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Abstract 
There is a large variety of methods in literature for process design and control, which can be classified 

into two main categories. The methods in the first category have a sequential approach in which, the 

control system is designed, only after the details of process design are decided. However, when 

process design is fixed, there is little room left for improving the control performance. Recognizing 

the interactions between process design and control, the methods in the second category integrate 

some control aspects into process design. With the aim of providing an exploration map and 

identifying the potential areas of further contributions, this paper presents a thematic review of the 

methods for integration of process design and control. The evolution paths of these methods are 

described and the advantages and disadvantages of each method are explained. The paper concludes 

with suggestions for future research activities. 
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1. Introduction 
This paper presents a thematic review of the relevant research into process design and control as a 

starting point and exploration map for the researchers in the field. In addition, the paper aims at 

encouraging the industrial application of these methods and identifying the challenging research 

frontiers with great potential impacts. This paper is organized in three parts. The first part discusses 

the incentives and barriers for integrated design and control and presents the industrial perspective 

about the subject. The second part provides the review of the research in the field. There are two 

categories of the methods. The methods in the first category have a sequential approach in which the 

process is designed first, and then the design of its control system is decided. However, recognizing 

the interactions between process design and control, the methods in the second category integrate 

process design and control. The third part of the paper provides summary and discussions of the 

reviewed methods and suggests future research activities.  

2. Incentives for integrated design and control 

The incentives for integrated design and control can be attributed to:  

1. Shared decision-making domains,  

Since the dynamic performance of a process strongly depends on its design, the decision-

making domains of process and control engineers overlap, (Stephanopoulos and Reklaitis, 

2011). 

2. Conflicts and competitions between economic and controllability objectives,  

The common perception is that process design is dominated by steady-state economic measures 

(e.g., total annual costs). However, many researchers have recognized the conflicts and 

competitions between economy and controllability of chemical processes. For instance, Luyben 

(2004) gave a list of examples where improving controllability conflicts with process economy. 

In order to achieve high energy efficiency, thermodynamically reversible processes are 

favourable (i.e., no entropy production). However, reversible processes require negligible 

driving forces, (e.g. temperature difference in a heat exchanger). These driving forces are 

crucial for control systems to be able to reject disturbances or switch between steady states. 

Therefore, isolated decision-making for process and control design would result in, if not 

infeasible, a sub-optimal solution. 

3. Characteristics of modern processes,  

Modern chemical processes employ less in-plant inventories and they are highly integrated. 

These processes operate near operational constraints and should meet a larger variety of product 

specifications. Consequently, the perception of the role of control systems has changed to an 

integrated element of business planning in order to simultaneously ensure feasibility and 

optimality of process operation, (Edgar 2004; Stephanopoulos and Reklaitis, 2011). 

4. Enabling skill-sets of process systems engineering (PSE),  

Recent advances in mathematical skills of process systems engineers have equipped them with a 

portfolio of analysis tools (modelling, optimization, identification, diagnosis, and control) which 

enables them to consider the plant-wide interactions of process design and control, 

(Stephanopoulos and Reklaitis, 2011).  

3. Industrial perspective 

Industrialists had recognized the benefits of integrated process and control design even before 

academic researchers. Page Buckley (1964) was among the pioneer industrial engineers who 

recognized the importance of integrated design and control. He achieved this integration by 

transferring to Design Division of DuPont’s Engineering Department and coordinating the efforts of 

process and instrumentation engineers. However, despite the large variety of methods developed 

thereafter, the industrial practice has conservatively maintained its traditional practice to design 

control systems for individual unit operations. For example, in Eastman Chemical Company, the 

procedure for designing a control system is still to set the throughput by the feed flowrate and then 

designing the control systems for individual units, sequentially, (Downs and Skogestad, 2011). The 

barriers against commercialization of the integrated approach are: 
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1. Different mind-sets,  

Control engineers and process engineers usually have different mind-sets and for cultural 

reasons, it is difficult to encourage the integrated approach, (Downs and Skogestad, 2011).  

2. Simplicity requirements,  

Industrial incentives for simplicity and conceivability of control systems discourage the 

application of highly complex control systems such as real-time optimizations, (Downs and 

Skogestad, 2011).    

3. Modelling efforts and computational costs,  

Developing rigorous models and controllability analysis during the design stage can be time-

consuming and expensive and requires a high level of expertise, (Chachuat, 2010; Downs and 

Skogestad, 2011). 

The aforementioned barriers suggest that efficient methodologies are needed in order to capture the 

interactions between process design and control. Such methodologies should be able to systematically 

manage the conceptual as well as numerical complexities of the problem and encourage large-scale 

industrial applications. 

4. Overview of the research in the field 

The hierarchical tree in Fig. 1 gives an overview of the research in the field, and serves as a roadmap 

for the subsequent sections. It consists of two main branches. The methods in the left branch have a 

sequential/iterative approach in which the process is designed first and then a control system is 

designed for that process. However, the methods in the right branch have an integrated approach in 

which the effects of the process design on the control performance are also considered. The nodes are 

numbered and will be referenced in the subsequent sections. Other reviews of integrated design and 

control are presented by Sakizlis, et al. (2004), Seferlis and Georgiadis (2004), Ricardez-Sandoval, et 

al. (2009a) and Yuan, et al. (2011, 2012). 

The review part of this paper is organized as follows. Firstly, the sequential approach for process 

design and control (the left branch in Fig. 1) is discussed and reviewed. In this branch, the process 

insights and heuristics, developed over decades of engineering practice enable conceptual as well as 

temporal and spatial decomposition of the problem. Another important decomposition technique is 

based on causality analysis, as discussed later.  

Furthermore, the interactions between design and control strongly depend on the characteristics of the 

elements of control systems, i.e., controllers and control structures. Here, the focus is on the degree of 

centralization, the economic implications of set-point policies (e.g., self-optimizing control strategy), 

and the desired properties of controlled and manipulated variables. Furthermore, the causes of control 

imperfection are discussed because they limit process controllability. They are (1) interactions 

between control loops, (2) the constraints on manipulated variables, (3) model uncertainties and 

disturbance scenarios, (4) right-half-plane zeros, and (5) time delays. Based on the causes of control 

imperfection, a variety of methods is developed, which characterizes process controllability from 

different perspectives. Different definitions of operability, switchability, observability and 

controllability are presented and the methods for quantification of control imperfection and sensor 

placement based on process observability are reviewed briefly. The last methods on the left branch are 

based on passivity/dissipativity properties which characterize stability and controllability of the 

individual elements of a decentralized control system. 
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Fig. 1. An overview of the research in the field 
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The disadvantage of the methods in the sequential approach is that they consider only individual 

subproblems (i.e., control structure selection, controllability analysis or controller design) and do not 

consider the interactions between them and process design. Some of the sequential methods have a 

qualitative approach and some others have yes/no or evaluation/ranking attitudes. The incentives to 

integrate controllability and control performance criteria into process design have motivated new 

studies which are shown on the right branch of Fig. 1. One way forward is to incorporate 

controllability and economic objective functions into a multi-objective optimization framework. Other 

researchers focused on reducing the first principles models to a linear model and applying the 

measures used in linear control theory. However, the disadvantage of linear methods is that the 

solution is only valid locally. Therefore, a group of researchers studied the undesirable nonlinear 

behaviour of chemical processes such as steady-state multiplicity. Other relevant research activities 

aim at quantification of the extent process nonlinearity. In addition, a nonlinear process model can be 

applied in order to map the available inputs into the output space and determine whether the process 

operation remains feasible for the expected disturbance scenarios. This idea resulted in the 

geometrical methods for operability analysis. Alternatively, flexibility analysis can be conducted 

using optimization. The early versions of flexibility optimization were based on a steady-state 

formulation, which identifies whether for a range of the values of uncertain variables, the process 

operation is feasible. Later, flexibility optimization was extended to include controllers and dynamic 

operability. Other researchers suggested minimization of the economic losses associated with 

disturbances. These losses were formulated in term of the required back-off from active constraints to 

ensure a feasible operation. In addition, the advancement of computational tools and optimization 

algorithms encouraged the researchers to optimize the process and controllers simultaneously. 

However, the resulted mathematical formulation is very large and limited to a certain type of 

controllers. The final part of this part of the paper studies the solution algorithms for the 

aforementioned optimization methods. The features of interest are MINLP and MIDO algorithms, 

simulation-optimization programming and global optimization.   

Table 1 provides a representative sample of the research activities in the field, corresponding to the 

abovementioned methods. This table illustrates that researchers have applied a wide-spectrum range 

of methods and criteria for decision-making, which varies from steady-state nonlinear open-loop 

analysis to mixed integer dynamic optimization methods. In addition, the research focuses vary from 

individual elements of the problem such as controlled variables to stability of the whole process 

network. Another feature of interest is the various methods for control deign which varies from self-

optimizing control to optimizing a superstructure of proportional integral controllers and to advanced 

model predictive control systems. Finally and most importantly, the researchers have addressed a very 

diverse array of case studies including heat-integrated processes, processes with recycle streams, 

processes with potential steady-state multiplicities, and processes with discontinuous and periodic 

operations. The details of these methods will be presented later in this paper.  
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Table 1. Representative studies from different methods for process design and control 
Author(s) Optimization/ 

mathematical  

method 

Contribution, merit, 

approach 

Control design 

method 

Case study 

Hori and 

Skogestad 

(2008)  

Maximum gain 

rule  

Optimal linear 

combination of 

measurements as a 

controlled variable 

self-optimizing control Distillation 

column 

Kariwala and 

Cao, (2010a) 

Bidirectional 

branch and bound 

Fast convergence, Local, 

average loss 

minimization 

self-optimizing control Distillation 

column 

Rojas, et al. 

(2009)  

Network 

representation of 

process, 

dissipativity 

analysis 

Determination of the 

open-loop plant-wide, 

stabilizability and 

achievable disturbance 

attenuation 

Open-loop  Heat Exchanger 

Network (HEN) 

Georgakis and 

Li (2010) 

Steady-state 

analysis  

Incorporating design of 

experience for geometric 

analysis of steady-state 

operability   

Open-loop Tennessee 

Eastman process  

Malcolm, et al. 

(2007) 

Sequential 

integration 

embedded control 

design- steady-state and 

dynamic flexibility 

optimization 

Sequential Least 

Square (identification), 

Kalman filter 

(observation), LQR 

(regulation) 

Polymerization 

reactor, binary 

distillation column  

Ricardez-

Sandoval, et 

al. (2011)  

Identification of 

an uncertain 

model, Structured 

Singular Value 

(SSV) analysis  

Avoiding 

computationally 

expensive dynamic 

modelling  

PI control structure by 

Ricker (1996) 

Tennessee 

Eastman process 

Asteasuain, et 

al. (2006) 

Decomposition 

technique based 

on sequential 

integration using 

gPROMS/gOPT 

Systematic optimization 

of initial and final steady 

states, and the grade-

transitions path 

Optimization of a super 

structure of a 

multivariable 

feedforward–feedback 

controllers and their 

tuning parameters 

Grade transition of 

a CSTR for 

styrene 

polymerization 

with potential 

steady-state 

multiplicity  

Sakizlis, et al. 

(2004) 

variant-2 of the 

generalized 

benders 

decomposition 

(GBD) algorithm 

Multi-parametric 

programming, dynamic 

flexibility optimization 

Explicit multi-

parametric model 

predictive controller 

Distillation 

column 

Khajuria and 

Pistikopoulos 

(2011) 

Partial 

differential 

algebraic (PDAE) 

equations, 

gPROMS 

Multi-parametric 

programming, model 

identification  

Explicit multi-

parametric model 

predictive controller 

Pressure swing 

adsorption (PSA) 

with periodic and 

discontinuous 

operations 

Flores-

Tlacuahuac 

and Biegler, 

(2007) 

Full 

discretization 

Comparison of the 

methods for translating 

the  generalized 

disjunctive programming 

(GDP) formulation to 

convex and non-convex 

MINLP formulations 

A superstructure of PI 

controllers 

Two series heat-

integrated CSTRs 
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4.1. Decomposition techniques for complexity reduction 

The following subsections discuss the methods of the first node 1.1 on the left branch of Fig. 1, which 

concern decomposition techniques for complexity reduction. The fact that the process design problem 

needs to be resolved and decomposed into more manageable subproblems is not new in the area of 

process systems engineering. For example, Douglas (1988) presented a hierarchical view of a plant to 

make the problem of process design tractable. The methodology of Douglas employs different 

resolutions of the plant details, for example evaluation of the interactions of the plant and 

surroundings and then evaluation of the interactions of process components with each other and so on. 

The same is true for the control design problem and many authors suggested a hierarchical approach 

or a decomposition technique to reduce the problem complexities, as discussed in the following. 

4.1.1. Complexity reduction based on process components 

The early attempts for complexity reduction involved design of control structures for individual unit 

operations such as heat exchangers, reactors, and distillation columns and then interconnecting them 

in order to develop the overall plant-wide control structure. Here, engineering insights have to be 

employed to resolve the conflicts (e.g. two control valves on the same stream) that arise by adding 

individual control structures, (Ng, 1997). The inspiration for this approach is that comprehensive 

knowledge and experiences are available for controlling the major unit operations. Control design for 

special unit operations has been the subject of academic and industrial research, (e.g., Ward, et al. 

2007; Ward, et al. 2010; Skogestad 1988, 2007; Hori and Skogestad, 2007). 

Although the approach based on combining unit-wise control structures for individual unit operations 

ignores the plant-wide interactions among them, still this method has wide industrial applications. 

Downs and Skogestad (2011) attributed this practice to the “overriding issues of reliable operation”. 

This is because unit-wise control systems are simple and understandable to operators and plant 

engineers, and any malfunctioning unit operation can be treated without a need for intervention of 

control experts.  

A criticism about the unit-wise approach is that combining the optimal control structures of individual 

unit operations does not guarantee the optimality of the overall plant-wide control structure. In 

addition, the heuristic methods used for eliminating the arising conflicts become more and more 

complicated and impractical as the number of process components increases, (Kookos 2001; Ng 

1997). 

4.1.2. Complexity reduction based on temporal decomposition 

Temporal decomposition is another strategy to reduce the complexities of control structures. It 

employs differences in various time scales in which the control structure is performing. 

Buckley (1964) recognized that control systems have a high frequency control layer for quantity 

control (material balance) and a low frequency control layer for quality control (e.g. specifications of 

products). As another example, it is well-known that in multi-loop control systems, interactive loops 

with a significant difference in their time constants may demonstrate a decoupled performance, and 

can operate separately, (Ogunnaike and Ray 1994). 

Similarly, Morari et al., (1980a; 1980b; 1980c) categorized a control system into regulatory and 

optimizing parts. Those parts, which are responsible for regulation of the process, handle fast 

disturbances with a zero expected value in long-term. However, longstanding disturbances with 

significant economic effects are treated by the optimizing control systems.  

4.1.3. Complexity reduction based on prioritization of control objectives 

Several researchers attempted to reduce the complexities of the problem by prioritizing control 

objectives in order to decompose control structures into smaller parts, so each part pursues an 

individual objective. For example, Luyben (1996) presented a survey of the control structures 

developed for the Tennessee Eastman problem (a benchmark problem presented by Downs and Vogel 

1993). He discussed the pros and cons of his own solution in addition to a list of other schemes such 

as those presented by Lyman and Georgakis (1995), McAvoy and Ye (1994), and Ricker (1996). 
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Luyben (1996) argued that different control structures developed for the Tennessee Eastman problem 

are the results of different rankings of the control objectives: “…diversity of structures is a very nice 

example of one of the basic process control principles that says that the “best” control structure 

depends on the control objectives”. In the following a brief review of these methods is presented.  

McAvoy, and Ye (1994) suggested considering the overall mass balance through control of the 

flowrates, first. Then, the energy balances must be regulated by controlling temperatures and 

pressures. Later, the product quality and component mass balances are considered. Finally, the 

remaining degrees of freedom and setpoints of the regulatory control layer are employed for 

optimizing the operational costs.  

The tiered framework approach suggested by Price, et al. (1993, 1994) firstly meet the targets of 

overall inventory and throughput regulations. Then, product specifications are treated. Later, 

operational constraints are considered, leaving the optimal operation to be the last target. They called 

their methodology a “direct descendant” of the Buckley’s method. 

Ponton and Laing (1993) recommended developing the control structure for controlling the flowrates 

of products and feed first. Then, recycle flow must be regulated and the compositions of intermediate 

streams should be treated. Energy and temperature stabilization are the next targets and finally 

inventory control will be addressed. 

Luyben, et al. (1997) proposed a framework for control structure selection in which firstly the control 

objectives and available degrees of freedom are determined. Then, energy management control 

system is designed. The decisions regarding control of the production flowrate are made and the 

product quality specifications and safety constraint satisfaction are ensured. It must be checked that 

the overall mass balance will be met for all the components. Then, the control systems of individual 

unit operations are designed. Finally, the remaining manipulated variables are assigned for optimizing 

the economic objective or dynamic controllability. 

Larsson and Skogestad (2000) and Skogestad (2004a) developed an iterative top-down/bottom-up 

algorithm for control structure selection. The design approach in the top-down direction features 

steady-state economic analyses such as meeting the operational objectives, optimizing the process 

variables for important disturbances and determining active constraints with emphasize on 

throughput/efficiency constraints. However, the bottom-up design concerns dynamic issues such as 

designing the control structure for the regulatory layer, paring/partitioning the manipulated and 

controlled variables, and designing the supervisory control layer.  

As discussed also by Edgar (2004), in evolution of the above methods, the priorities of the objectives 

have been reversed. In the early approaches, the control system was simply a tool to achieve the 

predetermined goals of production, which were set in the process design stage. The operation 

personnel did not think of the control system as an optimization tool to improve profitability of the 

process. Therefore, economic optimization had the lowest priority. However nowadays, business 

planning of process industries has become online and much less limited by the early decisions at the 

design stage. Consequently, the new control systems have also inputs in terms of economic 

parameters and translate them into operational decisions. This has encouraged designers to consider 

the highest priority to process profitability and the roles of other control tasks are to realize the 

targeted economic objectives.   

4.1.4. Complexity reduction based on the production rate and the 

inventory control systems 

The process inventories refer to gaseous, liquid, and solid materials accumulated within the process. 

Since inventory control systems have a dynamic nature and do not appear in a steady-state analysis, 

they have received special attentions in literature. Furthermore, inventory control has a priority in 

control structure design, because many instability modes such as emptying/overflowing of vessels or 

flooding/weeping of distillation columns are related to the inconsistencies or failures of inventory 

control systems. In addition, modern process plants tend to have less material inventories due to 

efficiency, safety and environmental considerations, which makes the control of their inventories 

more challenging. Therefore, developing general rules and methods which enable design of inventory 
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control systems without the aid of costly rigorous dynamic models is highly desirable. In the 

following, a brief review of the corresponding methods is presented.  

Buckley (1964) emphasized the requirement for consistency of the flow controls, upstream and 

downstream of the throughput manipulation point (TMP). He suggested that in order to develop a 

consistent control structure, flows must be controlled in the opposite direction at the upstream of the 

throughput manipulation point and in the same direction at the downstream of this point.  

Later, Price, et al. (1993, 1994) emphasized the existence of a primary path from feeds to products in 

most chemical processes. They suggested that the inventory control should be designed in the 

direction of the flow if the feed flowrate is chosen to be the throughput manipulation point and in the 

opposite direction of the flow if the product flowrate is chosen as the throughput manipulation point 

and in general radiates from the throughput manipulation point. This requirement is shown in Fig. 2 

for a series of liquid inventories with throughput located inside the process. 

 
Fig. 2. Design of an inventory control system; the inflows are used for design of inventory control in the 

upstream of the throughput manipulation point. However, the outflows are used in the downstream of 

this point. 

In a series of articles, Luyben and his co-workers (Luyben 1993a,b,c; Tyreus and Luyben 1993; 

Luyben 1994; Luyben, M. L., and Luyben, W. L., 1995), using examples of reaction-separation 

processes, explained how reaction kinetics and economic factors might result in different control 

structures. They recommended one flow control in the liquid recycle loop, but setting gas recycle at 

the maximum circulation rate. It is notable that the effects of recycle streams are not limited to 

material inventories, and energy inventories are also important. Luyben, et al. (1999) using the 

example of an exothermic reactor, showed that positive feedback of energy could lead to the loss of 

control action and may pose the risk of runaway reactions.  

Aske and Skogestad (2009a, b) investigated the consistency requirements for inventory control 

systems. Their suggested rules can be summarized to firstly assign an inflow or outflow controller to 

each inventory and secondly to check whether inventory of each component is consistently regulated 

by at least a degree of freedom or a chemical reaction. Each phase inventory also needed to be 

controlled by the inflow or outflow or via phase change. 

Recent studies (Skogestad 2004a; Aske and Skogestad 2009a, b; Ashe 2009; Downs and Skogestad 

2011) have focused on the relation of inventory control and profitability. Chemical processes can be 

classified according to which constraints become active earlier, during economic optimization: (i) 

throughput constraints or (ii) efficiency constraints. In the case of new plants, economic objectives are 

often driven by optimizing the efficiencies regarding reaction yields, waste treatment, and energy 

consumptions. Therefore, after the optimal production rate is reached, any change in the throughput 

will result in economic losses and is treated as a disturbance. Conversely, when there are economic 

incentives to increase the production rate, for example because of high demand or high price of the 

products, the throughput constraints become active before the efficiency constraints. Therefore, in the 

second scenario, the process operation will be constrained by the throughput bottlenecks. The 

instances of these capacity constraints are limitations in the liquid flow to a vessel, the pressure 

difference of a distillation column or the temperature constraint of a reactor. 

Set-point

Feed

LC

FC

LC LCLC

Throughput manipulation 

point (TPM)
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While dynamic degrees of freedom are assumed to have less economic importance, it has been shown 

that they are critical when process economy is constrained by the maximum throughput. In this case, 

the losses of process throughput can be avoided by temporary reductions in the in-plant material 

inventories. Aske (2009c) studied two cases of a coordinated MPC and a ratio control structure to 

show how dynamic degrees of freedom (which apparently have no steady-state economic 

significance) can be employed to increase the economic profitability.  

4.1.5. Complexity reduction based on causality analysis 

Causality analysis using graph theory reduces the first principles model to a signed directed graph 

(SDG). A signed directed graph represents the causal relationship between variables of a system. 

Often a sign or a weighting factor is added to an arc to characterize the direction or the intensity of 

that causality relation. The advantage of this methodology is that it extracts only necessary 

information and makes the model interrogation easier than the equivalent first principles model.  

The application of this method for fault detection in process industries has gained great interests. 

Maurya, et al. (2003a, 2003b, 2004) presented a review, including detailed evaluations of the 

advantages and disadvantages of the applications of these graphs for representing dynamic models. 

Yim, et al. (2006) and Thambirajah, et al. (2009) used signed directed graphs and connectivity 

matrices to extract causality relation from process topology. Then, they used these data for evaluation 

of the performance of control loops and disturbance propagation. In addition, transfer entropy was 

applied by Bauer, et al. (2004, 2007) as a probabilistic tool to extract causal relationship between 

process variables from plant data. Hangos and Tuza (2001) applied the signed directed graphs for 

optimal control structure selection in a decentralized control system. They demonstrated a one to one 

correspondence between linearized state space model and the weighted digraph. They used the graph-

based method of maximum weight matching for determining the best control structure. Similarly, 

Bhushan and Rengaswamy (2000) applied signed directed graphs for designing sensor networks. The 

disadvantage of signed directed graphs is that they cannot describe time propagation properties. 

Recently, Fan and De-yun, (2007) applied dynamic signed directed graphs in which time parameters 

are considered for the branches of the graph. They addressed the problem of optimal sensor location 

for fault detection and diagnosis. Furthermore, signed directed graphs are often built bases on process 

connectivity described by piping and instrumentation diagrams and need validation. Yang et al., 

(2012) proposed two methods for validation of the extracted signed directed graphs, based on transfer 

entropy and cross correlation. Similarly, Maurya, et al., (2007) and Dong et al., (2010) combined 

qualitative trend analysis with signed directed graphs in order to improve the diagnostic resolution of 

their methods.  

Daoutidis and Kravaris, (1992) introduced the concept of relative order as a causal measure for 

selection of control structures. The relative order is based on differential geometry and can be defined 

as the number of times that a controlled variable should be differentiated in order to generate an 

explicit relationship between that controlled variable and a manipulated variable. In other words, 

relative order represents the initial sluggishness of the response of the controlled variable to the 

corresponding manipulated variable. Similarly, Soroush (1996) employed similar concept for 

selection of controlled variables based on the relative order of these variables with respect to 

disturbances.  
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4.2. Control design 

This section discusses control design. The corresponding node in the hierarchical tree of Fig. 1 is node 

1.2 on the left branch. In this section, temporal and spatial decentralizations of controllers are 

discussed. In addition, conventional multi-loop controllers and their counterparts, i.e., model 

predictive controllers are explained. This section will provide supporting arguments for the following 

sections where the properties of control structures, implications of setpoint policies and interactions 

between control loops are discussed. 

4.2.1. Degree of centralization  
The degree of centralization can be defined as the level of independency of individual controllers 

within a control structure. Centralization can be spatial or temporal which is discussed in the 

following. In addition, the characteristics of multi-loop controllers (an example of decentralized 

controllers) and model predictive controllers (an example of centralized controllers) are reviewed in 

brief.  

4.2.1.1. Degree of centralization: spatial  
Rawlings and Stewart (2008) classified the control systems, with respect to their spatial degree of 

centralization, into four groups: 

1. Centralized control structures in which a centralized controller employs a single objective 

function and a single model of the whole system for decision-making,  

2. Decentralized control structures in which the controllers are distributed and the interactions 

between subsystems are totally ignored,  

3. Communication-based control structures in which each distributed controller employs a 

model for its sub-process and an interaction model for communicating with other sub-systems. 

However, the distributed controllers have their own objective functions. The disadvantage of 

communication-based structures is that controllers with individual objective functions may 

compete rather than cooperate with each other and make the whole system unstable.  

4. Cooperative control structures in which the distributed subsystems employ an objective 

function for the whole system, and the prediction of the last iteration of other controllers are 

available to each controller. The improvement is not in awareness of the local controllers from 

each other, but in the same objective function that is employed by all of them. This framework 

is plant-wide stable with no offset and by convergence of the control calculations provides 

centralized optimal decision.  

The decision regarding the degree of centralization significantly influences the design of control 

structures. In conventional multi-loop control systems (an examples of decentralized controllers), the 

designer examines the alternative pairings between manipulated variables and controlled variables, 

often based on analysis of the interactions between candidate control loops. However, in model 

predictive control (MPC) systems (an examples of centralized controllers) these interactions are of no 

concern, because all manipulated and controlled variables are interconnected to each other through the 

control algorithm. However, neither an entirely decentralized control structure nor a fully centralized 

one is desirable, and it is often favourable to employ some degree of centralization which locates the 

control structure between these two extremes. The reason is that while a pure decentralized control 

structure does not necessarily ensures an optimal operation, there are many concerns regarding 

computational load, reliability, and the costs of implementation and maintenance of a large-scale 

centralized control structure.  

Rawlings and Stewart (2008) also discussed that a fully connected communication strategy is 

unnecessary at least regarding plant stability. However, the penalty of reducing communications is 

synchronization of state calculations. In addition, reduction in communication between local MPCs 

causes problems in the systems with recycle streams (e.g. systems 1 and 2 in Fig. 3), because it 

requires iterative calculations or one subsystem must do the calculations for the others. Therefore, a 

hybrid communication strategy is recommended, in which a total communication scheme is 

considered for each recycle loop and a reduced communication scheme is considered for the rest of 

the process, (Rawlings and Stewart 2008). 
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Fig. 3. Ethylene glycol flowsheet: (1) Feed tank, (2) preheater, (3) reactor, (4) evaporator, (5) light end 

columns, (6) mono ethylene glycol column, (7) higher glycol recovery, (adapted from Rawlings and 

Stewart, 2008). 

4.2.1.2. Degree of centralization: temporal 
The classification discussed in the last section suggests a spatial centralization. However, 

centralization of controllers can be temporal, as shown in Fig. 4 (adapted from Qin and Badgwell 

2003). In the shown control structures, the decision-making process is decentralized vertically (top-

down) through different time scales from days and weeks in the highest optimizing layer to seconds in 

the lowest regulating layer. While the left structure shows a decentralized control structure, the right 

structure suggests a higher degree of centralization.  

 
Fig. 4. Temporal decentralization of controllers. The hierarchy of conventional multi-loop and 

MPC structures are shown at the left and right respectively, (adapted from Qin and Badgwell 

2003). 
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The top layer often employs a steady-state optimization for determining the setpoints. This 

information will be sent to the localized optimizers which may employ more detailed models and run 

more frequently. Detailed information will be sent to the constraint-handling control system which is 

responsible for moving the process from one constrained steady-state to another one while minimizing 

the violation of the constraints. In the right control structure, a model predictive controller is 

responsible for constraint handling, while in the left control structure, a combination of PIDs, lead-lag 

(L/L) blocks and logic-based elements are responsible for constraint handling. The regulatory layer 

which runs at much higher frequency, is responsible for maintaining the controlled variables at their 

setpoints, (Qin and Badgwell 2003).  

Fig. 5 adapted from Harjunkoski et al. (2009) shows the control system in a broader context which 

conforms to the automation paradigm. The lowest layer is responsible for process control including 

regulatory control systems, as well as monitoring and fault diagnosing systems. The middle layer is 

responsible for production scheduling, quality assurance and more advanced production control 

algorithms. On the top layer, the long-term production strategies are decided and the whole supply-

chain including feedstock procurements, product warehousing, distributions and sales are coordinated. 

More details on automation can be found in ANSI/ISA-95 (2000, 2001, and 2005) standards which 

provide guidelines for the communication and information exchange between different sections of an 

enterprise. 

 
Fig. 5. Automation pyramid (adapted from Harjunkoski et al. 2009). 

4.2.1.3. Conventional multi-loop controllers 

Chemical processes have some characteristics which make their control difficult. For example, when 

Qin and Badgwell (2003) were explaining the reasons for little impact of linear quadratic Gaussian 

(LQG)-based technologies on process industries (despite their success in electronics and aerospace 

areas), they emphasized that chemical processes are nonlinear, constrained, and multivariable systems 

and their behaviours change over the time (e.g. ageing of catalysts). By contrast, conventional multi-

loop controllers are proved efficient in controlling chemical processes, because they have reliable 

operation and are understandable to plant people, (Downs and Skogestad 2011).  

However, conventional multi-loop controllers have a significant drawback; i.e., leaving setpoints at 

constant values is a poor economic policy, because disturbances and the changes in economic 

parameters can change the optimal setpoints and in extreme, (e.g. moving bottlenecks) require control 

structure reconfiguration, (Downs and Skogestad 2011). The treatment of economic losses due to 

constant setpoint policy will be discussed later in this paper. Other drawbacks of multi-loop 

controllers are the required convoluted override logics for constraint handling, and interactions among 

control loops, (Stephanopoulos and Reklaitis, 2011). 
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4.2.1.4. Model predictive controllers   
This section discusses model predictive controllers (MPCs) briefly. A detailed review of the common 

MPC technologies and their characteristics is presented by Qin and Badgwell, (2003) and Darby and 

Nikolaou (2012).  

 

Fig. 6. The block diagram representation of an MPC system: estimator, target calculator, 

regulator, (adapted from Darby and Nikolaou 2012). 

The concept is shown in Fig. 6 adapted from Darby and Nikolaou (2012). The estimator block 

enquires the manipulated and controlled variables and then using a model estimates the unmeasured 

states. Then, the target calculator calculates the target values of the manipulated and controlled 

variables. Finally, this information is used by a dynamic model (shown by the controller block) to 

bring the process from the current state to the targeted state. The outcomes of these calculations are 

the decisions regarding adjustment of the manipulated variables. Richalet, et al. (1978) emphasized 

that the economic advantages of model predictive control systems derive from manipulation of the 

setpoints by the target calculator rather than minimizing the variations of the controlled variables (i.e. 

controller error) using the dynamic model. 

The capability for systematic constraint handling is another important advantage of MPC systems 

over multi-loop control systems. The modern MPC systems apply three types of constraint-handling 

methods. They are hard, soft and setpoint approximation constraint-handling methods. The hard 

constraints are those which are not allowed to be violated such as the constraints on the maximum, 

minimum, and the rate of the changes of the manipulated variables. The soft constraints (e.g. the 

constraints on some controlled variables) are permitted to be violated to some extent and their 

violations will be minimized by penalizing the objective function. Another way of handling soft 

constraints is the setpoint approximation method. In this method, a setpoint is assigned to a soft 

constraint and the deviations on both sides of the constraint are penalized. However, the penalty 

weights are assigned dynamically, so the penalty function becomes significant only when the 

constraint is likely to be violated, (Qin and Badgwell 2003).  
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4.2.2. Control structures 
This section discusses control structures. A control structure consists of controlled variables (CVs) 

and manipulated variables (MVs). Manipulated variables, also known as process inputs, are selected 

from the available degrees of freedom with desired properties for performing a controlling action. 

Controlled variables are those process variables which are selected to be maintained constant at their 

setpoints by controllers. If direct measurement of a controlled variable is not possible then its value 

must be inferred or estimated from other process variables, (Qin and Badgwell 2003). These 

inferential controlled variables together with direct controlled variables are known as the measured 

variables. While selection of manipulated variables is the subject of degree of freedom analysis, 

controlled variables and their setpoints are strongly related to process profitability. The following 

subsections explore the characteristics of control structures and desirable properties of manipulated 

variables and controlled variables. The implications of controlled variables and setpoint policy for 

process profitability are also discussed. 

4.2.2.1. Control structure reconfiguration  

A comparison between the populations of manipulated variables and controlled variables provides 

insights about feasibility of a control problem. Fig. 7, adapted from Qin and Badgwell (2003), depicts 

the alternative scenarios. In the design stage, the population of manipulated variables often exceeds 

the population of controlled variables and the control problem is under-determined (right-hand side of 

Fig. 7). In this case, extra manipulated variables are available for economic optimization. During the 

process operation, the population of the manipulated variables may decrease for example because of 

activation of constraints, saturation of control valves, failures of control signals, or intervention of 

operation people, which make the control problem over-determined (left-hand side of Fig. 7), and 

consequently it becomes infeasible. The middle control problem in Fig. 7 represents a square problem 

with a deterministic solution. All these three scenarios may happen in the same control system. 

However, still it is expected to perform the best possible control action.  

 
Fig. 7. Different configurations of a control structure, (Adapted from Froisy 1994). 

For the case of conventional multi-loop control structures, drastic changes in economic parameters 

may necessitate control structure reconfiguration. These scenarios are mostly concerned with the 

movements in active constraints. An example of necessary control reconfiguration is when the 
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the control configuration over-determined and therefore perfect control (i.e., maintaining controlled 

variables at their desired values) would be infeasible. However, it is still desirable to have the best 

possible control action through the remaining manipulated variables. Unfortunately, these changes 

have a combinatorial nature and it is not possible to evaluate all of the alternative subspaces of a 

control problem at the design stage. Therefore, MPC systems have an online monitoring agent that is 

responsible for subproblem conditioning. The strategy is to meet the control objectives based on their 

priorities, (Qin and Badgwell 2003). In MPC systems in order to avoid saturation of the manipulated 

variables, their nominal values are treated as additional controlled variables with lower priorities. In 

addition, when a manipulated variable disappears from the control structure (e.g. because of operator 

intervention), it may be treated as a measured disturbance. Similarly, saturated valves are treated as 

one-directional manipulated variables. By contrast to manipulated variables, when a controlled 

variable is lost for instance because of signal failure or delay in measurements, the practical approach 

is to use the predicted value for it. However, if the faulty situation persists for an unreasonable 

number of execution steps, in some MPC algorithms, the contribution of the missing controlled 

variable will be omitted from the objective function, (Qin and Badgwell 2003). 

4.2.2.2. Degrees of freedom analysis 

Konada and Rangaiah (2012) presented a recent review of the methods for degree of freedom (DOF) 

analysis. Degrees of freedom can be evaluated as: 

DOF =  number of unknown variables –  number of independent equations                       (1) 
However, in the context of control engineering, external variables such as disturbances also need to be 

considered, (Stephanopoulos 2003): 

CDOF =  number of unknown variables – (number of independent equations
+ number of external variables)                                                                             (2) 

In which CDOF stands for control degree of freedom and concerns the number of manipulated 

variables. The above approach has been applied by Seider, et al., (2010) for a number of processes. 

However, for large processes counting all the equations and variables may not be practical and is 

prone to mistakes. In addition, the focus of CDOF is mostly extensive variables. This is because 

manipulated variables are in principle defined as the flowrates of energy and materials (e.g., control 

valves, pump speeds, electricity streams). Therefore, researchers tried to develop methodologies 

which do not require first principles modelling and still are able to accurately determine the available 

degrees of freedom. Dixon (1972) introduced the notion of boundary variables. These are the 

variables which cross the predefined boundaries of a system. Furthermore, steady-state control 

degrees of freedom, CDOFss , were distinguished from dynamic control degrees of freedom.  

CDOFss = 𝑁bv − 𝑁bes                                                                                                                             (3𝑎) 

CDOF = CDOFss + 𝑁0                                                                                                                             (3𝑏) 
Nbes  represents boundary equations and Nbv represents boundary variables. N0 is the number of 

independent holdups. Equation (3b) suggests that CDOFss is a subset of  CDOF. Later, Pham (1994) 

introduced the concept of output control degrees of freedom: 

CDOFss,out = ∑(𝑃𝑘  𝑆𝑘)

𝐾

𝑘=1

+ 𝑀 + 𝐸 − 𝑁                                                                                                (4) 

where 𝐾 is the number of circuits (a circuit is a set of streams connected inside the process),  𝑆 is the 

number of stream split, 𝑃 is the number of phases in the output stream of a circuit, 𝑀 is the number of 

influential variables (e.g. a control valve), 𝐸 is the number of energy streams,  𝑁 is the number of 

phase constraints. Pham (1994) argued that the important implication of Equation (4) is that degrees 

of freedom analysis can be conducted assuming a single-component system. The focus of Pham’s 

method was the operational degrees of freedom, i.e., the manipulated variables available when the 

process is built and is in operation. Konada and Rangaiah (2012) showed that Pham’s method may 

result in wrong results because it assumes that the places of control valves are known in advance. 

However, Pham’s method was a step forward; because it recognized that in order of evaluate the 

correct number of degrees of freedom it is not needed to write the equations. In an independent study, 

Ponton (1994) derived the general equations: 
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CDOFss = 𝑛𝑖 + 𝑛𝑒 + 𝑛𝑜 − 𝑃 + 1                                                                                                            (5) 

where 𝑛𝑖 is the number of inlet material streams, 𝑛𝑜 is the number of outlet material streams, 𝑛𝑒 is the 

number of energy streams and 𝑃 is the number of phases. However, equation (5) is of limited 

practicality because it is not possible to manipulate all the streams simultaneously. This issue has been 

addressed by Konda, et al. (2006) and Vasudevan, et al. (2008) who recently proposed and examined 

a method which is flowsheet-oriented, and requires only the information of process flow diagrams and 

general knowledge of important unit operations. The idea is to identify the streams that are redundant 

or restrained from being manipulated. Then, this number can be subtracted from the total number of 

streams in order to identify the available degrees of freedom. They argued that the restraining streams 

are mostly the characteristics of individual unit operations and not the process flowsheet and 

therefore, once they are calculated they can be used in any complicated process flowsheet. They 

proposed the following correlation: 

CDOF = 𝑁streams − ∑ (𝑁restraining)

all the units

1

− 𝑁redundant                                                              (6) 

In above, 𝑁streams is the total number of material and energy streams, 𝑁restraining is the number of 

streams that cannot be controlled, and 𝑁redundant is the number of streams that are not efficient to be 

manipulated (e.g., a material stream with small pressure drop). They further classified restraining 

streams based on the units with and without material holdups. The number of restraining streams is 

equal to total independent material balances in units without holdups. This is because each mass 

balance imposes a constraint and reduces one degree of freedom. However, in the case of unit 

operations with material inventories, there is additional flexibility and all the streams can be 

manipulated provided that not all of them are used for controlling extensive variables. Therefore, the 

number of restraining streams is equal to the number of independent material balances which are not 

associated with any mass inventory. Since the number of restraining streams is the inherent 

characteristics of a unit operation and is constant regardless of a flowsheet configuration, Konda, et al. 

(2006) presented a table for the number of restraining variables of major unit operations. They also 

demonstrated their method for distillation columns and a few complex flowsheets. Details of their 

methods and analyses can be found in Konda, et al. (2006) or Konada and Rangaiah (2012). 

4.2.2.3. Manipulated variables (MVs) 

Manipulated variables are those degrees of freedom which are used for inserting the control action to 

the system. The manipulated variables can be classified into two categories of steady-state and 

dynamic. Manipulated variables used for controlling material inventories are in the category of 

dynamic degrees of freedom (Skogestad 2004a). The steady-state degrees of freedom affect the 

ultimate state of the process and have more economic significance than dynamic degrees of freedom. 

The desired properties of manipulated variables are to be consistent with each other, far from 

saturation, reliable, and able to affect controlled variables with reasonable dynamics. Two 

manipulated variables may be inconsistent when they cannot be adjusted simultaneously. The 

example of inconsistency is when two control valves adjust the flowrate of the same material stream. 

Reliability is defined as the probability of failure to perform the desired action. Reliability of 

manipulated variables is important because it is not desirable to select a manipulated variable which is 

likely to fail for example due to corrosion or erosion.  

If the available degrees of freedom are not sufficient to meet the controllability requirements, there 

are some limited opportunities for adding degrees of freedom to the process for example by inserting 

bypass streams, heat exchangers or buffer tanks into the process flowsheet, (Skogestad 2004a). In 

addition, van de Wal and de Jager, (2001) explained that in some scenarios, it might not be desirable 

to employ all the available manipulated variables. The reason can be in order to reduce the complexity 

of the control system. In addition, different operational modes (e.g., normal continuous operation 

versus start-up/shutdown) may require different control structures.  
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4.2.2.4. Controlled variables (CVs) 
Selection of controlled variables is more complicated compared to manipulated variables. This is 

because controlled variables can be categorized based on two different tasks. Firstly, these variables 

are responsible for detection of disturbances and stabilizing processes within their feasible operational 

boundaries. Secondly, selection of controlled variables and their setpoints provide the opportunities to 

optimize profitability. The first category of controlled variables is selected for treatment of instability 

modes such as snowball effects (i.e., an instability mode concerned with materials inventories inside a 

recycle loop), or emptying/overflowing liquid holdups. The second category of controlled variables 

should be selected by economic criteria.  

The controlled variables can be selected by engineering insights and practiced heuristics, especially 

when the control structure is developed for a unit operation. In addition, controllability measures, to 

be discussed later, can be applied for selecting controlled variables. Luyben (2005; 2006) listed five 

methods for selecting the location of temperature sensors within a distillation column, i.e., controlling 

the temperature of which tray inferentially ensures the desired compositions of product streams. They 

are:  

1. Slope criterion,  

In this method, a tray is selected, which has the largest temperature difference, compared to the 

neighbour trays.   

2. Sensitivity criterion,  

In this method, a tray is selected, which its temperature changes the most for a change in a 

manipulated variable. 

3. Singular value decomposition (SVD) criterion,  

This method is based on calculating the process gain matrix and its singular values as described 

by Moor (1992). 

4. Invariant temperature criterion,  

In this method, a tray is selected which its temperature does not change when the feed 

composition is changed and the compositions of the products are fixed.   

5. Minimum product variability criterion,  

In this method, a tray is selected which maintaining its temperature constant, results in least 

variability in product compositions.   

The other common approach for selection of controlled variables, in particular for decentralized 

systems is to minimize the interactions between control loops using relative gain arrays (RGAs), as 

will be discussed later. However, none of the abovementioned methods ensures minimum economic 

losses in the presence of disturbances. The subsequent sections explain that optimal selection of 

controlled variables can ensure profitability.  

4.2.2.5. Setpoint policy 
When a control structure is selected for a process, the objectives for controlling that process such as 

stabilizing, safety concerns, environmental criteria, and profitability will be translated to maintaining 

a specific set of controlled variables at their setpoints. However, some of the targets of the 

abovementioned objectives may need to be updated time to time. This can be due to disturbances, the 

changes in environmental or safety policies, the changes in the specifications of products or 

feedstocks, or even because of the changes in the process behaviour over time (e.g. ageing of 

catalysts). The ability of the control structure to keep pace with these changes is crucial for feasibility 

and profitability of process operation. 

 

As will be discussed in the subsequent subsections and shown in Fig. 8 adapted from Chachuat, et al. 

(2009), two strategies are possible for ensuring process feasibility and profitability. They are (i) static 

setpoint policy: off-line optimization and (ii) dynamic setpoint policy: on-line optimization. These are 

shown by red dotted vertical envelopes in Fig. 8. The methods for dynamic setpoint policy may apply 

two approaches. In the first approach, the measurements are used to update the model parameters 

(shown by model parameter adaptation). In the second approach, the measurements are used for 

updating modifier terms which are added to the objective function of the online optimizer, (shown by 

modifier adaptation).  
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Fig. 8. Setpoint policies: the methods for static and dynamic setpoint policies are shown by the red dotted 

envelopes. The other classification is according to optimality and feasibility criteria, shown by the grey 

horizontal envelopes, (Adapted from Chachuat, et al. 2009). 

The other classification, shown by grey horizontal envelopes, is according to (a) feasibility and (b) 

optimality criteria. Chachuat, et al. (2008) showed that the results of variational analysis in the 

presence of small parametric errors conform to the common sense that feasibility is of a higher 

priority than optimality. The references in the figure highlight the active researchers in the area. The 

dynamic and static setpoint policies are discussed in the subsequent subsections.  

4.2.2.5.1. Static setpoint policy 

The motivation for the static setpoint policy is that, while the costs of development and maintenance 

of a model-based online optimizer are relatively high, selection of the controlled variables which 

guarantee a feasible and near optimal operation is by no means trivial. Static setpoint policy has a 

direct relation to the optimal selection of controlled variables. In this approach, online optimization of 

setpoints is substituted by maintaining optimal controlled variables constant. This approach is also 

consistent with the culture of industrial practitioners who would like to counteract the model 

mismatches and the effects of disturbances by feedback control, (Chachuat, et al. 2009).  

Morari, et al. (1980a) introduced the idea of optimal selection of controlled variables: 

“In attempting to synthesize a feedback optimizing control structure, our main objective is to translate 

the economic objective into process control objectives. In other words we want to find a function c of 

the process variables [...] which when held constant, leads automatically to the optimal adjustment of 

the manipulated variables, and with it, the optimal operating conditions.”  
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Fig. 9. Maintaining the setpoints at constant values results in an economic loss (distance between the re-

optimized curve and the actual curve) due to a disturbance. However, the associated costs strongly 

depend on the selected controlled variable, (adapted from Skogestad 2000b). 

Later, researchers (e.g. Skogestad 2000a, 2000b, 2004b; Kariwala 2007) investigated the notion of 

self-optimizing control. The concept is shown in Fig. 9, adapted from Skogestad (2000b). It shows 

that the costs (i.e. losses or decreases in profitability) associated with disturbances, are not the same 

for two different controlled variables. These controlled variables were maintained constant at their 

corresponding setpoints and the corresponding losses are compared to the scenario in which the 

objective function is re-optimized. As can be seen, in the presence of disturbance 𝑑, the cost 

associated with maintaining 𝐶1,𝑠 at its setpoint is significantly lower than 𝐶2,𝑠. This observation 

suggests that selection of controlled variables can be employed as a method for off-line optimization 

of process profitability.    

Optimal controlled variables can be selected using brute-force optimization and direct calculations of 

the losses for different sets of controlled variables, which can be computationally expensive. 

Halvorsen, et al. (2003) presented a local method for optimal selection of controlled variables based 

on maximization of the minimum singular value. In that method, it was assumed that the setpoint 

error of different controlled variables (i.e., the difference between the constant setpoint and the re-

optimized setpoint) are independent of each other, which does not often hold. Later, Alstad, et al. 

(2009) showed that an optimal linear combination of controlled variables is more likely to minimize 

the losses. This local method, called null space method, is based on the idea that the setpoints of 

optimal controlled variables must be insensitive to disturbances. This method ignores the 

measurement error. The work of Alstad, et al. (2009) also extends the methodology to the cases in 

which measurements are in excess or are fewer than the available inputs and the expected 

disturbances. The above methods are based on a quadratic objective function and linearization of the 

model. Therefore, the results are local and must be checked by a nonlinear model. 

Kariwala (2007) proposed a computationally efficient method using singular value decomposition and 

Eigen-values for selection of optimal controlled variables. Later, this method was extended (Kariwala, 

et al. 2008) to use average losses instead of worst-case losses. The justification for this modification 

is that the worst-case scenario may not happen frequently and designing based on this scenario would 

result in the unreasonable losses of the control performance. Kariwala, et al. (2008) also showed that 

minimization of average losses had already minimized worst-case losses and was superior when the 

actual disturbance differs significantly from the average value. 

Although maintaining controlled variables or a linear combination of them is convenient, there is no 

guarantee that the optimal operation is reached by the convergence. The reason is that in the presence 

of disturbances, the gradient of the cost function may changes from zero. In addition, the gradient of 
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the cost function may have a nonzero value for a constrained solution. Therefore, Cao, (2005) 

suggested that the sensitivity of the reduced gradient function to disturbances and implementation 

errors is a reliable measure for selection of controlled variables. Alternatively, some researchers chose 

to directly control the elements of the necessary condition for optimality. It can be shown (Chachuat, 

et al. 2009) that by determining the set of active constraints, the elements of the necessary condition 

for optimality can be decomposed into two categories. The first category ensure that the process 

operation remains feasible (i.e., the constraints are satisfied). The second category ensures an optimal 

operation (i.e., the reduced gradient is equal to zero).  

However, the main difficulty associated with the methods based on static setpoint policy, is that active 

constraints may change. The methods for constraint handling proposed by researchers are split-range 

control (for the constraints on the manipulated variables), parametric programming, cascade control 

approach, and explicit constraint handling. Details of these methods can be found in literature (e.g., 

Umara, et al. 2012). 

4.2.2.5.2. Dynamic setpoint policy 

The methods in the second category (shown by the left red envelope in Fig. 8) apply an online 

optimizer to update the setpoints. The main challenge in the application of online optimizing control 

systems is the inability to develop accurate and reliable models with a manageable degree of 

complexity and uncertainty. The reason is that online optimization using an inaccurate model may 

result in a suboptimal or even infeasible operation, (Chachuat, et al. 2009). The two main approaches 

are (i) the methods for model parameter adaptation, in which the available measurements are used to 

refine the process model parameters; then this model is used for optimization, (Chen and Joseph, 

1987; Marlin and Hrymak, 1997), and (ii) the methods for modifier adaptation in which modifier 

terms are added to the objective function and constraints and these modifiers are updated using 

available measurements, (Forbes and Marlin, 1994; Gao and Engell, 2005; Roberts, 1979; Tatjewski, 

2002). The details and comparison of these methods are available in literature, (e.g., Chachuat, et al. 

2009).   

4.3. Controllability measures  

Many research activities have been devoted to understanding the controllability characteristics of 

chemical processes. In the following, the definitions of operability and controllability are presented. 

and the limiting factors of controllability are reviewed. The corresponding node is node 1.3 on the left 

branch of Fig. 1. 

4.3.1. Operability: Flexibility, Switchability and Controllability  

The operability of a chemical process strongly depends on its operational mode, i.e. whether it deals 

with a constant load, or the load is time-dependent. A process with continuous operation spends most 

of its life cycle within a narrow envelope of steady states. Therefore, the control task is posed as 

regulation (i.e., disturbance rejection). By contrast, shutdowns, start-ups, and the operations of semi-

continuous or periodic processes involve transient conditions along the desired time trajectories, and 

servo control is needed, (Pedersen, Jørgensen, and Skogestad 1999). 

Operability is defined as the ability of input (manipulated) variables to meet the desired steady-state 

and dynamic performance criteria defined in the design stage, in the presence of expected  

disturbances, without violating any constraint, (Georgakis, et al. 2004). The mathematical descriptions 

of dynamic operability and steady-state operability are presented in Section 4.8.  

Flexibility is defined as the ability to achieve a feasible operation over a range of uncertainties, 

(Dimitriadis and Pistikopoulos 1995). The mathematical programming of steady-state and dynamic 

flexibility optimizations is presented in Section 4.9. 

A comparison between the definitions of operability and flexibility reveals some similarities and some 

differences. Both criteria emphasize the importance of ensuring a feasible operation by avoiding 

constraint violation. However, the criteria for flexibility also include the uncertainties in the model 

parameters, while in evaluating operability the focus is on disturbance scenarios. Furthermore, as will 

be seen later, the methods for flexibility optimization are able to identify the worst-case scenario 
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within the range of uncertain parameters and disturbances, while the methods for operability analysis 

assume that disturbances are known in advance.  

Switchability is define as the ability to move between operating points, (Pedersen, Jørgensen, and 

Skogestad 1999). 

In addition, a variety of qualitative and quantitative definitions is available in literature for 

controllability, which reflects the experience of researchers. From the early studies, Ziegler, Nichols
 

and Rochester (1942) suggested that their proposed test for finding tuning parameters can be used for 

classification of processes. Morari (1983) introduced the term resiliency that includes both 

switchability and controllability and is defined as the ability to move smoothly and rapidly between 

operating conditions and to effectively reject disturbances. He recognized that controllability is the 

inherent property of the process and does not depend on the controller design.  

Kalman (1960) introduced the concept of state controllability. A state 𝑥 is controllable, if for an initial 

condition 𝑥0 = 𝑥(𝑡0) and a final state 𝑥1, there exist a manipulated variable 𝑢1(𝑡) and a final time 𝑡1 , 

0 < 𝑡 < 𝑡1, such that 𝑥1 = 𝑥(𝑡1). In other words, the state controllability is the ability to bring the 

system from the initial state to the final state in a finite time.  

Another important concept is input-output controllability. It is the ability to maintain the controlled 

variables 𝒚(𝑡), within their desired bounds or displacements from their setpoints 𝒓, in the presence of 

unknown but bounded disturbances 𝒅, using the available manipulated variables 𝒖, (Skogestad and 

Postlethwaite 2005). 

A process is functionally controllable if for the desired trajectories of the output variables, 𝒚(𝑡), 

defined for 𝑡 > 0, there exist some trajectories of the input variables, 𝒖(𝑡), defined for 𝑡 > 0, which 

generates the desired controlled variables from the initial states 𝒙(𝑡0), (Rosenbrock 1970).  

In is notable that functional controllability depends on the structural properties of the system, i.e., a 

system that is functionally controllable with respect to a particular set of controlled variables may be 

rendered uncontrollable for another set. Furthermore, functional controllability is defined with respect 

to a set of desired trajectories of controlled variables. Therefore, a system may be functional 

controllable for a set of controlled variable trajectories and becomes uncontrollable for another set. 

Furthermore, functional controllability has a clear relationship with perfect control, i.e., the controlled 

variables are maintained constant at their setpoints (or desired trajectories) and the manipulated 

variables are adjusted accordingly. This relationship provides the opportunity for evaluating the 

causes of control imperfection. For example, Russel and Perkins (1987) applied the concept of 

functional controllability and process inversion for discussing the causes of control imperfection in 

linear systems.  

Furthermore, the concept of relative order can be applied in order to establish the necessary and 

sufficient condition for functional controllability and dynamic invertibility of nonlinear process 

models. Hirschorn, (1979) showed that in order for a nonlinear system to be invertible, the relative 

order of the controlled variables with respect to the manipulated variables should be finite. In 

addition, the functional controllability conditions requires that in order for function 𝑓(𝑡) to be selected 

as a desired ouput trajectory, its initial value and the initial values of its first  𝛼 − 1 derivitives should 

be equal to the corresponding values of the outputs trajectories, where 𝛼 is the relative order. Later, 

McLellan (1994) showed that the index of a nonlinear inversion problem is equal to 𝛼 + 1 where 𝛼 is 

the relative order of the process.  

In addition, a comparison between the definitions of different controllability criteria suggests that 

functional controllability is more constraining compared to input-output controllability. This is 

because for a system to be functionally controllable the controlled variables should take the values of 

the desired trajectories. Therefore, their values are necessarily bounded, and the system features input-

output controllability. However, the reverse is not true, because in the case of input-output 

controllability, although the system is required to have bounded outputs, it is not necessarily capable 

of following a certain desired trajectories of the controlled variables.  

Functional controllability and input-output controllability concern only manipulated and controlled 

variables. On the other hand, state controllability additionally considers the initial and final conditions 

of the internal states. However, there is not a requirement for the controlled variables to follow a 

certain set of trajectories and a system which is state controllable may not be functionally 

controllable. However, a state controllable system has bounded inputs and outputs and is input-output 
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controllable. Finally it is notable that a system which is functional or input-output controllable is not 

necessarily capable of ensuring certain initial and final values for the internal states because 

functional controllability and input-output controllability do not consider internal states. Therefore, 

functional controllability and input-output controllability do not ensure state controllability. 

4.3.2. Causes of control imperfection 

Early studies in this research field involved evaluation studies, i.e. “if the process is controllable at 

all?” Later, the viewpoint of these studies evolved to address the question of “how controllable the 

process is?”, (Downs and Skogestad 2011). Several measures were introduced based on 

understanding of what limits process controllability. The idea is to apply the controllability measures 

iteratively in design stages to screen and eliminate solutions with undesirable properties. Moaveni and 

Khaki-Sedigh (2009) presented a recent and comprehensive review of these methods.  

The limiting factors of process controllability can be classified to be (1) the interactions between 

control loops, (2) the manipulated variable constraints, (3) the delays and right-half-plane zeros, (4) 

the model uncertainties, and (5) the effects of disturbances. A variety of methods for quantifications 

of these deficiencies is available in literature, which with exception of few, all of them rely on linear 

models. The limiting factors of process controllability are discussed in the following.  

4.3.2.1. Interactions between control loops 

 Bristol (1966) introduced relative gain arrays (RGAs) as the measure for the interactions between 

control loops, which has received significant industrial and academic attentions and is applied for 

pairing controlled and manipulated variables. An element of a relative gain array, 𝚲 = [𝜆 𝑖𝑗], 

represents the ratio of the open loop gain from the manipulated variable 𝑗 to the controlled variable 𝑖, 
in which all the control loops are open, to the closed-loop gain in which all control loops, except the 

loop 𝑖 − 𝑗 , are perfectly controlled (Ogunnaike and Ray 1994):  

𝜆 𝑖𝑗 =

(
𝜕𝑦𝑖

𝜕𝑚𝑗
⁄ )all loops open

(
𝜕𝑦𝑖

𝜕𝑚𝑗
⁄ ) loop 𝑖−𝑗 open; all other loops closed with perfect control 

                                             (7) 

Since then, the Bristol’s method has been extended by many researchers in order to capture the 

different characteristics of control loop interactions. Since RGA may not reflect one-way coupling in 

processes with triangular model matrix, Hovd and Skogestad (1992) introduced performance relative 

gain array (PRGA). In addition, often the number of inputs and outputs are not equal. Therefore, 

Chang and Yu (1990) introduced non-square relative gain array (NRGA) as the ratio of the open-loop 

gain to the closed-loop gain in which all the loops except the loop being studied, are perfectly 

controlled. Notice that for a non-square system with more outputs than inputs, it is not feasible to have 

zero steady-state off-sets. Therefore, the control objective was defined to minimize these off-sets in a 

least-square sense. Furthermore, since static RGA methods do not consider dynamic information, 

dynamic relative gain arrays (DRGAs) were introduced, in which transfer functions replace steady-

state gains, (Tung and Edgar, 1981). The numerator is open loop transfer function but the 

denominator is perfectly controlled for all frequencies. The DRGAs rely on a priori decision about 

the type of controllers (McAvoy, et al. 2003). Similarly, Xiong et al., (2005) introduced effective 

relative gain array (ERGA). This measure combines the static RGA and bandwidth of the process 

model in order to provide a comprehensive measure of control loop interactions. In addition, the 

applications of the RGA methods have not been limited to single-input single-output (SISO) control 

systems. Manousiouthakis and Nikolaou (1989) introduced static nonlinear block relative gain arrays 

(NBGA) and dynamic nonlinear block relative gain arrays (DNBGA) as measures for the interactions 

between different blocks of a decentralized control structure. Furthermore, Chang and Yu (1992) 

argued that disturbances may be supressed or amplified through control system interactions. 

Therefore, a non-interacting control structure is not necessarily the best choice and sometimes 

interactions are necessarily for disturbance rejection. To this end, they introduced a new measure 

called relative disturbance gain array (RDGA), which quantifies the capabilities of a control system 

http://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22B.+Moaveni%22
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for disturbance rejection. Details of these methods can be found in Moaveni and Kariwala (2012) and 

Moaveni and Khaki-Sedigh (2009). 

Another relevant criterion is the integrity of a decentralized control structure, which ensures whether a 

system remains stable while individual control loops are brought in and out. Niederlinski (1971) 

presented the integrity measure as: 

𝑁𝐼 = det[𝐆(0)]
∏ 𝑔𝑖𝑖(0)𝑛

𝑖=1
⁄                                                                                                                   (8)  

where 𝐆[𝑔𝑖𝑗]𝑛×𝑛 is the transfer matrix of a process. It is proved that if under closed loop condition the 

Niederlinski Index is negative, (𝑁𝐼 < 0), the multi-loop control structure will be unstable for all 

values of the controller tuning parameters. This result is necessary and sufficient for 2 × 2  systems. 

However, for higher order systems it is a sufficient condition, i.e., if < 0 , the system will be unstable, 

(Ogunnaike and Ray 1994). It is notable that the interactions between control loops limit 

controllability of decentralized control systems and is not of concern for centralized control systems, 

(Ogunnaike and Ray 1994).  

4.3.2.2. Manipulated variable constraints and the effects of 

disturbances 

The effects of manipulated variable constraints can be measured using the methods for singular value 

decomposition (SVD). Consider the linear transfer function model below: 

𝒚(𝑠) = 𝐆(𝑠)𝒖(𝑠) + 𝐆𝐝(𝑠)𝒅(𝑠)                                                                                                              (9)  
The gain matrix, 𝐆, should be firstly scaled as 𝐆′(𝑠) = 𝑆1𝐆(𝑠) 𝑆2 in which 𝑆1 and 𝑆2 are output and 

input scaling vectors respectively. The importance of input scaling is sometimes neglected. However, 

Hori and Skogestad (2008) showed that for ill-conditioned processes such as distillation columns, 

input scaling is crucial. Then, the scaled gain matrix, 𝐆′(𝑠) , is decomposed into the products of two 

rotational matrices and a diagonal matrix of singular values. The smallest and largest singular values 

(𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 respectively) and their ratio (called condition number, 𝛾) have implications for the 

constraints on the manipulated variables and hence process controllability. The singular value 

decomposition method relies on the property that the bounds on the reproducible output region 

depend on the minimum and maximum singular values and their ratio, (Cao, Biss and Perkins 1996):  

𝜎𝑚𝑖𝑛(𝜔)‖𝒖(𝑗𝜔)‖2 ≤ ‖𝒚(𝑗𝜔)‖2 ≤ 𝜎𝑚𝑎𝑥(𝜔)‖𝒖(𝑗𝜔)‖2                                                                  (10) 

𝛾 = 𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥                                                                                                                                         (11) 

Therefore, it is desirable that 𝜎𝑚𝑖𝑛 and 𝜎𝑚𝑎𝑥 have large values to minimize the influence of 

manipulated variable constraints. However, the ratio of them, i.e., the condition number (CN), is also 

important because large 𝛾 implies strong dependency of output amplitude on the direction of input 

amplitude (Morari and Zafiriou 1989). Therefore, 𝛾 close to one is desirable. Furthermore, a large 

minimum singular value, 𝜎𝑚𝑖𝑛, is desirable because it ensures that larger disturbances can be handled 

by the manipulated variables. In other words, the magnitudes of the disturbances that can be rejected 

depend on the manipulated variable constraints.   

4.3.2.3. Delays and right-half-plane zero 
Delays, right-half-plane zeros, and non-minimum phase behaviours have implications for closed loop 

performances, as discussed in the following. 

Holt and Morari (1985) showed that in a multi-variable closed loop system, the minimum bound on 

the settling time for a controlled variable 𝑖 is 𝜏𝑖 = 𝑚𝑖𝑛 𝑝𝑖𝑗, where 𝑝𝑖𝑗 is time delay in the numerator of 

element 𝑔𝑖𝑗 in the transfer function matrix, 𝐆. In addition, based on functional controllability, Perkins 

and Wong (1985) characterized a multi-variable system based on parameter 𝛥𝑚𝑖𝑛, which is the period 

that must be waited before the output trajectory can be specified independently, otherwise perfect 

control is not achievable. This period is bounded by the smallest and largest time delays in the process 

transfer function.  

When process model is inverted, right-half-plane zeros become poles. It is well understood that right-

half-plane zeros cannot be moved by any feedback controller and similar to time delays, they are the 

characteristics of the process (Yuan, et al. 2011). In particular, right-half-plane zeros limit the control 

performance of feedback controllers, (Skogestad and Postlethwaite, 2005).  



 

21 | P a g e  

 

4.3.2.4. Model uncertainties 
Skogestad and Morari (1987) studied the effects of model uncertainties on control performances. 

Uncertainties in the process model require that the actual controller be detuned and hence degrade the 

control performance. If relative errors of transfer matrix elements are independent and have similar 

magnitude bounds, they concluded the relative gain array can be an indicator of closed loop 

sensitivity to uncertainties. Other contributions to quantify the effects of uncertainties, which are not 

limited to linear models, have been made by optimization-based methods, namely back-off  

(Narraway et al., 1991) and flexibility optimization (Swaney and Grossmann 1985a, b) methods, as 

will be discussed in this paper.  

4.3.2.5. Multi-objective optimization methods based on controllability 

measures 

One of the disadvantages of controllability measures is that each measure only considers a single 

cause of control imperfection. To address this issue, Cao and Yang (2004) proposed a multi-objective 

framework based on linear matrix inequalities (LMIs), which considers different controllability 

measures such as control error and control input effort.  

The other issue about methods based on controllability measures is that enumeration and evaluation of 

all possible alternative solutions can lead to an intractable problem. In order to overcome this 

difficulty, researchers (Cao and Kariwala 2008; Kariwala and Cao 2009, 2010a, 2010b) proposed 

optimization frameworks based on a bi-directional branch and bound algorithm for screening 

alternative solutions, in which the nodes which do not lead to the optimal solution are eliminated 

faster and a smaller number of nodes need to be evaluated. 

4.4. Observability and sensor placement  

The operation of modern processes requires satisfaction of a variety of constraints including product 

quality, safety, and environmental constraints. Maximizing profit and at the same time meeting these 

criteria requires accurate knowledge of the process state. However utilization of a large number of 

sensors (i.e., controlled variables at regulatory control layer) may drastically increase the required 

investment and maintenance costs. Therefore, optimal placement of sensors has been the focus of 

researchers, as discussed in the following. The corresponding node in the hierarchical tree of Fig. 1 is 

node 1.4.  

The initial research into sensor placement was based on state observability and was limited to linear 

systems. A system is state observable if for any time 𝑡 > 0, the initial states 𝐱0 = 𝐱(𝑡0) can be 

estimated from the time trajectories of controlled variables 𝐲(𝑡), and manipulated variables 𝐮(𝑡). 

State observability is the dual notion of state controllability. While state controllability is the ability to 

drive the state variables to the desired values using manipulated variables, state observability is the 

ability to infer the values of the state variables from the manipulated and controlled variables.  

For the linear time-invariant system of the form 

𝒙 = 𝐀𝒙 + 𝐁𝒖                                                                                                                                             (12) 
𝒚 = 𝐂𝒙 + 𝐃𝒖                                                                                                                                             (13) 

controllability Gramian 𝐖𝐜(𝑡) and observability Gramian, 𝐖𝐨(𝑡) are defined as 

𝐖𝐜(𝑡) = ∫ 𝑒𝐀𝜏 𝐁𝐁𝐓𝑒𝐀𝐓𝜏𝑑𝜏
𝑡

𝑜

                                                                                                                 (14) 

𝐖𝐨(𝑡) = ∫ 𝑒𝐀𝜏 𝐂𝐂𝐓𝑒𝐀𝐓𝜏𝑑𝜏
𝑡

𝑜

                                                                                                                  (15) 

The time-invariant linear system of (12, 13) is state controllable and state observable if and only if for 

any 𝑡 > 0, 𝐖𝐜(𝑡) and 𝐖𝐨(𝑡) are positive definite, respectively (Zhou, et al. 1996). These criteria can 

be applied for selection of manipulated (actuators) and controlled variables (sensors). However, they 

have a binary yes/no attitude to the problem and the number of candidate controlled and manipulated 

variables which pass these tests are often so large that makes ranking the alternative choices difficult. 

Therefore, as discussed by van de Wal and de Jager, (2001) and Singh and Hahn (2005), more 

quantitative measures were introduced by researchers about the degree of observability. Müller 
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&Weber, (1972) proposed three measures of (1) minimum Eigen values of 𝐖𝐜(𝑡) and 𝐖𝐨(𝑡), (2) 

determinants of 𝐖𝐜(𝑡) and 𝐖𝐨(𝑡), and (3) the reciprocal of the trace of 𝐖𝐜
−𝟏(𝑡) and 𝐖𝐨

−𝟏(𝑡) for 

selection of manipulated (actuators) and controlled (sensors) variables. Dochain et. al., (1997), 

Waldraff et al (1998) and van den Berg et. al., (2000) applied condition number and minimum or 

maximum singular values and trace of observability Gramian for optimal sensor location. The 

minimum Eigen value implies how far the system is from being unobservable. While minimum 

singular value is useful for identifying the worst observability direction, it is unlikely that all the states 

of the system need to be observed. On the other hand maximum Eigen value indicates the dominant 

observability direction and ensures that the most important states are easily observable. An alternative 

measure is the trace which represents sum of the singular values. While the above methods consider 

linear models, recently, researchers have addressed the problem of sensor placement for nonlinear 

processes using covariance matrices known as empirical observability Gramian (Hahn and Edgar 

2002; Singh and Hahn 2005; Singh and Hahn 2006; Serpas, et al, 2013).  Moreover, other researchers 

considered measurement costs and sensor reliability as the selection criteria (Bagajewicz, 1997, 

Chmielewski, et al., 2002, Muske and Georgakis 2003). In principle, the problem has a multi-

objective function and its solution is a Pareto front which demonstrates the trade-off between costs, 

reliability and observability. Furthermore, in order to address large scale problems, Chamseddine and 

Noura (2012) proposed a method for decomposition of a complex system into interconnected sub-

systems, and apply reduced order observers for these subsystems. Furthermore, design of experiment 

(DOE), a method for deciding the experimental setting in order to minimize the experiment costs, is 

applied by the researchers (Joshi and Boyd 2009; Alaña, 2010) as a natural tool for identifing optimal 

sensors. This is of particular interest to real-time optimization (RTO) systems because sensor location 

has direct effects on the quality of parameter estimation. The idea is to maximize the quality of the 

data acquired by sensors for updating the model parameters required for RTO execution, (Fraleigh, et 

al., 2003). 

4.5. Passivity/dissipativity  

The focus of the methods based on passivity/dissipativity analysis, is stability of decentralized control 

systems. The corresponding node is node 1.5 on the left branch of Fig. 1. 

A comprehensive review of the methods for passivity analysis is presented in a book written by Bao 

and Lee (2007), for which a review is also provided by Ydstie, (2010). By definition, a dissipative 

system cannot deliver energy more than stored in it. This constraint can be formulated by the 

following inequality: 

 𝑊(𝑡1) ≤  𝑊(𝑡0) + ∫  
𝑡1

𝑡𝑜

𝜑(𝒚(𝑡), 𝒖(𝑡))𝑑𝑡                                                                                          (16) 

in which, 𝜑(𝒚(𝑡), 𝒖(𝑡)) is energy supply rate (energy/time), and 𝑊(𝑡) ≥ 0 is the stored energy at 

time 𝑡. The above correlation is called dissipation inequality. 𝑊(𝑡1) can be any generalized energy 

function and 𝜑(𝒚(𝑡), 𝒖(𝑡)) can be any abstract power function. In the following, three functions for 

energy supply rate are discussed, (Rojas, et al. 2009).  

A system is called passive if 𝜑(𝒚(𝑡), 𝒖(𝑡)) =  𝒚(𝑡)𝑇𝒖(𝑡). Then, for  𝐲(𝑡) = −𝑘𝒖(𝑡): 

𝑘 ∫  
𝑡1

𝑡𝑜

𝒚2(𝑡)𝑑𝑡 ≤ 𝑊(𝑡0)                                                                                                                         (17) 

where 𝑘 > 0 is the gain. Therefore by choosing an appropriate value for 𝑘, any passive system can be 

controlled using proportional controllers. Furthermore, it is possible to prove that two passive systems 

connected by a feedback control are also passive. The other systems of interest are input feedforward 

passive (IFP) systems in which: 

𝜑(𝒚(𝑡), 𝒖(𝑡)) =  𝒚(𝑡)𝑇𝒖(𝑡) − 𝑣𝒖(𝑡)𝑇𝒖(𝑡),   𝑣 > 0                                                                        (18) 

and output feedback passive (OFP) systems in which: 

𝜑(𝒚(𝑡), 𝒖(𝑡)) =  𝒚(𝑡)𝑇𝒖(𝑡) − 𝜌𝒚(𝑡)𝑇𝒚(𝑡),   𝜌 > 0                                                                        (19) 

A nonlinear input feedforward passive system is minimum phase (i.e., it has stable zero dynamics) 

and an output feedback passive system has bounded gains (i.e., it is input-output stable). If the 

dissipative inequality holds but with 𝜌 < 0 or  𝑣 < 0, then it is in shortage of IFP or OFP, 
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respectively. The shortage of IFP (or OFP) of a subsystem can be compensated with the excess of IFP 

(or OFP) of another subsystem in the same process network. 

These properties serve as the foundations for studying stability of process networks and evaluation of 

controllability of decentralized and block-decentralized multivariable systems. The methodology is 

also extended to analyse the system integrity, i.e. whether the system remains stable if a control loop 

fails, and what back-up control loops are required in order to design a fault tolerant system. The 

advantage of passivity methods is that their representations are not limited to linear models. However, 

the required modelling efforts have limited their application to small problems, (Yuan, et al. 2011). 

Furthermore, the focus of these methods is feasibility rather than optimality. However, establishing a 

trade-off between competing control and process objectives is the key requirement for integrated 

design and control.  

4.6. Multi-objective optimization methods to incorporate 

controllability measures into the process design 

The methods using controllability measures suffer from several disadvantages. They have a yes/no 

attitude and each of these measures only concerns a certain limiting factor of controllability and at 

most can be used for highlighting the situations in which process controllability is lost. 

Acknowledging these limitations, some research activities have focused on defining multi-objective 

criteria to incorporate controllability measures into the process design. The corresponding node is 

node 2.1 on the right branch of Fig. 1. 

Luyben and Floudas (1994) employed a multi-objective function for incorporating controllability 

measures and economic objectives. The economic objectives such as capital costs and operating costs 

were calculated using a steady-state model while bounds on controllability objectives were calculated 

using measures such as relative gain array, minimum singular value, condition number, and 

disturbance condition number. The resulting MINLP formulation was solved using generalized 

benders decomposition (GBD) algorithm (Geoffrion, 1972). Similarly, Chacon-Mondragon and 

Himmelblau (1996) proposed a bi-objective optimization in which costs and flexibility were 

optimized simultaneously. Later, Alhammad and Romagnoli (2004) proposed an optimization 

framework in which process economy, controllability, and environmental measures were incorporated 

into a multi-objective function.  

4.7. Methods based on model reduction and linear control theory 

Several research activities are devoted to use model identification and model reduction techniques in 

order to reduce the numerical complexities of the underlying mixed integer nonlinear dynamic 

optimization problem. The corresponding node is node 2.2 on the right branch of Fig. 1. Two research 

paths can be distinguished in this area; model reduction can be perform on the whole process-

controller model (bound worst-case approach) or the problem is decomposed into a bi-level 

optimization and the reduced model is applied for control design only (embedded control 

optimization). These methods are discussed in the following.  

Douglas and co-workers proposed a method based on model reduction, (Chawanku, et al. 2005; 

Ricardez-Sandoval, et al, 2008, 2009a, 2009b). The idea is to perform process identification on the 

nonlinear first principles model. The results of identification are a linear model and a model for 

uncertainties, which represents the difference between the full nonlinear model and the linear model. 

Then, the measures commonly used in robust control (e.g., structured singular value) are applied to 

estimate the bounds on process variables and to evaluate flexibility, stability and controllability of the 

process. These bounds give evaluations of the worst variability and the violations of constraints. For 

this reason, this methodology is termed bound worst-case approach. The advantage of this method is 

that the application of the reduced model eliminates the need for computationally expensive dynamic 

optimization. The disadvantage of this method is that it is based on a worst-case scenario which is not 

necessarily the most common scenario, and the method could be too conservative resulting in 

unnecessarily degradation of the objective function. To overcome this difficulty, Ricardez-Sandoval, 

et. al, (2011) suggested to calculate the worst disturbance scenario using structured singular value but 

the process variability should be calculated using a closed loop first principles model, resulting in a 
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less conservative solution. They called the new method hybrid worst-case approach, because in the 

new method both linear and nonlinear first principles models are involved.  

Malcolm, et al. (2007), Moon, et al. (2011), and Patel, et al. (2008) pursued similar idea. However, 

they decomposed the problem into a bi-level optimization, in which control design was performed 

using a reduced (adaptive state-space) model, and process design was performed using the original 

first principles model. The linear state-space model is used for deciding control action in each 

optimization iteration, in order to disentangle the numerical complexities of feedback control. 

Malcolm, et al. (2007) applied sequential least square method for identification of the state-space 

model. Their method employs three layers (identifier/observer/regulator) at the control optimization 

level. In addition, the process optimization level consists of two optimization loops for steady-state 

and dynamic flexibility tests. The justification is that if a process does not feature a feasible steady-

state operation, further investigation of dynamic flexibility is not needed. Patel, et al. (2008) applied 

similar idea with modified linear quadratic regulator (mLQR). The applied mLQR method 

incorporated an additional penalty term on the movement of the manipulated variables in order to add 

integrating action to the controller. They considered the corners of hyper-rectangular disturbance 

space rather than dynamic flexibility test.  

The advantage of the aforementioned methods is that the linear model benefits from analytical 

solutions and the computationally expensive dynamic nonlinear optimization is avoided. The 

disadvantage of these methods is that due to application of a linear model, the solution is local. In 

addition, in the case of highly nonlinear processes, application of nonlinear identification and 

observation methods may further augment the required computation expenses, (Yuan et al., 2012).  

4.8. Methods based on analysing nonlinear behaviour of chemical 

processes 

Controllability measures often apply a linearized model. Such a linear assumption can be justified by 

designing a nonlinear compensator which removes some nonlinearities of the process behaviour. 

However, this approach is only efficient for regulatory control in the vicinity of a steady-state point, 

and may not be sufficient for highly nonlinear processes, (Bogle, et. al, 2004).  

Chemical processes demonstrate a variety of nonlinear behaviour from which non-minimum phase 

behaviour, and input/output multiplicity have received significant attentions. The node corresponding 

to these research activities is node 2.3 on the right branch of Fig. 1.  

The definition of non-minimum behaviour is based on the concept of zero dynamics.  Zero dynamics 

are defined to be the internal dynamics of a nonlinear system when the deviations of the controlled 

variables (process outputs) are maintained at zero using the manipulated variables (process inputs). 

Unstable zero dynamics are the nonlinear analogues of right-half-plane zeros, and imply instability of 

process inversion, called non-minimum phase behaviour (Isidori 1989, Slotine and Li, 1991). Input 

multiplicity, i.e., a scenario in which for a give output several steady-states exist, can cause non-

minimum phase behaviour, (Bogle, et al. 2004).   

In order to determine steady-state multiplicities, the mathematical model of the process should be 

condensed into an algebraic equation (Silva-Beard and Flores-Tlacuahuac, 1999): 

𝑭(𝒙, 𝒑) = 0                                                                                                                                                (20) 
where 𝐱 is the state variables and 𝒑 is the vector of design parameters. Then, the necessary condition 

of input-multiplicity is given by the implicit function theorem (Poston and Stewart 1996): 

𝑭(𝒙, 𝜑) =  
𝜕𝑭(𝒙, 𝜑)

𝜕𝜑
= 0                                                                                                                        (21) 

in which 𝜑 ∈ 𝒑. Therefore, the maximum number of multiplicity points, 𝑘, is given by: 

𝜕𝑭𝑘(𝒙, 𝜑)

𝜕𝜑𝑘
= 0,   𝑎𝑛𝑑     

𝜕𝑭𝑘+1(𝒙, 𝜑)

𝜕𝜑𝑘+1
≠ 0                                                                                         (22) 

Similarly, the necessary condition for output-multiplicity is given by: 

𝑭(𝒙, 𝜑) =
𝜕𝑭(𝒙, 𝜑)

𝜕𝑥
= 0                                                                                                                         (23) 

Then, isolas, i.e., the points where isolated solutions originate and disappear, can be found by: 
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𝑭(𝑥, 𝜑) =  
𝜕𝑭(𝒙, 𝜑)

𝜕𝜑
=  

𝜕𝑭(𝒙, 𝜑)

𝜕𝑥
= 0                                                                                                 (24) 

A thorough review of the methods for bifurcation analysis is beyond the scope of this review. 

However, several interesting results for integrated design and control are reviewed in the following.  

Silva-Beard and Flores-Tlacuahuac (1999) studied the regions of nonlinear behaviour of a free-radical 

CSTR polymerization reactor using continuation algorithm and global multiplicity diagrams. They 

showed that closed loop control in the optimal point of operation could be difficult because steady-

state multiplicities would introduce positive zeros into the transfer function and limit the speed of 

closed loop control. Pavan Kumar and Kaistha (2008a, b) showed, depending on the control structure, 

input steady-state multiplicity might cause state transition and wrong control action in a generic ideal 

reactive distillation column. They recommended a three-point temperature control structure for 

addressing large deviations in the throughput. Lewin and Bogle, (1996) showed that in the case of a 

polymerisation reactor, economic steady-state optimization degrades the dynamic performace 

because, the optimizer chose an operating point closer to the bifurcation point. In addition, the effects 

of input multiplicity on degrading switchability due to non-minimum phase behaviour are studied by 

Kuhlmann and Bogle (2001; 2004). 

Kiss, et al. (2002, 2003, 2007) studied the effects of recycle streams on product selectivity and steady-

state multiplicity of a reactor-separator process. They identified two types of inventory control; self-

regulatory inventory control in which the reactants are fed according to stoichiometry of reactions and 

is characterized by a minimum reactor volume required to avoid snowball effects; and regulation by 

feedback inventory control in which the reactants inventories are controlled by manipulating fresh 

feed. They argued that although the latter method is more difficult to implement, it eliminates the risk 

of instability and steady-state multiplicity.  

The early methods for analysis of the nonlinear behaviour of chemical process rely extensively on the 

analytical solution of the process model. Marquardt and Mönnigmann (2005) applied the underlying 

theory for synthesis rather than analysis. They defined a critical manifold as the stability boundary 

which separates the design parameter space of feasible steady states from unstable oscillatory states. 

Then, an operational point should back-off from the critical manifolds in order to ensure a safe 

operation due to uncertainties and disturbances. A signal function was applied for testing whether the 

manifold is crossed. This function enabled identifying unknown critical manifolds. Then, the 

constraints for maintaining distance from these new critical manifolds were added and the 

optimization was repeated until no new critical manifold is found. This method has been successfully 

applied to a system of hundreds of equations.   

The significant advantage of the methods described above is that they apply a steady-state nonlinear 

model, and are able to diagnose some undesirable characteristics that may limit the dynamic 

performance. However, the limitation of these methods is that, considering the size and combinatorial 

characteristics, developing analytical solution of a nonlinear process model is of limited practicality, 

and numerical solution rely extensively on the nonlinear solvers, that is it is not clear whether the 

solver failed to find the solution or a solution with physical significance does not exist. Furthermore, 

due to the inherent non-convexities of these systems, global optimization methods are required in 

order to construct the proof that the results are not due to a sub-optimal solution. 

Another relevant research area concerns the measures of nonlinearity. In general, nonlinearity of a 

process is defined by contradiction, i.e., a process is nonlinear if it does not fulfil the additively and 

homogeneity properties (the principles of superposition) of a linear system, (Choudhury, et. al, 2008). 

Nevertheless, the aforementioned definition does not give a measure for the extent of nonlinearity.  

Therefore, extensive research is devoted to quantification of process nonlinearities. The nonlinearity 

measures are broadly classified into model-based and data-driven measures. An example of the 

measures in the first category is the normalized maximum difference between the nonlinear process 

and the best linear approximation of this process (Helbig, et al, 2000). Another example is the 

curvature of the process response introduced by Guay (1997). The application of the methods in the 

first category requires identification of the process model. By contrast, the methods in the second 

category apply signal processing statistical tools to the time series of the process output measurements 

in order to quantify the process nonlinearities. Examples of the methods in the second category are the 

application of the bispectrum and bicoherence in order to measure nonlinearity and non-gaussianity of 
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the time series. Details of these methods can be found in Choudhury, et al., (2008). The measures of 

process nonlinearity give an early indication, during process design stage, in order to decide whether a 

linear controller is sufficient or a nonlinear controller is needed for optimal control performance. 

Furthermore, these measures have gained extensive applications for fault diagnosis during process 

operation. However, little work has been done in order to incorporate these measures in a systematic 

framework for integrated design and control, which suggests a potent research area.  

4.9. Geometric operability analysis  

 The definition of operability was mentioned earlier in Section 4.3.1. The geometric measures for 

steady-state and dynamic operability were introduced in order to quantify the area in which the 

process remains operable, (Vinson and Georgakis 2000; Uztürk and Georgakis 2002). The 

corresponding node is node 2.4 on the right branch of Fig. 1. Here, the discussion is based on the 

following state-space representation of the process model (Georgakis, et al. 2004): 

M:       𝒙̇ = 𝑓(𝒙, 𝒖, 𝒅)                                                                                                         Processs model  
            𝒚 = 𝑔(𝒙, 𝒖, 𝒅)                                                                                                          
            𝒉1(𝒙̇, 𝒙, 𝒚, 𝒖̇, 𝒖, 𝒅) = 0                                                                                                      
            𝒉2(𝒙̇, 𝒙, 𝒚, 𝒖̇, 𝒖, 𝒅) ≤ 0                                                                                                

In the above, 𝒙 ∈ 𝑹𝑛𝑥 is the vector of state variables, 𝒖 ∈ 𝑹𝑛𝑢 is the vector of input (manipulated) 

variables, 𝒅 ∈ 𝑹𝑛𝑑  is the vector of disturbance variables,  𝒚 ∈ 𝑹𝑛𝑦 is the vector of output (controlled) 

variables. The method for steady-state operability analysis utilizes a steady-state process model that 

maps process inputs to process outputs. The process inputs are able to take the values in the available 

input set (AIS). Using the process model and AIS, it is possible to calculate the achievable output 

set (AOS). Notice that (AOS) is a function of 𝒖 and 𝒅. A comparison between the desired output set 

(DOS) and the achievable output set (AOS) can be quantified as the operability index (OI):  

OI =
𝜇(DOS ∩ AOS)

𝜇(DOS)
                                                                                                                               (25) 

where 𝜇 is a measure of the size of each set, e.g., in a two-dimensional space, it represents the area 

and in a three-dimensional space, it represents the volume, (Georgakis and Li 2010). However, there 

are different definitions for operability index depending on whether the setpoints are constant or they 

are controlled in intervals (i.e., equivalent to setpoint tracking).  

The achievable output set (AOS) can be calculated for a given available input set (AIS) and by fixing 

disturbances at their nominal values 𝒅𝑵. Then a comparison between the desired output set (DOS) and 

the achievable output set (AOS) leads to quantification of the steady-state servo-operability index, as 

follows: 

s − OI =
𝜇(AOS𝒖(𝒅𝑵) ∩ DOS)

𝜇(DOS)
                                                                                                            (26) 

in which  

AOS𝒖(𝒅𝑵) = {𝑦| 𝑀(𝒙̇ = 0, 𝒖̇ = 0, 𝒅 = 𝒅𝑵); ∀𝒖 ∈ AIS}                                                               (27) 

Similarly the regulatory steady-state operability index will be:  

r − OI =
𝜇 (AIS ∩ DIS𝒅(𝒚𝑵))

𝜇(DIS𝒅(𝒚𝑵))
                                                                                                              (28) 

in which desired input set is defined as: 

DIS𝑑(𝒚𝑵) = {𝒖| 𝑀(𝒙̇ = 0, 𝒖̇ = 0, 𝒚 = 𝒚𝑵); ∀𝒅 ∈ EDS}                                                                (29) 

where EDS  is the expected disturbance space. Later, this method was developed to include dynamic 

operability (Uztürk and Georgakis 2002; Georgakis, et al. 2003). The set of values over which inputs 

can move is called dynamic available input space (dAIS). The dynamic desired operating space 

(dDOpS) is a function of desired output set (DOS), expected disturbance space (EDS) and the 

maximum allowable response time 𝑡𝑑
𝑓 as follows:  

dDOpS = {(𝑡𝑓 , 𝒚𝒔𝒑, 𝒅)|  𝑡𝑓  ≤ 𝑡𝑑
𝑓 , ∀𝒚𝒔𝒑 ∈ DOS , ∀𝒅 ∈ EDS}                                                        (30) 

Similarly, the dynamic achievable operating space (dAOpS) is defined as  

dAOpS = {(𝑡𝑓 , 𝒚𝒔𝒑, 𝒅)|  𝑡𝑓  ≥ 𝑡∗
𝑓 , ∀𝒚𝒔𝒑 ∈ DOS , ∀𝒅 ∈ EDS , ∀𝒖 ∈ dAIS, }                                (31) 
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𝑡∗
𝑓 is the minimum time that is required for optimal control and its value can be calculated using 

dynamic optimization, (Georgakis, et al. 2003). In order to define the dynamic operability two other 

spaces are needed: 

S1 = {(𝒚𝒔𝒑, 𝒅)|  ∀𝒚𝒔𝒑 ∈ DOS , ∀𝒅 ∈ EDS }                                                                                        (32) 

S2 = {(𝒚𝒔𝒑, 𝒅)| 𝑡∗
𝑓  ≤ 𝑡𝑑

𝑓 , ∀𝒚𝒔𝒑 ∈ DOS , ∀𝒅 ∈ EDS }                                                                   (33) 

Then 

dOI =
𝜇(S2)

𝜇(S1)
                                                                                                                                              (34) 

The first operating space, S1, is the combination of the setpoints (DOS) and disturbances (EDS). 

The second space, S2, is the projection of intersection of dDOpS and dAOpS, and represents the 

operating space that can be achieved. Therefore, the dynamic operability represents the fraction of 

operating space that can be achieved by the available inputs during the desirable response time. 

More details on these methods can be found in (Georgakis, et al. 2004). 

It is notable that in the case of input multiplicity, additional interior points of  AIS also need to be 

imaged in order to calculate the complete boundaries of AOS, (Subramanian and Georgakis 2001). 

This method is nonlinear and multi-variable. However, it has no implication for the regulatory control 

structure or inventory control system, (Vinson and Georgakis 2000). In addition, the problem suffers 

from the curse of dimensionality, i.e., the dimensions of the abovementioned sets increase sharply and 

the problem becomes intractable. To overcome this difficulty, Georgakis and Li (2010) introduced a 

method based on the techniques used in design of experience (Montgomery 2005) which selects a 

finite number of points to perform the input-output mapping.  

4.10. Steady-state and dynamic flexibility optimization  
A variety of methods for steady-state and dynamic flexibility optimization has been proposed by the 

researchers (e.g., Swaney and Grossman 1985a; Grossmann and Floudas 1987; Dimitriadis and 

Pistikopoulos 1995). The corresponding node is node 2.5 on the right branch of Fig. 1. The steady-

state process model can be represented by the following equations, (Dimitriadis and Pistikopoulos 

1995): 

𝒉(𝒅, 𝒙, 𝒛, 𝜽) = 0                                                                                                                                     (35𝑎) 
𝒈(𝒅, 𝒙, 𝒛, 𝜽) ≤ 0                                                                                                                                     (35𝑏) 

𝜽 ∈ 𝑻 = {𝜽|𝜽𝐿 ≤ 𝜽 ≤ 𝜽𝑈}                                                                                                                  (35𝑐) 

𝒛 ∈ 𝒁 = {𝒛|𝒛𝐿 ≤ 𝒛 ≤ 𝒛𝑈}                                                                                                                    (35𝑑) 

where 𝑑𝑖𝑚 {𝒉} = 𝑑𝑖𝑚 {𝒙}. In above, 𝒙 is the vector of the state variables, 𝒛 is the vector the control 

(input) variables, 𝜽 is the vector of the uncertain parameters, 𝒅 is the vector of the design variables. 

The design variables are decided during the process design stage and remain unchanged during the 

process operation. In the above set of equations, the state variables can be eliminated between 

equations (35a) and (35b), resulting in the following concise representation of the process model: 

𝒈(𝒅, 𝒙(𝒅, 𝒛, 𝜽), 𝒛, 𝜽) = 𝒇(𝒅, 𝒛, 𝜽) ≤ 0                                                                                                (36) 

As shown by Halemane and Grossman (1983), for evaluating the steady-state flexibility the following 

optimization problem need to be solved: 

𝝌(𝒅) = max 𝜽∈𝑻 min𝒛∈𝒁  max𝒋∈𝑱   𝑓𝑗(𝒅, 𝒛, 𝜽)                                                                                   (37) 

where 𝑗 is the index of inequalities of equation (36). If 𝝌(𝒅) ≤ 0, the design is feasible for all 𝜽 ∈ 𝑻 , 

otherwise a set of critical values for uncertain parameters 𝜽𝒄 is determined which causes the worst 

violation of constraints.   

Swaney and Grossman (1985a), proposed a scalar flexibility index in order to quantify the area in 

which the process operation remains feasible, under uncertain conditions. 
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𝐹 = max  𝛿                                                                                 steady − state flexibility optimization 
Subject to  

max 𝜽∈𝑻(𝛿) min𝒛∈𝒁  max𝒋∈𝑱   𝑓𝑗(𝒅, 𝒛, 𝜽) ≤ 0                  

𝛿 ≥ 0                  
𝑻(𝛿) = {𝜽|𝜽𝑁 − 𝛿∆𝜽− ≤ 𝜽 ≤ 𝜽𝑁 + 𝛿∆𝜽+}                         

In above 𝜽𝑵 is the nominal value of uncertain parameters. In addition, ∆𝜽+ and ∆𝜽− are the expected 

deviations from this value. The implication of the above formulation is that 𝐹 is the largest scaled 

deviation of the uncertain parameters that can be accommodated by the process before the operation is 

rendered infeasible. In addition, Swaney and Grossman, (1985a) showed that under certain convexity 

conditions the infeasible operating points lie on the vertices of the uncertainty space and the problem 

simplifies to identifying the active constraints whose intersections limit feasible operation.   

The early versions of flexibility optimization employed a steady-state formulation. The optimization 

variables were process design parameters and process inputs which could be optimized to compensate 

the losses associated with realization of uncertainties. The steady-state version of flexibility analysis 

did not consider transient states. However, in some important applications such as batch processes, 

shutdown and start-up procedures, disturbance rejection, or product changeover the dynamic 

operability of the process is of vital importance. Therefore, Dimitriadis and Pistikopoulos (1995) 

extended this method to include dynamic process optimization under time-varying uncertainties. In 

the dynamic formulation, the following system consisting of ordinary differential equations was 

considered to describe the process model: 

𝒉(𝒅, 𝒙̇(𝒕), 𝒙(𝒕), 𝒛(𝒕), 𝜽(𝒕), 𝒕) = 0; 𝒙(0) = 𝒙𝟎                                                                                   (38) 
𝒈𝒑𝒂𝒕𝒉(𝒅, 𝒙(𝒕), 𝒛(𝒕), 𝜽(𝒕), 𝒕) ≤ 0                                                                                                           (39) 

𝒈𝒌
𝒑𝒐𝒊𝒏𝒕(𝒅, 𝒙(𝒕𝒌), 𝒛(𝒕𝒌), 𝜽(𝒕𝒌), 𝒕𝒌) ≤ 0,   𝑘 = 1, … , 𝑁𝑃                                                                 (40) 

Compared to the steady-state formulation, in the above states, inputs and uncertain parameters are 

time-dependent. The constraints 𝒈𝒑𝒂𝒕𝒉 and  𝒈𝒌
𝒑𝒐𝒊𝒏𝒕 represent path and point constraints respectively. 

Then, the dynamic flexibility can be tested by solving the following optimization problem: 

𝝌(𝒅) = max 𝜽(𝒕)∈𝑻(𝒕)min𝒛(𝒕)∈𝒁(𝒕)max𝒋∈𝑱,𝒕∈ [𝟎,𝑯]𝑔𝑗(𝒅, 𝒙(𝒕), 𝒛(𝒕), 𝜽(𝒕), 𝒕)                                  (41) 

Subject to  

𝒉(𝒅, 𝒙̇(𝒕), 𝒙(𝒕), 𝒛(𝒕), 𝜽(𝒕), 𝒕) = 0;   𝒙(0) = 𝒙𝟎                                                                                 (42) 
𝑇(𝑡) = {𝜽(𝒕)|𝜽𝐿(𝑡) ≤ 𝜽(𝑡) ≤ 𝜽𝑈(𝑡)}                                                                                                (43) 

𝑍(𝑡) = {𝒛(𝑡)|𝒛𝐿(𝑡) ≤ 𝒛(𝑡) ≤ 𝒛𝑈(𝑡)}                                                                                                  (44) 

where 𝑯 is the maximum time over which the flexibility of the dynamic system is considered. Similar 

to steady-state test, if 𝝌(𝒅) ≤ 0, the system is flexible. Otherwise, at least for one 𝜽(𝑡), there is no 

control action which can make the process operation feasible over the considered time horizon.  

Similar to the steady-state case, the dynamic operability index problem can be formulated as follows: 

𝐷𝐹 = max  𝛿                                                                                        dynamic flexibility optimization 
Subject to  

𝝌(𝒅) = max 𝜽(𝒕)∈𝑻(𝒕)min𝒛(𝒕)∈𝒁(𝒕)max𝒋∈𝑱,𝒕∈ [𝟎,𝑯]𝑔𝑗(𝒅, 𝒙(𝒕), 𝒛(𝒕), 𝜽(𝒕), 𝒕) ≤ 0           

𝒉(𝒅, 𝒙̇(𝒕), 𝒙(𝒕), 𝒛(𝒕), 𝜽(𝒕), 𝒕) = 0;   𝒙(0) = 𝒙𝟎                                                            
𝛿 ≥ 0                  
𝑻(𝛿, 𝑡) = {𝜽(𝑡)|𝜽𝑁(𝑡) − 𝛿∆𝜽(𝑡)− ≤ 𝜽(𝑡) ≤ 𝜽𝑁(𝑡) + 𝛿∆𝜽(𝑡)+}                         
𝒁(𝑡) = {𝒛(𝑡)|𝒛𝐿(𝑡) ≤ 𝒛(𝑡) ≤ 𝒛𝑈(𝑡)}            

The concept is shown in Fig. 10, (adapted from Sakizlis, et al. 2004). In this method, firstly multi-

period optimization is performed for an initial set of uncertain scenarios. This gives intermediate 

values for the design variables. Then, a feasibility test (another optimization) is performed in which 

the design variables are fixed and the violations of the constraints are maximized using the uncertain 

parameters. This gives a critical scenario of the uncertain parameters with worst violation of 

constraints. The current set of the uncertain scenarios is updated and the two optimization problems 

are solved iteratively, until the second optimization fails to find a realization of the uncertain 

parameters, which violates the constraints and therefore, the design is feasible for the whole range of 

uncertain parameters. 

 



 

29 | P a g e  

 

 
Fig. 10. The algorithm for flexibility optimization, (adapted from Sakizlis, et al 2004). 

4.11. Economic optimization based on minimization of the economic 

losses associated with back-off from active constraints 
Professor Perkins and his students (Narraway, et al. 1991; Narraway and Perkins 1993) proposed a 

method based on minimization of economic penalties associated with back-off from active 

constraints. The importance of this contribution was the recognition and integration of economic 

objectives into the problem formulation. The corresponding node is node 2.6 on the right branch of 

Fig. 1.  

The idea is shown in Fig. 11, adapted from (Kookos and Perkins 2004). In many processes, the 

optimal steady-state economic solution lies on the intersection of the constraints. However, these 

constraints may be violated due to disturbances and uncertainties. Therefore, in order to ensure a safe 

and feasible operation, the nominal operating point must be moved away from the active constraints. 

Minimization of economic penalties associated with back-off from active constraints leads to 

identification of the optimal dynamic economic solution, shown in Fig. 11. 
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Fig. 11. Optimal steady-state and dynamic economic solutions, (adapted from Kookos and Perkins 2004). 

 

The early versions of the back-off method were based on frequency analysis and perfect control 

(Narraway, et al. 1991; Narraway and Perkins 1993). Later, they developed a general formulation 

which included any linear time-invariant output feedback controller. The back-off method was also 

extended to time domain by considering decentralized (Heath, et al. 2000) and centralized (Kookos 

and Perkins 2001) proportional integral controllers. 

4.12. Simultaneous optimization of a process and its controllers 
In this approach, a superstructure of the process, its control structure, and its controllers is developed 

and optimized in order to systematically generate and screen alternative solutions. Here, the 

mathematical formulation of the problem is posed as a mixed-integer dynamic optimization (MIDO) 

problem. These methods are discussed in the following. The corresponding node is node 2.7 on the 

right branch of Fig. 1. 

Since the underlying mathematical formulation for simultaneous optimization of a process and its 

controllers may result in large-scale MIDO problems, several research activities were devoted to 

develop new solution strategies in order to reduce the computational costs.  

Samsatli, et al. (1998) proposed smooth approximation of binary variables to reformulate the MIDO 

problem using continuous variables, as follows. 

𝑌 =
1

2
×  [𝑡𝑎𝑛ℎ {𝜉(𝑧)} + 1]                                                                                                                   (45) 

Here 𝜉 is a large number, then 𝑌 = 1 when 𝑧 ≫ 0 and 𝑌 = 0 when 𝑧 ≪ 0. However, the proposed 

approximating function results in errors when 𝑧 ≈ 0, because 𝑌 = 0.5. 

Several research activities investigated decomposition of the problem into a primal subproblem and a 

master subproblem, with of the aim of reducing the computational costs. In all these methods, the 

primal subproblem is performed in a reduced space in which the binary variables are fixed. The 

primal subproblem gives an upper bound on the solution. However, as discussed in the following, 

different methods are used to formulate the master subproblem which determines the new realizations 

for the binary variables and gives lower bound on the solution. These two subproblems are solved 
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iteratively until the difference of the upper and lower bounds lies within the desirable tolerance. 

Avraam, et al. (1998, 1999) and Sharif, et al. (1998) applied linearization to construct an MILP master 

subproblem which was solved using outer approximation (OA) method. By comparison, Mohideen, et 

al. (1997), Schweiger and Floudas, (1997) and Bansal, et al. (2000a, 2003) applied dual information 

and generalized benders decomposition (GBD) algorithm (Geoffrion 1972) to construct the master 

subproblem. The former method based on outer approximation requires less evaluation of the primal 

subproblem because its master subproblem gives tighter lower bounds. However, the application of 

outer approximation algorithms required that the binary variables appear linearly and separated in the 

objective function and constraints. It is notable that new OA algorithms (e.g., applied by the recent 

versions of DICOPT) are extened to overcome this deficiency. 

The method of full discretization based on orthogonal collocation was also applied by Cervantes and 

Biegler (2000b; 2002), and Flores-Tlacuahuac and Biegler (2005; 2007; 2008). Flores-Tlacuahuac and 

Biegler (2007) also studied the effects of the convexities of the problem formulation on the results. In 

that study, firstly the problem formulation was presented using generalized disjunctive programming 

(GDP) method (Biegler, et al. 1997) and then it was translated into several equivalent mixed integer 

formulations such as Big M, disaggregation or nonconvex formulations. 

From the application point of view, these methods are applied to a number of case studies: a double 

effect distillation column (Bansal, et al. 2000b), a high purity distillation column (Ross, et al. 2001), 

and a multi-component distillation column (Bansal, et al. 2002). Later, Sakizlis, et al. (2003; 2004) 

and Khajuria and Pistikopoulos (2011) extended this method by including multi-parametric model 

predictive controllers. Asteasuain, et al. (2006) studeid simultaneouse process and control system 

design of styrene polymerization CSTR reactor. They considered a superstructure of feedback and 

forward controllers, and the optimization included the determination of optimal initial and final steady 

states and the time trajectories between them. Recently, Terrazas-Moreno, et al. (2008) studied a 

methyl-methacrylate continuous polymerization reactor. In this research, the design decisions 

(equipment size and steady-state operating conditions), the scheduling decisions (grade productions 

sequence, cycle duration, production quantities, inventory levels) and the optimal control decisions 

(grade transition time and profile) were made simultaneously.  

4.13. A step forward: integrated design and control based on perfect 

control  

This part of the paper reports the contribution of the author. The corresponding node is node 2.8 on 

the right branch of Fig. 1.  

As discussed in the last sections, in integrated design and control, conventionally the models of 

process and controllers are combined and optimized simultaneously, as shown in Fig. 12. However, 

many researchers recognized that simultaneous optimization of a superstructure of the process, its 

control structure and controllers is a tough challenge for current dynamic optimization technologies. 

Therefore, some researchers attempted to develop more efficient solution algorithms and some others 

incorporated model reduction algorithms into the optimization framework. 
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Fig. 12. The conventional optimization framework for integrated design and control of chemical 

processes, (adapted from Sharifzadeh and Thornhill 2013). 

Some aspects of this formidable computational complexity, however, should be attributed to 

controllers. Optimization of controllers requires decision-making regarding the type of controllers 

(e.g., PI, MPC), the degree of centralization (and in the case of decentralized controllers, 

paring/partitioning between the manipulated and controlled variables), and controller parameters. 

Considering the large number of candidate manipulated and controlled variables, simultaneous 

optimization of controllers adds several orders of magnitude to the size of the problem. In addition to 

the computational complexities, there are several involved conceptual complexities. It is widely 

recognized that controllability is the inherent property of the process and does not depend on the 

controller design, (Morari 1983), i.e., it is not possible to resolve the uncontrollability issues of a 

process by designing more sophisticated controllers. Furthermore, there is no general agreement 

between researchers on the criteria for selection of the controller type. Some researchers (Luyben 

2004; Skogestad 2009) emphasize simplicity and robustness of the conventional multi-loop control 

systems and criticize the reliability and costs of modern types. On the other side of this discussion, 

other researchers (Stephanopoulos, and Ng 2000; Rawlings and Stewart 2008) argue the economic 

advantages of model-based control systems and their systematic approach for handling constraints. In 

addition, they criticize the economic disadvantages of the constant-setpoint policy in decentralized 

control systems. Furthermore, in practice, advanced controllers (e.g. MPCs) are designed using 

commercial packages, often during process commissioning stages (Sakizlis, et al. 2010; Qin and 

Badgwell 2003), which may not be available at the process design stages. Therefore, disentangling the 

conceptual and computational complexities associated with controllers from the integrated design and 

control problem is highly desirable.  

Recently, Sharifzadeh and Thornhill (2012a, b) and Sharifzadeh (2013) proposed integrated design 

and control, based on perfect control. The implication of perfect control is that the best achievable 

control performance can be determined by the inverse solution of the process model, (Garcia and 

Morari1982; Morari and Zafiriou 1989), in which manipulated variables taking account of 

disturbances such that the controlled variables are precisely at their desired setpoints. This is a well-

known concept that has resulted in development of a class of controllers which use the inverse of the 

process model as an internal element, (Skogestad and Postlethwaite 2005). However, no attempt has 

been made to incorporate the concept of perfect control into integrated design and control using first 

principles modelling. Sharifzadeh and Thornhill (2012a, b) and Sharifzadeh (2013) addressed this 

opportunity. The concept is shown in Fig. 13. The controller model is eliminated and the process 

model is inverted. Here, the direction of information flow is reversed compared to Fig. 12, and the 

required values of the manipulated variables are calculated according to the desired values of the 

controlled variables. In the proposed optimization framework, the complexities associated with 
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controllers are disentangled from the problem formulation, while the process and its control structure 

are still optimized simultaneously. In addition, while the proposed framework is independent of the 

type of controllers, it provides the guidelines, in term of the best achievable performance, for control 

practitioners in order to design the actual controllers. Both steady-state and dynamic representations 

of this framework are formulated and demonstrated using case studies by Sharifzadeh and Thornhill 

(2012a, b), and Sharifzadeh (2012, 2013). 

 
Fig. 13. The new integrated design and control framework using an inversely controlled process model, 

(adapted from Sharifzadeh and Thornhill 2013). 

4.14. Optimization programming 
This section briefly reviews the relevant methods for solving optimization-based algorithms of the last 

sections. The features of interest are the methods for solving MINLP and MIDO problems, the 

methods for global optimization, and simulation-optimization programming.  

4.14.1. MINLP solution algorithms  
As discussed earlier, in design and control of chemical processes, two categories of variables are 

involved, structural variables and parametric variables. The examples of structural variables are 

process configuration and selection of controlled and manipulated variables. The examples of 

parametric variables are the size of process equipment, process operating conditions and the setpoints 

of controlled variables. Simultaneous optimization of structural and parametric variables, involved in 

integrated design and control, requires mixed integer nonlinear programming (MINLP). The main 

MINLP solution algorithms can be explained using four subproblems. They are: 

Subproblem NLP 1: the relaxation subproblem.  

In this subproblem, the discrete variables are relaxed to have non-integer values. In general, the 

solution of Subproblem NLP1 results in non-integer values for discrete variables and gives a lower 

bound on the objective function of the main MINLP problem. 

Subproblem NLP2: the subproblem with fixed discrete variables.  

The solution of this subproblem gives an upper bound on the objective function of the main MINLP 

problem. 

Subproblem NLPF: the feasibility subproblem with fixed discrete variables.  

The Subproblem NLPF can be thought as minimization of the infeasibilities of the corresponding 

NLP2 subproblem. 
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Subproblem M-MILP: the cutting planes subproblem 

The Subproblem M-MILP exploits the convexity of the objective function and the constraints, as they 

are replaced by the corresponding supporting hyper-planes. Due to the convexity of the feasible 

region, these hyper-planes are outer approximations of the nonlinear feasible region. Subproblem M-

MILP may include linearization of all the constraints or only the violated constraints. The hyper-

planes in Subproblem M-MILP provide new values for discrete variables, and a non-decreasing lower 

bound for the objective function. In other words, Subproblem M-MILP over estimates the feasible 

region and underestimates the objective function.  

The mathematical formulation of the above subproblems can be found in (Grossmann 2002). The 

main MINLP algorithms are branch and bound (BB), outer approximation (OA),  generalized benders 

decomposition (GBD), and extended cutting planes (ECP) which can be explained using the above 

sub-problems NPL1, NP2, NLPF, and M-MILP, as explained in the following, and shown in Fig. 14, 

(adapted from Grossmann 2002).   

 
Fig. 14. Different MINLP algorithms represented as a combination of NLP and M-MILP subproblems, 

(adapted from Grossmann 2002). 
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Branch and bound (BB) 

The branch and bound algorithm successively enumerates the nodes of the tree (constructed according 

to the integer variables) by fixing the discrete variables corresponding to the current node, and solving 

the relaxed Subproblem NLP1 for the rest of discrete variables. If all the discrete variables take 

integer values, the algorithm stops. Otherwise, the nodes of the tree are enumerated. The relaxed 

Subproblem NLP1 gives a lower bound for the subproblems in the descendant nodes. Fathoming is 

performed when the lower bound exceeds the current upper bound, when the Subproblem is 

infeasible, or when all discrete variables take integer values.  

Outer approximation (OA) 

In outer approximation algorithm, NLP2 (subproblem with fixed discrete variables) and M-MILP 

(subproblem with cutting planes) are solved iteratively. If the solution of NLP2 is feasible, it is used 

for constructing the cutting planes in M-MILP. Otherwise, the feasibility Subproblem, NLPF, is 

solved to generate the corresponding feasible solution. NLP2 and M-MILP subproblems give the 

upper and lower bounds respectively. The iterations continue until the difference of the lower and 

upper bounds lies within the allowable tolerance.  

Generalized Benders decomposition (GBD) 

Generalized benders decomposition (GBD) is similar to outer approximation (OA) in that 

subproblems M-MILP and NLP2 are solved iteratively. However, in GBD only active constraints are 

linearized for constructing the cutting planes.  

Extended cutting planes (ECP) 

The extended cutting planes algorithm does not require the abovementioned NLP sub-problems. M-

MILP Subproblem is solved iteratively by adding the linearization of the most violated constraints. 

The algorithm converges when the violation of constraints lies within the allowable tolerance.   

The algorithms based on branch and bound are only attractive when NLP subproblems are not 

computationally expensive or when due to the small dimension of discrete variables, the number of 

NLP subproblems is small. In general, outer approximation (OA) methods converge in fewer 

iterations. It can be shown that in extreme when the objective function and the constraints are linear, 

OA finds the solution in one iteration. In fact, as explained by Grossmann (2002), the M-MILP 

Subproblem does not even need to be solved to optimality. The generalized benders decomposition 

(GBD) algorithm can be thought as a special case of OA algorithm. Since the lower bounds of the 

GBD algorithm are weaker than OA algorithms, a larger number of iterations is required. For the case 

of extended cutting planes (ECP), since the discrete and continuous variables are treated 

simultaneously, a larger number of iterations is required. There are other variants and extensions of 

the above-mentioned algorithms such as branch and cut, LP/NLP branch and bound, and so on, which 

are not the focus of this discussion. The interested reader may refer to literature, (e.g., Biegler and 

Grossmann 2004). In general, branch and bound methods perform well when relaxation of MINLP is 

tight. Outer approximation methods are better when the NLP subproblems are computationally 

expensive. GDB methods are more favourable for problems with a large number of discrete variables 

and ECP methods are preferred for linear problems, (Biegler and Grossmann 2004). 

The off-the-shelf commercial solvers for mixed integer nonlinear problems are available within 

modelling systems such as GAMS and AMPL. The common computer codes for nonlinearly 

constrained MINLPs are DICOPT, SBB, α-ECP and BARON. DICOPT is developed by Viswanathan 

and Grossmann (1990) at Carnegie Mellon University, based on OA. According to the recent manual 

of software, the algorithm is extended to include integer variables which appear nonlinearly in the 

problem formulation, (DICOPT documentation 2012). BARON is developed by Sahinidis (1996) and 

implements a global optimization method. This solver is based on a branch and reduce algorithm. 

SBB applies a branch and bound method and α-ECP is based on an extended cutting plane method. 

All these methods are based on the assumption of convexity of the objective function and constraints 

and may converge to a local solution in the presence of non-convexities. The methods for global 

optimization will be discussed later.  
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4.14.2. Dynamic optimization 
In general, the solution algorithms for dynamic optimization problems can be classified into 

variational, sequential, full discretization and multiple-shooting methods. These methods are 

discussed in the following.  

The variational methods use the first order optimality necessary conditions based on Pontryagin’s 

Maximum Principle (Cervantes and Biegler 2000a). The resulted formulation conforms to a boundary 

value problem which can be solved using methods such as single shooting, and invariant embedding. 

If the analytical solution is found, these methods have the advantage that the solution is achieved in 

the original infinite dimensional space. However, analytical solution is often not possible and 

numerical solution features combinatorial characteristics in the presence of constraints. Therefore, the 

application of variational methods is limited to small problems.  

In the sequential integration methods, also called partial discretization or control vector 

parameterization, only the control input variables (i.e., manipulated variables) are discretized. When 

initial conditions, time-independent variables and the parameters of the partial discretization are fixed, 

the resulted differential algebraic equations (DAEs) can be solved using a DAE solver. This produces 

the required objective function and gradients for an NLP solver. The solver determines the optimal 

values of the time-independent variables and the parameters of partial discretization. The special 

feature of sequential methods is that they generate a feasible solution in each iteration, (Biegler and 

Grossmann 2004).  

In full discretization methods, also called simultaneous methods, all time-dependent variables are 

discretized which results in a large-scale nonlinear problem. The main technique for discretization is 

collocation based on finite elements, in which the profiles of the time-dependent variables are 

approximated by a family of polynomials. These methods follow an infeasible path and the 

differential algebraic equations are solved at the optimum point, only. Therefore, the execution time is 

significantly shorter than the sequential method. The full discretization methods are advantageous 

when state variables are (path) constrained or unstable modes exists, (Biegler and Grossmann 2004). 

In addition, the control input (manipulated) variables are discretized at the same level of accuracy as 

the state variables and the output (controlled) variables. However, the reformulated discretized 

problem could be very large which requires careful initialization of the optimization algorithm.  

A method that should be categorized between the two extremes of the sequential integration and full 

discretization methods is called multiple shooting. In this method, the time horizon is divided to 

several intervals and in each interval a partial discretization problem, based on sequential approach is 

solved. The continuities between time intervals are established using additional equality constraints. 

The main advantage of the multiple-shooting methods over the sequential methods is that the (path) 

constraints on state variables can be imposed at the points between the time intervals.  

4.14.3. Global optimization 

The motivation for the research into global optimization is that the conventional nonlinear 

optimization methods do not guarantee to find the global solution in non-convex problems. The 

methods for global optimization can be broadly classified into stochastic methods and deterministic 

methods. The stochastic optimization methods, in general, apply an algorithm in analogy to physical 

systems (e.g. evolution in genetic algorithm) in order to generate trial points which approach an 

equilibrium point. The common examples of stochastic optimization methods are genetic algorithm, 

simulated annealing, and Tabu search algorithms. Stochastic optimization methods are widely 

applied. For example Low and Sorensen, (2003a-b, 2005), and Wongrat, and Younes (2011) applied 

genetic algorithms and Exler, et al. (2008) applied Tabu Search for mixed integer dynamic 

optimization. Furthermore, these methods do not require calculation of the gradients and are 

convenient for simulation-optimization programming. However, the stochastic global optimization 

methods do not construct any proof for the solution to be the global optimum and tend to be 

inefficient in highly constrained problems.  

Recently, a variety of methods for deterministic global optimization methods is proposed by 

researchers. In summary, the main idea is to use convex envelopes and under-estimators in order to 
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construct the equivalent lower bounding convex problem. Consider the following mixed integer 

programming (MIP) problem:  

min 𝑍 = 𝒇(𝒙, 𝒚)                                                                                                                                     (MIP) 
Subject to  

𝒈(𝒙, 𝒚) ≤ 0                 
In which 𝒙 and 𝒚 are continuous and discrete variables respectively. In addition, 𝒇(𝒙, 𝒚) and 𝒈(𝒙, 𝒚) 

are generally non-convex. Then, the equivalent lower bounding mixed integer programming (LBMIP) 

problem has the general form of: 

min  𝑍 = 𝒇̅(𝒙, 𝒚)                                                                                                                               (LBMIP) 

Subject to  

𝒈̅(𝒙, 𝒚) ≤ 0                 
where, 𝒇̅ and 𝒈̅, are valid convex under-estimator, 𝒇̅(𝒙, 𝒚) ≤ 𝒇(𝒙, 𝒚) and 𝒈̅(𝒙, 𝒚) ≤ 0 holds if 

𝒈(𝒙, 𝒚) ≤ 0. As discussed by Biegler and Grossmann (2004), the differences between different 

methods for deterministic global optimization are based on the way that the under-estimator problem 

is constructed and the way that branching is performed on discrete and continuous variables. The 

spatial tree enumeration can be done for both continuous and discrete variables. Alternatively, the 

spatial branch and bound can be performed on continuous variables and the resulted LBMIP can be 

solved by conventional MIP methods at each node. Branching on continuous variables is performed by 

diving the feasible region, and comparing the upper and lower bounds for fathoming each sub-region, 

(Fig. 15).The sub-region which contains the global optimal solution is found by eliminating the sub-

regions which are proved not to contained the global optimal solution. Finally, some methods branch 

on discrete variables of the LBMIP problem and switch to spatial branch and bound on the nodes 

where feasible values for discrete variables are found. For constructing the under-estimator some 

special structures such as bilinear, linear fractional, or concave separable may be assumed for 

continuous variables. Alternatively, in some methods a quadratic large term is added to the original 

function. Nevertheless, in all these methods, the quality of the under-estimator depends on the method 

for tightening the upper and lower bounds. The details of these methods and the way that the convex 

envelops and under-estimators are constructed are reviewed by Grossmann and Biegler (2004) and 

Tawarmalani and Sahinidis (2004), and Floudas, et al. (2005). Recently researchers have extended the 

global optimization methods for dynamic optimization. Barton and Lee, (2004) solved MIDO 

problems with embedded linear time-varying dynamic systems to global optimality. Later Chachuat, et 

al. (2005; 2006) proposed a decomposition method based on outer approximation, which is able to 

address a wider range of problems with embedded ordinary differential equations (ODEs) without 

enumerating the discrete variables.  

 
Fig. 15. The concept of constructing the convex under-estimator for a non-convex function, (adapted from 

Biegler and Grossmann, 2004). 
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4.14.4. Optimization with implicit constraints: Simulation-optimization 

programming 
Simulation-optimization programming techniques conform to the optimization with implicit 

constraints, and have been proved efficient in process optimization using simulators (e.g., Caballero et 

al 2007; Sharifzadeh et al., 2011). In simulation-optimization programming, the process simulator has 

an input-output black-box relationship to the optimizer. Optimization is performed in the outer loop 

and the simulation is solved in the inner loop. The advantage of this method is that it provides an 

opportunity to apply off-the-shelf simulation software tools with advanced thermodynamic property 

packages. In addition, the number of optimization variables is limited to the required specifications of 

the simulation program, (i.e., the variables which should be specified independently to run the 

simulator). For fixed values of the optimization variables, the equation solver of the simulator is able 

to calculate the values of the remaining variables. By convergence of the equation solver, the value of 

the objective function is evaluated and reported to the optimizer. The disadvantage of these methods 

is that evaluation of the objective function is computationally expensive and time-consuming because 

for each evaluation, the equation solver needs to converge.  

Recently, Cozad, et al. (2011) proposed a method for simulation-optimization in which, a surrogate 

models is constructed and its parameters are optimized against the maximum error between the 

rigorous simulation and the lean surrogate model. The advantage of the new approach is that the 

surrogate model provides cheap evaluations of the gradients and can be optimized using standard 

optimization algorithms. 

5. Suggestions for future research 

 In the following, based on the reviewed materials, several directions for future research activities are 

suggested. 

Suggestion 1. Developing high fidelity models is still the main barrier toward integrated design and 

control. Knowledge of many of the processes is still of an empirical nature and there is no guarantee 

that a controller that is designed using a simplified model at the design stage, will achieve the desired 

performance at the operational stage. The author suggests further research into developing 

methodologies which are independent of the detailed controller design and are robust to uncertain 

process parameters. To this end, both conceptual and computational complexities should be addressed 

simultaneously, i.e., model fidelity and integrity should not be compromised for the sake of numerical 

complexity reduction. 

Suggestion 2. The author suggests developing methods which systematically capture the process 

insights and engineering judgments (e.g., Section 4.1) for decomposition and complexity reduction of 

integrated design and control problems as a potential research area with great potential impacts. Such 

a desirable methodology may also act as preconditioning module of any integrated design and control 

framework and will mostly concern the structure of the problem formulation rather than fine details. 

The required developments potentially will benefit from “expanding the scope of modeling options…” 

to new modelling techniques such as “graph theoretical models, Petri nets, rule-based systems, 

semantic networks, ontology’s, agents,…” as discussed by Stephanopoulos and Reklaitis (2011) and 

Venkatasubramanian (2009, 2011). 

Suggestion 3. The characteristic of different controller types such as multi-loop controllers and model 

predictive controllers were discussed earlier in this paper. Unfortunately, as discussed earlier, there is 

no general agreement between researchers on the best type of controllers. Some researchers 

emphasize simplicity and robustness of the conventional multi-loop control systems and criticize the 

reliability and costs of modern types. On the other side of this discussion, other researchers argue the 

economic advantages of model-based control systems and their systematic approach for constraint-

handling. In addition, they criticize the economic disadvantages of the constant-setpoint policy in 

decentralized control systems. The author suggests developing a systematic decision-making 

framework for deciding the best controller type, control law, and the degree of centralization. In 

particular, it should be investigated that in the presence of the limiting factors of controllability 

(discussed in Section 4.3.2), which type of controllers (e.g., feedback, feedforward, or model-based) is 

more capable of approaching perfect control in term of the best achievable control performance. The 
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outcome can also include a set of qualitative guidelines that in the case of a process with some 

specific characteristics (e.g. delays), the controllers should employ some advantageous elements (e.g., 

feedforward). 

Suggestion 4. Furthermore, as discussed also by other researchers (e.g., Klatt and Marquardt, 2009), 

evolving new computational technologies have changed the perceptions of process systems engineers 

of their problem-solving capabilities. It is expected that if a problem (here, integrated design and 

control) is presented in its formal statement, the problem-solving strategy can be reformulated into an 

algorithmic procedure and solved by the means of computer programming tools. Such tools for 

computer-aided design assist designer to accelerate the process of decision-making and to enhance the 

fidelity of the results based on rigorous analysis. Examples of these programs are the simulation 

software tools by AspenTech
2
 (e.g. Aspen Plus and Aspen HYSYS), PSE

3
 (gPROMS) and 

MathWorks
4
 (e.g. Simulink).  

The author suggests that the methods discussed in this review (e.g., the controllability measures, the 

methods for analysing nonlinear behaviour of chemical processes, the geometric operability analysis, 

the method based on an inversely controlled process model and so on) should be incorporated as built-

in modules and library functions into the process systems engineering software tools. Then, after the 

process is modelled, the software tool would provide the option to the designer to evaluate the control 

performance of the designed process using an automated procedure. The abovementioned built-in 

modules would enhance the computational capabilities, available to the industrial practitioners, in 

order to efficiently consider the controllability characteristics of the process at early stages of process 

design. 

6. Conclusion  

In this paper, a thematic review of literature regarding process design and control was presented. Fig. 

1 gave an overview of research in the field. The main approaches for process design and control can 

be classified into sequential methods and integrated design and control methods. The sequential 

methods have a yes/no attitude to the problem while the integrated design and control methods 

incorporate some control aspects into the process design. All the above methods use mathematical 

modelling. However, the methods using first principles modelling are more successful in integrating 

design and control.  

Due to high dimensionality of the problem, a variety of methods addresses the problem by 

decomposing it into several smaller subproblems. Decomposition can be based on individual unit 

operations, different time-scales, prioritization of control objectives, or heuristics for the design of 

inventory control systems.  

This paper also reviewed the characteristics and desired properties of the elements of control systems. 

Spatial and temporal decentralizations of control systems were explained and conventional multi-loop 

controllers and centralized model predictive controllers were discussed. This paper also discussed the 

desirable properties of manipulated and controlled variables. The economic implications of static and 

dynamic setpoint policies were discussed and the importance of selection of controlled variables for 

process profitability was emphasized.  

The causes of control imperfection, also limit process controllability. Different definitions for 

operability, flexibility, and controllability were presented and the causes of control imperfection 

namely the interactions between control loops, delays and right-half-plane zeros, manipulated variable 

constraints and model uncertainties were discussed in this paper. Moreover, it was explained that the 

methods based on passivity, exploit the process model to evaluate the stability and integrity of 

decentralized control structures.  

Then, the discussions moved to the methods in which process design and control are integrated to 

some extents. A category of optimization-based methods uses a multi-objective function for screening 

                                                      
2
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3
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4
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alternative solutions. This also provides the opportunity for incorporating controllability measures 

into economic optimization. These methods were reviewed in this paper.  

A variety of methods is devoted to flexibility analysis, i.e., the question of whether for a range of 

uncertain scenarios, the process operation remains feasible. As discussed in this paper, the 

optimization methods for steady-state and dynamic operability analyses are developed by researchers. 

In addition, it is possible to evaluate the feasibility of the process operation by mapping the bounds of 

the input variables into the output spaces. This idea resulted in the geometric methods for operability 

analysis. 

It was also discussed that minimizing the economic losses associated with disturbances, in terms of 

back-off from active constraints, can be applied as an economic measure for integrated design and 

control. By development of computational capabilities, some researchers optimized the process and its 

controllers simultaneously. However, the underlying formulation features combinatorial nature and is 

limited to smaller problems.  

The comparisons between the methods on the right branch of the Fig. 1 are illustrative. All these 

methods try to establish criteria for evaluating and screening the performances of alternative decisions 

in designing process and control systems. Some methods employ the controllability measures, and 

incorporate them into a multi-objective function. In the methods based on model reduction, robust 

control measures are used instead. In the methods for analysing the nonlinear behaviour of chemical 

processes, the aim is to avoid undesirable characteristics such as steady-state multiplicity. The 

geometric methods for operability analysis are trying to ensure that, using available inputs, for all 

disturbance scenarios, the desired outputs are achievable. Similarly, the methods for flexibility 

optimization, try to evaluate and quantify the effects of uncertain parameters on feasible process 

operation. In some research, the decision-making criterion is the economic losses associated with 

retreat from active constraints. Finally, the methods for simultaneous optimization of controller and 

process directly measure the controller error and incorporate it to a multi-objective function.  

Furthermore, investigating the evolution path of the methods for integrated design and control 

suggests that the methods which have a direct link to the underlying first principles are more 

successful in integrating process design and control. This is the reason that almost all of the methods 

on the right branch of Fig. 1 are nonlinear. Furthermore, simultaneous optimization of process and 

controllers pose a tough challenge for the current optimization methods, and requires efficient 

complexity reduction methods. The requirement for complexity reduction should address both 

numerical and conceptual complexities, in terms of the required computational costs, reliability of the 

solution and the desirable properties such as controllability, operability, and flexibility.  
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