these 239

genes include many novel epithelial and mesenchymal markers, while recovering many

known EMTmarkers previously described (Fig 5C), for example, Axl which was reported for

non-small cell lung carcinoma [25], or KPNA2 for ovarian carcinoma [26]. The preponder-

ance of positively coupled transcripts suggests that the EMT signature is predominantly char-

acterized by down-regulation of genes governing epithelial traits rather than by gain of

Fig 4. Proteins and phosphosites with coupled bimodality form network communities associated with EMT and
intermediate transitions. (A) Pan-cancer protein communities detected by Spearman’s correlation of the posterior probabilities of
cell lines having low or high expression (|rb| > 0.3). Only RPPAmeasurements associated with bimodal fits with high tissue diversity
were included. Network communities were detected by calculating the leading non-negative eigenvector according to Newman’s
method. Only edges within identified communities are shown, colored by the magnitude of the bimodal coupling coefficients. The size
and color of the nodes represent the fitted mixing parameters from the Gaussian mixture models, quantifying whether underlying
switches are common or rare in cancer cell lines. Each community was manually named according to plausible biological mechanisms
by conducting a literature search for their protein members. Asterisks (*) indicate proteins with reported mechanisms linked to EMT.
(B) Proposed interpretation of a two-step transition from the endothelial–E, to the mesenchymal–M states through two identified
modules: EMT1 and EMT3. (C) Supporting protein expression data showing that Claudin7 and E-cadherin are correlated. Cell lines
are colored by the tissue of origin (see Fig 3 for tissue labels).

https://doi.org/10.1371/journal.pcbi.1005911.g004
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mesenchymal traits. Nonetheless, the bimodal coupling coefficients were shifted towards nega-

tive values (Fig 5B) and we did find negatively coupled mesenchymal markers such as ZEB1/2

[4].

To further characterize the EMT signature, we performed enrichment analysis on the epi-

thelial markers (Fig 5B). Enrichment analysis [27, 28] for Gene Ontology (GO) cellular com-

ponents and biological processes clearly demonstrated epithelial phenotypes (Fig 5D). We also

Fig 5. Pan-cancer bimodal coupling between E-cadherin protein expression and genome-wide
transcripts defines an EMT signature, predicting EMT- and MET-inducing small-molecules. (A) Top-25
transcripts in CCLE with the strongest positive and top 24 negative bimodal coupling coefficients (rb) to E-
cadherin protein expression. Red squares indicate previous EMT signature genes in non-small cell lung
carcinoma published by Byers et al. [51]. To define an EMT signature, we considered transcripts with |rb| >
0.5, resulting in 215 epithelial and 24 mesenchymal markers. (B) Distribution of bimodal coupling coefficients,
showing that E-cadherin coupling coefficients are shifted towards negative values compared to all measured
proteins. (C) Overlap of EMT signature with previously published transcriptomic EMT signatures. The
‘mesenchymal’ bar plot is for the inversely correlated (coupled) genes and the ‘epithelial’ for the positively
correlated genes. (D-E) Gene set enrichment analysis of epithelial part of the EMT signature. The TF
enrichment analysis used ChIP-seq data to predict TFs involved in the regulation of the epithelial genes. The
pie charts indicate the fraction of the signature genes associated with significantly enriched terms or TFs. (F)
Small-molecule perturbations predicted to induce EMT and MET based on L1000 cell line data and the
L1000CDS2method. The top-50 signatures are shown with results frommultiple cell lines or concentrations
aggregated by boxplots. PK: protein kinase.

https://doi.org/10.1371/journal.pcbi.1005911.g005
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found enrichment for localization to the perinuclear region, which is a cytosolic region next to

the nuclear envelope with largely unknown composition and biological function. This suggests

that the epithelial markers can be used to prioritize spatial cellular regions not widely consid-

ered to be affected by EMT such as the perinuclear region, where components of endocytosis

aggeregate, although it is well established that endocytosis is central to cell migration. Enrich-

ment for TF binding, using aggregated results from ChIP-seq studies [29], identified SOX2,

SMAD2-4, TP63, GATA3-4, and GATA6, which likely act to down-regulate epithelial genes

during EMT (Fig 5E). The identified enriched TFs OCT4, SOX2, NANOG, KLF4, and ESRRB

are all known to be essential for maintaining pluripotency of human and mouse embryonic

stem cells [30]. These TFs bind to super-enhancer regions and through the Mediator complex

[31]. Therefore, large parts of the observed transcriptional bimodality could be explained by

TF co-operation at super-enhancers resulting in switch-like regulation at numerous genomic

loci. At the CDH1 loci, ENCODE ChIP-seq data supports the involvement of super-enhancers

since the loci is marked by high H3K27ac correlated with E-cadherin expression (S5 Fig). Pre-

viously, super-enhancers have been proposed to control partial EMT through the putative

master regulator TFs ETS2, HNF4A, and JUNB [32], the first two of which we also identified

through the TF enrichment analyses. Taken together, pan-cancer bimodality uncovers onco-

genic states and regulatory mechanisms of EMT and MET.

EMT and MET can potentially be induced by small molecules

Gene expression-based, high-throughput screening is a promising approach to identifying

small-molecule candidates that can reverse or mimic changes in expression observed in transi-

tion to a disease state [33]. To detect small molecules that would maximally push cells toward

the EMT or MET expression state, we queried the EMT signature against signatures from

~20,000 small-molecule perturbations of ~50 human cell lines generated by the library of net-

work-based cellular signatures (LINCS) project L1000 dataset [34]. We searched for small mol-

ecules that down-regulate epithelial genes and up-regulate mesenchymal genes, resulting in

candidate EMT inducers (Fig 5E). Small molecules with the opposite effects were interpreted

as MET inducers. Strikingly, most small molecules predicted to induce EMT were HDAC

inhibitors, whereas most small molecules predicted to induce MET were kinase inhibitors.

The identified HDAC inhibitor Trichostatin A has been shown to induce EMT in prostate can-

cer cells through modification of H3 near promoters of EMT-related genes [35]. Of the candi-

date MET inducers, Selumetinib, Trametinib, and PD-0325901 are thought to inhibit MEK,

while Saracatinib and Dasatinib to inhibit SRC among other kinome targets. In agreement

with these findings, a prior high-content chemical screen aimed at identifying inhibitors of

EMT has predominantly identified other similar kinase inhibitors based on cell growth and

migration assays [36]. Hence, in summary, caution should be placed in utilizing HDAC inhibi-

tors as therapeutics due to their putative potential to enhance EMT as predicted by chemoge-

nomics screening.

Causal protein and phosphorylation models identify drivers of cancer
signaling and progression

The bimodal coupling model we implemented to analyze EMT is essentially correlative and

hence not causal. However, establishing causal interactions based on RPPA data is challenging

without time-series or direct perturbation data such as gene knock-downs or knock-outs [37].

With sufficient sample size and coverage of diverse cell lines, it is in principle possible to iden-

tify causal, regulatory interactions between measured signaling components. Despite not satis-

fying the observation that cell signaling regulatory networks contain feedback loops [38],
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learning Bayesian network learning algorithms can be applied to construct causal models of

cellular regulatory networks, including cell signaling networks, from observational data [39–

41]. To infer causal relationships among proteins and phosphosites measured by RPPA, we

used a Fast Greedy Search algorithm to estimate a Bayesian network over all 450 RPPA mea-

surements (Fig 6). Based on the resulting directed acyclic graph, we calculated betweenness

centrality, subgraph centrality, in-degree, and out-degree for each analyte. Bimodal phospho-

sites overall had higher betweenness centrality (p = 0.036, t-test). By considering measures of

network influence, several proteins and phosphosites were identified as promising candidate

drivers (Fig 6A and 6B). In particular, SRC pY416 had the highest out-degree. This phospho-

site is known to be highly predictive of patient survival [42].

Furthermore, we analyzed the network neighborhood of E-cadherin, Claudin7, and Rab25,

which spanned the proposed two-step transition: EMT3 followed by EMT1 (Fig 6C). Using a

hierarchical network layout algorithm, E-cadherin was found downstream of Claudin7 and

Rab25 concurrent with EMT3 preceding EMT1 in cancer cell lines. In addition, several pro-

teins and phosphosites upstream of the EMT markers were plausible oncogenic drivers for

specific cancer types, supported by prior reports. For example, MACC1 is associated with pan-

creatic EMT and metastasis [43], which the analysis found for both pancreatic and pleural can-

cer cell lines, while suggesting the opposite effect in lung, endometrium, and upper digestive

tract cancers. Lastly, we also found LKB1, CHK1, and Stathmin upstream of EMTmarkers.

The inactivation of LKB1, which is frequently mutated in lung adenocarcinomas, induces

EMT in lung cancer cells through activation of ZEB1 [44], whereas CHK1 mediates DNA

damage response as part of EMT by stabilizing ZEB1 [45]. Inhibiting the microtubule destabi-

lizer Stathmin impedes EMT by increased microtubule formation [46]. In conclusion, inferred

Bayesian protein networks based on pan-cancer cell lines can potentially identify key drivers

of EMT.

To validate the causal models, we carried out bootstrapping for 200 iterations and consid-

ered the average network for both cell line and tumor data (Supporting Information, S3 Table,

Fig 6E). Although the reproducibility of particular edges in the ensemble of Bayesian networks

was relatively low for the cell line data, the connection from Claudin7 to Rab25 was present in

48% of the networks, and in all the networks inferred from tumor samples. In contrast, the sta-

tistical reproducibility of the tumor networks was higher, most likely due to the larger sample

size (n = 3,161). Overall, the average Bayesian networks were significantly correlated between

cell line and tumor data (Fig 6D). The bimodal coupling coefficients, however, were lower in

the tumor data, indicating that bimodal expression is less pervasive in tumors compared to cell

lines. This result might indicate that tumors, more-so than cell lines, contain mixtures of cell

types that are in multiple cellular states. Overall, the learning Bayesian Network strategy

employed here is exploratory and needs further evaluation, parameter tuning and validation.

Discussion

Cellular transitions from epithelial to mesenchymal phenotypes share common characteristics

such as down-regulation of E-cadherin in a variety of tissues and cancer contexts [47]. In this

study, we demonstrate that in pan-cancer cell lines, bimodal coupling of transcript, protein,

and phosphosite expression reveal epithelial and mesenchymal states. However, many known

EMTmarkers are dispersed across bimodally coupled network modules, suggesting that they

are involved in distinct regulatory programs. Different modules likely correspond to interme-

diate cellular states of an EMT spectrum, whereby transcriptional down-regulation of E-cad-

herin, and other genes, represents a decisive loss of epithelial traits. In agreement, we find that

E-cadherin expression is primarily transcriptionally controlled, possibly with context-
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dependent control at the translational or post-translational level. By anchoring the investiga-

tion around the transcriptional program associated with E-cadherin down-regulation, we

identified 239 bimodal EMTmarkers, many of which have not previously been associated with

EMT.

The observation that EMTmarkers are particularly bimodal suggests that cell lines are

unequivocally either epithelial or mesenchymal in cell culture. It follows that the EMT decision

for cells is determined by the growth medium and the genetics of the cancer cells, rather than

by stochastic processes leading to heterogeneous mixtures of cells. Therefore, the identified

bimodal switches likely reflect deterministic rather than stochastic architecture. However, in

bulk experiments of cell lines, rare but important populations of cells such as mesenchymal

Fig 6. Bayesian networks of proteins and phosphosites inferred from pan-cancer cell lines identify drivers
of EMT and correlate to tumor networks. All Bayesian network structures were inferred by a Fast Greedy Search
algorithm. (A) Network centrality statistics of the directed causal graph over all measured proteins pertaining to the
influence of proteins on cancer signaling. (B) In and out degree distributions of proteins and phosphosites from the
inferred network. (C) Causal neighborhood (1st neighbors) of EMTmarkers E-cadherin, Rab25, and Claudin7.
Tissue-specific correlations in support for each edge are shown as bars along the edges. The layout was
determined using the hierarchical Sugiyama algorithmwith all edges oriented downwards. (D) Network comparisons
between cell line and tumor data. (E) Distribution of average connectivity in bootstrapped Bayesian networks. (F)
Distribution of networks of bimodal coupling coefficients.

https://doi.org/10.1371/journal.pcbi.1005911.g006
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stem cells could be neglected. The lack of obvious association between metastasis and E-cad-

herin expression raises some questions. Possibly, the in vitro conditions, lack of cues from

tumor microenvironments, and cell culture passages might mask the original metastatic events

from which the cell line is derived. More broadly, cell culture conditions may fail to model cru-

cial aspects of how EMT occurs in complex tissue environments. Yet, the identified determin-

istic mechanisms may be valid only under the right conditions.

We find that cancer cell lines down-regulate epithelial and up-regulate mesenchymal genes

when treated with HDAC inhibitors. This observation warrants caution for the use of HDAC

inhibitors as cancer and other therapies. If HDAC inhibitors induce EMT in cancer cells, this

could explain the disappointing outcomes in clinical trials of HDACmonotherapies for solid

tumors [48]. Several protein kinase inhibitors were predicted to revert cancer cell lines to a

more epithelial state, but most of these kinase inhibitors are not currently in clinical use.

Therefore, these kinase inhibitors may be effective as metastatic repressors and could be

under-investigated due to the contemporary focus on targeted drug treatments rather than

broad functional effects. Furthermore, the mechanisms of action for the small-molecules may

inform us about EMT or MET drivers. For example, the identification that the two SRC inhibi-

tors Dasatinib and Saracatinib are potentially MET inducers, the co-clustering of SRC pY416

with Claudin7, and its large out-degree in the Bayesian network, all corroborate evidence to

the importance of SRC activity for regulating EMT during cancer progression. In addition, the

identification of kinase inhibitors rather than other classes of small-molecules suggests that

phospho-signaling in general is particularly important for driving MET.

Lastly, we show that causal models of protein expression and phosphorylation in cancer cell

lines identify known and putative drivers of EMT. Due to the promising preliminary results

from the causal models that we constructed, identifying molecular drivers of EMT, despite the

lack of statistical power to robustly detect individual causal interactions, it is clear that measur-

ing more cell lines, under more conditions, would substantially increase the sensitivity and in

turn quality of such models. Also, if a sufficient number of pan-cancer cell lines could be pro-

filed by mass spectrometry proteomics, the developed bimodal methodology could be reap-

plied to confirm and discover novel associations between proteins and post-translational

modifications that drive oncogenic state transitions.

Methods

Matching RPPA and CCLE cell line data

The RPPA data for 736 cancer cell lines were generated at the MD Anderson Cancer Center.

The selection criteria of the 474 measured proteins were based on the aim to cover known can-

cer-related signaling pathways. We excluded antibodies with missing values across cell lines by

requiring that each RPPA measurement is present in at least 40 cell lines. This resulted in a

dataset with 450 antibody-based measurements. The CCLE mRNA data and cell line annota-

tions of 1,037 cancer cell lines were retrieved from the CCLE portal at: https://portals.

broadinstitute.org/ccle. We used the gene-centric RMA-normalized data.

Cell line distances and clustering

For all methods relying on geometric distances, Euclidean distances were computed consider-

ing only pairwise complete features. Sparse RPPA measurements were excluded, requiring

that each protein is measured in at least 100 cell lines, which resulted in the inclusion of 263

protein measurements. To reduce the dimensionality of the RPPA and mRNA data, we used t-

SNE implemented in the R package ‘tsne’ with perplexity value of 30 and at 5,000 iterations,

and all other arguments at their default values [16]. Only cell lines with available RPPA and
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mRNA data were included. For the combined RPPA and CCLE mRNA embedding, the dis-

tance matrices for each data set were weighted by the sum of all distances. In this way, each

data type contributed equally to the combined analysis. To more rigorously assess the number

of clusters supported by the RPPA and CCLE data sets, we calculated the Gap statistic [17]

from the average linkage hierarchical clustering at tree cuts resulting in clusters of varying car-

dinalities. PCA was performed using the R package ‘pcaMethods’ from data that were centered

and scaled to unit variance, while imputing missing values with the ‘svdImpute’ method. Fur-

thermore, we analyzed patterns in the classification and misclassification of the tissue of origin

for the RPPA and mRNA data using 3-nearest-neighbor classification according to a leave-

one-out cross-validation scheme. Linear regression was carried out between the RPPA and

CCLE mRNA distance matrices with the RPPA distances considered the target variable. The

residuals of the regression thus quantify the deviation from expected distance for RPPA data

for each pairwise cell line distance. To compare the clustering of breast cancer cell lines, we

computed tanglegrams using the dendextend R package. The tanglegram method uses a ran-

dom search to rotate tree nodes minimizing the overlap of lines drawn between leaves of two

trees.

Statistical models of bimodal expression

We fit univariate two-component Gaussian distributions using the expectation-maximization

(EM) algorithm implemented in the ‘mixtools’ R package with default parameters. To compare

the fitted distribution to unimodal Gaussian distributions, we calculated the difference

between the Bayesian Information Criterion (BIC). The data were determined to be bimodal if

the BIC difference was larger than 2. Based on the fitted Gaussian mixture model, we calcu-

lated, using Bayes’ theorem, the posterior probabilities of measurements being generated from

the high expression component. Note that the probability of belonging to the low component

is 1-p. To estimate the tissue diversity of each bimodal fit, we first calculated the frequencies of

tissues assigned to the low (p< 0.5) and the high (p> = 0.5) component. We then calculated

the Shannon entropy of the tissue distributions associated with the low- and the high compo-

nents. The bimodal RPPA measurements were classified into groups of low, medium, and

high tissue diversity by the tertiles of the minimum tissue entropy associated with low- and

high expression. The bimodal expression was considered common if the fitted mixture coeffi-

cients were above 1/4 and rare if below. Based on the posterior probabilities of the bimodal fits

associated with high tissue diversity, we calculated a network of bimodal coupling coefficients

defined as Spearman’s correlations between the posterior probabilities. To detect robust com-

munities in this network, we set a cutoff of |rb|> 0.3 and calculated the leading non-negative

eigenvectors using the igraph R package. The network was visualized in Cytoscape with node

size proportional to the mixing parameter of the two-component Gaussian fit and with edge

coloring based on the coupling coefficients.

EMT signature enrichment and queries

The coupling coefficients between the E-cadherin RPPA measurements and matched CCLE

transcript data were used to define an EMT signature (rb> 0.5). Enrichment analysis was per-

formed with Enrichr [28]. L1000CDS2 was used to query small molecules as potential inducers

or reversers of EMT [34]. We summarized the EMT and MET small-molecule predictions by

reporting the top-50 small molecules identified using boxplots to aggregate small molecules

with multiple experimental conditions such as cell lines, dosage, or timing.
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Causal modeling

The causal models of the RPPA measurements across cancer cell lines were inferred using the

Fast Greedy Search algorithm [49] implemented by the BD2K Center for Causal Discovery

[50]. We used the rcausal R package version 0.99.5 to run the Java implementation with pen-

alty discount 4 and depth 3. To visualize causal neighborhoods, we computed graph cuts and

rendered the subnetwork in R using a Sugiyama layout of the directed acyclic graph. The tis-

sue-specific correlations were layered on top of the edges as histograms. To estimate the

robustness of the resulting causal network, we ran the algorithm several times in a bootstrap

scheme (M = 200) by sampling with replacement.
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