
AIAA 2003-0085
Integration of RANS and LES Flow
Solvers for Simultaneous Flow
Computations
J. U. Schlüter, S. Shankaran, S. Kim, H. Pitsch,
J. J. Alonso and P. Moin
Center for Turbulence Research (CTR) &
Aerospace Computing Lab (ACL)
Stanford University, Stanford, CA 94305-3030

41st Aerospace Sciences Meeting and
Exhibit Conference

January 6–9, 2003/Reno, NV
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191–4344

INTEGRATION OF RANS AND LES FLOW SOLVERS FOR

SIMULTANEOUS FLOW COMPUTATIONS

J. U. Schlüter∗, S. Shankaran†, S. Kim‡, H. Pitsch§,

J. J. Alonso¶and P. Moin‖

Center for Turbulence Research (CTR) &
Aerospace Computing Lab (ACL)

Stanford University, Stanford, CA 94305-3030

Numerical investigations of highly complex flow systems, such as the aero-thermal
flow through an entire aircraft gas turbine engine, require the application of multiple
specialized flow solvers in order to compute the flow efficiently and accurately. The
flow solvers have to run simultaneously in order to capture unsteady multi-component
effects. The present study reports the coupling of two flow solvers, one based on a RANS
approach, the other on a LES approach. Procedures to set up an efficient data exchange
are described. The processing of the flow data to meaningful boundary conditions is
discussed. As a validation case for integrated RANS/LES computations, a swirl flow at
an expansion with a subsequent contraction is computed and compared to LES results of
the entire domain.

INTRODUCTION

Motivation

NUMERICAL simulations of complex large scale
flow systems must capture a variety of physi-

cal phenomena in order to predict the flow accurately.
Currently, many flow solvers are specialized to simu-
late one part of a flow system effectively, but are either
inadequate or too expensive to be applied to a generic
problem.

As an example, the aero-thermal flow through a
gas turbine engine can be considered. In the com-
pressor and the turbine section, the flow solver has to
be able to handle the moving blades, model the wall
turbulence, and predict the pressure and density distri-
bution properly. This can be done efficiently by a flow
solver based on the Reynolds-Averaged Navier-Stokes
(RANS) approach. On the other hand, the flow in the
combustion chamber is governed by large scale tur-
bulence, complex mixing, chemical reactions, and the
presence of fuel spray. Experience shows that these
phenomena require an unsteady approach14. Hence,
the use of a Large Eddy Simulation (LES) flow solver
is desirable.

While many design problems of a single flow passage
can be addressed by separate computations, only the
simultaneous computation of all parts can guarantee
the proper prediction of multi-component phenomena,
such as compressor/combustor instability and combus-
tor/turbine hot-streak migration. Therefore, a promis-

∗Research Associate, CTR
†PhD student, ACL
‡Postdoc, ACL
§Research Associate, CTR
¶Assistant Professor, ACL
‖Professor, CTR
Copyright c© 2003 by CTR Stanford. Published by the Ameri-

can Institute of Aeronautics and Astronautics, Inc. with permission.

Fig. 1 Gas turbine engine

ing strategy to perform full aero-thermal simulations
of gas-turbine engines is the use of a RANS flow solver
for the compressor sections, an LES flow solver for the
combustor, and again a RANS flow solver for the tur-
bine section (Fig. 1).

While it would be possible to use one single flow
solver, which switches between different mathematical
approaches depending on the flow section, the cur-
rent choice is to use several separate flow solvers. The
reason for that is, that currently a wide variety of val-
idated flow solvers are in use. Merging two or more
computer programs into a single code or extending a
code to different modeling approaches is tiresome at
best and prone to errors.

The usage of entirely separate flow solvers allows, for
a given flow problem, to choose the best combination
of a variety of existing flow solvers, which have been
developed, optimized, and validated separately. Once
these have been equipped with a generic interface, it
is possible to continue the development of the flow

1 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

solvers separately without compromising compatibil-
ity. The implementation of this interface into several
flow solvers allows their modular exchange, which re-
sults in a high degree of flexibility.

Challenges

The implementation of an interface for the simul-
taneous flow computation using separate flow solvers
faces a number of challenges. These can be described
as follows:

1. Establishing a contact between the flow solvers for

information exchange: The first obvious obstacle
is to establish a real-time connection between two
or more simultaneous running flow solvers over
which the information can be exchanged. Most
flow solvers are already parallelized using MPI
(Message Passing Interface). Here, MPI will be
used for peer-to-peer message passing as well.

2. Ensuring that each flow solver obtains the infor-

mation needed on the boundaries: A general pro-
cedure has to be defined, which ensures, that each
flow solver knows, which information has to be
sent where.

3. Processing of the obtained information to bound-

ary conditions: Finally, the physical problem of
defining meaningful boundary conditions from the
obtained data has to be addressed. This can be
especially challenging, when two different model-
ing approaches, such as LES and RANS, are used.

The current investigation deals with these tasks and
describes a successful coupling of RANS and LES flow
solvers.

PEER-TO-PEER MESSAGE PASSING

The message passing between two separate flow
solvers (peer-to-peer message passing) is very simi-
lar to the information exchange between processors of
a parallel computation. Many flow solvers are par-
allelized and use MPI for process-to-process message
passing. MPI can be used for communication between
different flow solvers as well.

Before establishing a contact between two flow
solvers, it has to be ensured, that the commands for
the internal message passing due to the parallelization
of the two codes do not interfere with each other. With
MPI it is possible to direct the range of the message
passing with communicators. The most commonly
used communicator of MPI is the standard commu-
nicator MPI COMM WORLD which includes all processors
of all codes. Using this communicator for internal mes-
sage passing will inevitably result in confusion between
the two codes. Hence, each code has to create its own
local communicator (intra-communicator) to encapsu-
late the internal message passing. All codes have to use
their own intra-communicator for all MPI commands

Create intra−communicator LOCAL_WORLD for internal message
passing

Determine rank of local root process

IF local processor = global root
false true

IF local processor
 = local root

% SEND rank of local root to
global root

RECV list of ranks of peer
root ranks from global root

FOR 2 to total no. of codes

RECV rank of root of peer
code from peer root
(using MPI_ANY_SOURCE)

FOR 2 to total no. of codes

SEND list of ranks of peer
root ranks to peer root ranks

BCAST list of peer root ranks to all local processors

FOR 1 to total no. of codes
IF peer root
 < > local root

%

truef.

f. true

create inter−communicator PEER_WORLD(i) with peer root

Fig. 2 Structure Chart for exchange of root ranks
needed for creation of inter-communicators

concerning the parallelization of the code instead of
MPI COMM WORLD.

In the next step, a communicator is created for the
peer-to-peer message passing (inter-communicator).
Say, a case with three flow solvers is to be run with
a first RANS code using two processors (ranks 0 and
1, local root process 0), a LES code using four pro-
cessors (ranks 3, 4, 5 and 6, local root process 3) and
a second RANS code using three processors (ranks 7,
8, and 9, local root process 7). In order to create the
inter-communicator, it is necessary, that every proces-
sor knows the rank of the root processes of the other
codes. A global root process is appointed (rank 0)
which collects the ranks of the root processes of all
codes (here: ranks 0, 3 and 7), compiles them into a
list and sends them back to the local root processes.
A structure chart for this procedure is shown in Fig.
2. Since there is no inter-communicator available yet,
this communication has to be done with the standard
communicator MPI COMM WORLD. With the knowledge
of the ranks of all root processes it is possible to cre-
ate the inter-communicators.

HANDSHAKE AND COMMUNICATION

Handshake

Efficient parallelizing of a flow solver seeks to limit
the informations exchange between parallel processes
to a minimum, since the information exchange requires
a large amount of time compared to the actual com-
putation. Similarly, it is favorable to minimize the
communication between several parallel running flow
solvers. Since the flow solvers have to exchange flow
information rather often, either after each iteration or
after a chosen time-step, the aim is to minimize the
communication efforts by an initial handshake, which
optimizes the communication during the actual flow
computation.

The most simple way to organize the information
exchange would be to let only the root processes com-

2 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

Determine no. and location of points on local processor which
need information

SEND no. of requested points for local process

WAIT for IRECV to complete

IRECV no. of requested points for peer process

SEND data structure containing requested points
from local proc to peer proc

IRECV data stucture containing requested
points from peer proc

WAIT for IRECV to complete

IF no. of req. points of
 peer processor > 0

false true

%

IF no. of req. points of
 local process > 0

false true

%

IF no. of req. points of
 peer process > 0

false true

%

Determine which points from peer process lay inside the local
domain and can be served

SEND no. of points which lie inside the local domain
and serve the peer process

IRECV no. of points which lie inside the domain of
the peer process and can be served

WAIT for IRECV to complete

IF no. of req. points of
 local process > 0

false true

%

IF no. of req. points of
 peer process > 0

false true

%

IF no. of req. points of
 local process > 0

false true

%

SEND data structure of points which lie inside the
local domain and serve the peer process

IRECV data structure of points which lie inside the
domain of the peer process and can be served

WAIT for IRECV to complete

IF no. of local points served by
 peer process > 0

false true

%

IF no. peer points served by
 local process > 0

false true

%

false true

%

Check, if all local points are served by peer processes

FOR 1 to total no. of peer processes of peer code

FOR 1 to total no. of codes

FOR 1 to total no. of peer processes of peer code

FOR 1 to total no. of codes

FOR 1 to total no. of peer processes of peer code

FOR 1 to total no. of codes

FOR 1 to total no. of peer processes of peer code

FOR 1 to total no. of codes

IF no. of local points served by
 peer process > 0

Fig. 3 Structure Chart for the initial handshake to
establish direct communication between interface
processors.

municate. However, this would mean that prior to the
peer-to-peer communication the root processes would
have to gather the flow information to hand over from
their own processes, and after the peer-to-peer com-
munication would have to broadcast the obtained in-
formation back to their processes. The here reported
solution avoids this additional communication by di-
rect communication of the neighboring processors on
the interface.

The initial handshake routine establishes the direct
communication (Fig. 3). First, for each code each

FOR 1 to total no. of peer processes of peer code

SEND data structure containing flow variables of
points serving the peer process

IRECV data structure containing flow variables of
points served by peer process

WAIT for IRECV to complete

FOR 1 to total no. of codes

IF no. of local points served by
 peer process > 0

false true

%

IF no. peer points served by
 local process > 0

false true

%

IF no. of local points served by
 peer process > 0

false true

%

Transform flow data of peer process to local standards
(non−dimensionalization etc.)

Fig. 4 Structure Chart for the communication of
flow data between iterations.

processor has to identify all the points, which need
flow information from the peers to define its interface
boundary condition. The location of each of these
points has to be stored in a data structure contain-
ing three integers and three double precisions. The
three integers are an ’ip’ number, which determines
what kind of flow variables are requested for this point,
an ’id’ number, which contains a unique identification
number for each point, and a ’flow solver’ number
denoting the flow solver requesting this point. The
three real numbers contain the x, y, z-coordinates of
the point in Cartesian coordinates using metric dimen-
sions.

The handshake takes place in four steps. First, each
processor communicates the number of points in its
own domain requesting flow data to each processor of
a peer code. This allows each code to dynamically
allocate arrays to store received information. In the
second step each processor receives a data package
containing the location of the requested points from
each peer processor that request a non-zero number of
points.

In an intermediate step, each processor identifies,
whether a requested point lies within its own domain
and can be served. During the identification, the inter-
polation schemes required to obtain the data for this
point are also being determined and stored for later
use.

In the third communication step each processor
communicates to all peer-processes requesting data the
number of points found. This allows again to dynam-
ically allocate arrays for the following fourth step. In
the fourth communication step, each processor sends
out an array to each peer processor it can serve. The
array consists of two integers containing ip and id
of the point. Finally, each processor to determines
whether all of its requested point can be served by
peer processors.

Communication

The communication of flow data between iterations
is rather straight forward once the handshake is com-

3 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

LES to RANS
Provide time

averaged data

RANS to LES
Create turbulent

fluctuations

LES to RANS
Provide time

averaged data

RANS to LES
Upstream influence

of pressure very
important

Fig. 5 Boundary conditions to be defined at the
interface for the example of a gas turbine combus-
tor.

pleted (Fig. 4). Since it is known to every processor
what kind of data has to be provided to which peer
processor, and from which peer processor flow data
can be expected, the data packages can be sent di-
rectly without going through the root process.

Each processor has to compile the data to be sent
into a data structure. This data structure may vary
between different flow solvers and has to be defined
beforehand. However, as a standard data structure a
set of 7 variables has been established. These variables
contain ρ, ρu, ρv, ρw, ρE, k, and νt in this order, with
ρ being the density, u, v, w the velocity components
in x−, y−, z−direction, respectively, E the total En-
ergy, k the turbulent kinetic energy, and νt the eddy
viscosity. This set of variables gives the freedom to
chose between several RANS turbulence models with-
out changing the interface routines, e.g. boundary
conditions can be defined from this set of data for
k − ε and k − ω turbulence models likewise. More so-
phisticated data sets are possible steered by the data
structure sent in the handshake routine.

BOUNDARY CONDITIONS

The processing of the exchanged data to meaning-
ful boundary conditions in each flow solver is crucial
in order to predict effects of one component (or flow
solver) on the other. For the example of a gas turbine
Fig. 5 shows the boundary conditions which have to
be defined at the interfaces for the centerpiece: the
combustor. The RANS codes have to receive time-
averaged data from the LES code in order to define
its outflow (for the upstream RANS) or inflow (for
the downstream RANS) conditions. The LES code re-
ceives data from both RANS codes and has to define
its, inflow and outflow conditions.

LES Boundary Conditions

The formulation of unsteady LES boundary condi-
tions from ensemble-averaged RANS data is one of the
biggest challenges in the coupling of two flow solvers
based on such different mathematical approaches like
LES and RANS. Unsteady LES boundary conditions
have to be generated which fulfill the statistical prop-
erties of the time-averaged solution delivered by the
RANS flow solver. Even if an unsteady RANS compu-
tation is assumed, the time-step of the unsteady RANS
computation is usually larger than the LES time-step

by several orders of magnitude. The LES boundary
conditions then have to correspond to the ensemble-
averages delivered by the RANS computation.

LES Inflow Boundary Conditions

Specifying inflow conditions for LES from upstream
RANS data is a similar problem as specifying LES
inflow conditions from experimental data, which is
usually given in time-averaged form, and has there-
fore been investigated in some detail in the past. A
method that has been successfully applied is to gen-
erate a time-dependent database for the inflow veloc-
ity fields by performing a separate LES simulation,
in which virtual body forces are applied to achieve
the required time-averaged solution9. However, since
unsteady RANS flow solvers may deliver unsteady

ensemble-averaged velocity profiles, a generation of
such a data-base is impossible, since the mean velocity
field at the inlet is unknown.

The here proposed LES inlet conditions use a data-
base created by a separate LES computation and mod-
ifies then its statistical properties in order to match the
RANS solution:

ui,LES(t) = ūi,RANS

︸ ︷︷ ︸

I

+ (ui,DB(t) − ūi,DB)
︸ ︷︷ ︸

II

·

√

u′2
(i)

RANS
√

u′2
(i)

DB
︸ ︷︷ ︸

III

(1)
with RANS denoting the solution delivered by the
RANS computation and DB properties delivered by
the database. Term II computes the velocity fluctua-
tion of the database, while term III scales the fluctu-
ation to the actual value needed. When added to term
I a meaningful unsteady inlet condition is recovered.
In order to keep corrections small, the generated inflow
data-base should have statistical properties close to the
actual prediction by the RANS flow solver, although it
has been shown, that even very generic data-bases are
able to recover meaningful LES inflow conditions11.

LES Outflow Boundary Conditions

In order to take upstream effects of the downstream
flow development into account, LES outflow condi-
tions have to be defined that can impose mean flow
properties on the unsteady LES solution matching the
statistical properties delivered by a downstream RANS
computation. A method, that has been used in the
past, employs virtual body forces to drive the mean
velocity field of the LES solution to a RANS target
velocity field12, 13 :

Fi(x) =
1

τF
(ūi,RANS(x) − ūi,LES(x)) , (2)

with ūi,RANS being the solution of the RANS flow
solver computed in an overlap region between LES and
RANS domain, and ūi,LES is a time-average of the LES

4 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

solution over a trailing time-window. This body force
ensures that the velocity profiles at the outlet of the
LES domain fulfill the same statistical properties as
the velocity profiles in an overlap region computed by
a RANS simulation downstream. This makes it pos-
sible to take upstream effects of the downstream flow
into account.

RANS Boundary Conditions

The specification of RANS boundary conditions
from LES data is essentially straight forward. The
unsteady LES flow data is time-averaged over the
time-step applied by the RANS flow solver and can
be employed directly as a boundary condition.

In the current study, the compressible formulation
of the RANS flow solver and the quasi-incompressible
low-Mach-number formulation of the LES code posed
a challenge. While the RANS code allows for acoustic
waves to propagate in the limits of the RANS formula-
tion and its turbulence models, the density field of the
LES solution is entirely defined by chemical reactions
and not by acoustics. This leads to the necessity of
the RANS inflow and outflow condition to be able to
fluctuate the density field at the boundaries in order
to let acoustic waves leave the domain.

Currently, the mass-flux vector at every point of the
inlet is being specified corresponding to the value de-
livered by the LES computation. This means ρu, ρv,
ρw, (and T) are imposed at the boundaries. This al-
lows the the density ρ to fluctuate to account for the
passing of acoustic waves. The velocity components
u, v, w are adjusted accordingly in order to conserve
the mass-flux. Variations of ρ are in the order of < 2%.

Other boundary conditions are possible, especially
Navier-Stokes characteristic boundary conditions10

which have a more accurate treatment of acoustic
waves.

VALIDATION OF THE INTERFACE

In order to validate the interface and the boundary
conditions, a LES flow solver and a RANS flow solver
were equipped with the interface and the newly devel-
oped boundary conditions. Integrated flow computa-
tions were performed in a LES-LES and LES-RANS
environment.

The LES Flow Solver

The LES flow solver chosen for this work, is an
code developed at the Center for Turbulence Research
at Stanford by Pierce and Moin8. The flow solver
solves the filtered momentum equations with a low-
Mach number assumption on an axi-symmetric struc-
tured single-block mesh. A second-order finite-volume
scheme on a staggered grid is used1. The subgrid
stresses are approximated with an eddy-viscosity ap-
proach, where the eddy viscosity is determined by a
dynamic procedure.5, 7

���������������������������������
���������������������������������
���������������������������������
���������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�������������������
�������������������
�������������������
�������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������
�������������������
�������������������
�������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

contraction

.

a)

b)

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

LES+
body
forceLES

�������������������
�������������������
�������������������
�������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������
�������������������
�������������������
�������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

contraction

LES LES or RANS

contraction

LES or RANS

u (t)i

u (x,t)i

c)

Fig. 6 Geometry for integrated LES/RANS com-
putations: a) full geometry, b) reduced LES do-
main, c) schematic splitting of domain to two com-
putational domains

The RANS Flow Solver

The RANS flow solver used for this investigation is
the TFLO code developed at the Aerospace Comput-
ing Lab (ACL) at Stanford. The flow solver computes
the unsteady Reynolds Averaged Navier-Stokes equa-
tions using a cell-centered discretization on arbitrary
multi-block meshes.15

The solution procedure is based on efficient ex-
plicit modified Runge-Kutta methods with several con-
vergence acceleration techniques such as multi-grid,
residual averaging, and local time-stepping. These
techniques, multi-grid in particular, provide excellent
numerical convergence and fast solution turnaround.
Turbulent viscosity is computed from a k − ω two-
equation turbulence model. The dual-time stepping
technique2, 3, 6 is used for time-accurate simulations
that account for the relative motion of moving parts
as well as other sources of flow unsteadiness.

Numerical Experiment: Swirl Flow

The computation of a swirl flow presents a challeng-
ing test-case in order to validate the interface and the
boundary conditions, due to the complexity of the flow
and its sensitivity to inflow and outflow parameters.

5 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

0.00

0.50

1.00
x/D= −0.5 0.5 1.51.0 2.52.0 3.0

Ux in
te

rf
ac

e

0.00

0.50

1.00
x/D= −0.5 0.5 1.51.0 2.52.0 3.0

R
M

S
(u

x’)

in
te

rf
ac

e

Fig. 7 Integrated LES/LES computations. Velocity components for different downstream positions.
circles: LES of full geometry (Fig. 6a), dashed line: LES of expansion (Fig. 6b), solid line: integrated
LES-RANS computation (Fig. 6c)

Yet, this test case is simple enough to perform a LES
computation of the entire domain in order to obtain
an ’exact’ solution, which serves as a reference solution
to assess the accuracy of integrated computations.

A swirl flow at an expansion with a subsequent
contraction three diameter D downstream of the ex-
pansion is considered (Fig. 6a). Inlet velocity profiles
are taken from an actual experiment in a similar ge-
ometry.4 The swirl number of the flow is S = 0.3,
which is just supercritical, meaning that vortex break-
down takes place and a recirculation zone develops.
The extension and strength of this recirculation zone is
strongly influenced by the presence of the downstream
contraction.

In a first computation the entire domain is computed
by LES. A first computation of this study computed
the entire domain. All subsequent computations as-
sume, that this domain is to be computed by two or
more separate flow solvers. The geometry is split in
two computational domains with a short overlap re-
gion. The expansion is to be computed with the LES
code, while the contraction is computed either by a
second instance of the LES code or by the RANS code
(Fig. 6c). If the coupling of the two codes is done
appropriately, then this coupled simulation should re-
cover the solution of the LES performed for the entire

domain.

Integrated LES/LES Computations

The first test for the interface and the LES boundary
conditions is to use a LES flow solver for the second
part of the domain. In these integrated LES/LES
computations the same LES flow solver is hence used
twice. The time-interval can be chosen arbitrarily
when communication between the two instances of the
flow solver takes place. Each LES computation can
chose a time-step to advance the solution between two
iterations of its own, only limited by the CFL condition
in its own domain. After several iterations, after both
LES computations have computed the same physical
time-span, an exchange of time-averaged quantities,
the mean velocities ū, v̄, w̄ and the turbulent kinetic
energy k, takes place. While it would have been possi-
ble in the case of two LES computations to exchange
more information, especially about turbulent quan-
tities, it was aim to proof the validity of the LES
boundary conditions from section .

Fig. 7 shows the velocity profiles for three differ-
ent computations. The velocity profiles denoted by
the circles represent the LES computation of the en-
tire domain (Fig. 6a) and hence, the target for the
integrated computations.

6 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

0.00

0.50

1.00
x/D= −0.5 0.5 1.51.0 2.52.0 3.0

Ux in
te

rf
ac

e

0.00

0.50

1.00
x/D= −0.5 0.5 1.51.0 2.52.0 3.0

Uφ in
te

rf
ac

e

Fig. 8 Integrated LES/RANS computations. Velocity components for different downstream positions.
circles: LES of full geometry (Fig. 6a), dashed line: LES of expansion (Fig. 6b), solid line: integrated
LES-RANS computation (Fig. 6c)

To show the importance of integrated computations
for this case, the dashed lines show the velocity profiles
of a LES computation of the expansion, without the
computation of the contraction by a second flow solver
(Fig. 6b). It can be seen, that the obtained velocity
field differs substantially from the first simulation, and
hence, the influence of the downstream contraction can
not be neglected.

The solid lines in Fig. 7 show the integrated
LES/LES-computation using two LES solvers for the
two domains (Fig. 6c). The location of the inter-
face is denoted with a dot-dashed line, meaning, that
the velocity profiles on the left-hand side of the in-
terface are computed with the first LES computation
and the profiles on the right hand-side from the second
LES. The LES computation of the subsequent contrac-
tion delivers a mean flow field which is used to correct
the outflow conditions of the upstream LES. As a
result, the velocity profiles of the integrated LES/LES-
computation tend towards the velocity profiles of the
LES of the entire domain. The inlet conditions of the
second LES are defined from the mean velocity profiles
obtained from the upstream LES.

In the integrated LES/LES computation, the ve-
locity fluctuations u′2, v′2, w′2 are handed over as the
turbulent kinetic energy k = 0.5 · (u′2 + v′2 + w′2),

and reconstructed as u′2
i = k/3. This explains a

mismatch in the axial velocity fluctuations at the in-
terface. Although it would have been possible in
integrated LES/LES computations to hand over the
entire Reynolds-stress tensor, the usage of the RANS
standard data set allows better comparison with the
following computations.

Integrated LES/RANS Computations

The final step in assessing integrated flow computa-
tions is to perform a simulation, where the second LES
flow solver is replaced by a RANS flow solver. The
swirl flow at the expansion is computed by the LES
flow solver while the contraction is computed with the
RANS flow solver TFLO.

Fig. 8 shows the mean velocity profiles obtained by
an integrated LES-RANS computation. The circles
show the LES of the entire domain, and, for compari-
son, the dashed line represents the LES solution of the
swirl flow without the computation of the contraction.

The integrated LES-RANS computation (solid lines)
essentially matches the velocity profiles from the LES
of the entire domain. This means, that integrated
LES-RANS computations are able to successfully pre-
dict complex flows such as the swirl flow considered
here.

7 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

The time advantage of integrated LES-RANS com-
putations is strongly dependent on the chosen RANS
time-step. For the present case, the RANS time step
was chosen approximately 2 ·103 times longer than the
LES time-step limited by the CFL condition. This re-
sulted in a decrease of computational costs by a factor
of ≈ 2.

CONCLUSIONS

The increasing complexity of flow problems investi-
gated with numerical methods calls for the integration
of existing flow solvers, where each of the flow solvers
is optimized to address a particular problem. In this
study, an interface was developed and implemented
that enables two or more flow solvers to run simul-
taneously and to exchange data at the overlapping
boundaries.

The interface was tested on a swirl flow at an ex-
pansion with a subsequent contraction, which has been
split into two parts, the upstream expansion and the
downstream contraction part. Each of these is com-
puted by a separate flow solver in a fully coupled
simulation. The integrated LES-LES and LES-RANS
computations have demonstrated to yield the same
flow prediction as a LES computation of the entire
domain.

The LES boundary conditions developed in earlier
work were put to a real-time test. RANS boundary
conditions were adapted to accommodate the different
approaches (compressible/low-Mach number) on both
sides of the interface.

The computation reported in this work proof
the feasibility, accuracy and efficiency of integrated
LES/RANS computations. LES and RANS flow
solvers were successfully combined in order to improve
the efficiency of the flow prediction without compro-
mising the accuracy. This is an important step towards
the application of this concept to industrial applica-
tions.

ACKNOWLEDGMENTS

We gratefully acknowledge support by the US De-
partment of Energy under the ASCI program.

References
1K. Akselvoll and P. Moin. Large-eddy simulation of tur-

bulent confined coannular jets. Journal of Fluid Mechanics,
315:387–411, 1996.

2J. J. Alonso, L. Martinelli, and A. Jameson. Multigrid un-
steady Navier-Stokes calculations with aeroelastic applications.
AIAA Paper, (AIAA 95-0048), 1995. AIAA 33rd Aerospace
Sciences Meeting and Exhibit, Reno, NV, 1995.

3A. Belov, L. Martinelli, and A. Jameson. Three-
dimensional computations of time-dependent incompressible
flows with an implicit multigrid-driven algorithm on parallel
computers. In Proceedings of the 15th International Confer-

ence on Numerical Methods in Fluid Dynamics, Monterey, CA,
1996.

4P. A. Dellenback, D. E. Metzger, and G. P. Neitzel. Mea-
surements in turbulent swirling flow through an aprupt axisym-
metric expansion. AIAA Journal, 26(6):669–681, June 1988.

5M. Germano, U. Piomelli, P. Moin, and W. Cabot. A
dynamic subgrid-scale eddy viscosity model. Phys. Fluids, A(3
(7)):1760–1765, July 1991.

6A. Jameson. Time dependent calculations using multi-
grid, with applications to unsteady flows past airfoils and wings.
AIAA paper, (AIAA Paper 91-1596), 1991. AIAA 10th Compu-
tational Fluid Dynamics Conference, Honolulu, HI, June 1991.

7P. Moin, K. Squires, W. Cabot, and S. Lee. A dynamic
subgrid-scale model for compressible turbulence and scalar
transport. Phys. Fluids, A 3(11):2746–2757, November 1991.

8C. Pierce and P. Moin. Large eddy simulation of a confined
coaxial jet with swirl and heat release. AIAA Paper, (AIAA 98-
2892), June 1998.

9C. D. Pierce and P. Moin. Method for generating equi-
librium swirling inflow conditions. AIAA Journal, 36(7):1325–
1327, 1998.

10T. J. Poinsot and S. K. Lele. boundary conditions for direct
simulations of compressible viscous reacting flows. Journal of

Computational Physics, (101):104–129, 1992.
11J. Schlüter. Consistent boundary conditions for integrated

LES/RANS simulations: LES inflow conditions. CTR Annual

Research Briefs, 2002. Center for Turbulence Research, Stan-
ford.

12J. Schlüter and H. Pitsch. Consistent boundary conditions
for integrated LES/RANS simulations: LES outflow conditions.
CTR Annual Research Briefs, pages 19–130, 2001. Center for
Turbulence Research, Stanford.

13J. U. Schlüter, H. Pitsch, and P. Moin. Consistent bound-
ary conditions for integrated LES/RANS simulations: LES out-
flow conditions. AIAA paper, (2002-3121), 2002. 32nd AIAA
Fluid Dynamics Conference, June 24-27, St, Louis, MO.

14D. Veynante and T. Poinsot. New Tools in Turbulence

Modelling, chapter 5 Reynolds averaged and large eddy simu-
lation modeling for turbulent combustion, pages 105–140. Les
edition physique. Springer, 1996.

15J. Yao, A. Jameson, J. J. Alonso, and F. Liu. Development
and validation of a massively parallel flow solver for turboma-
chinery flows. AIAA paper, (AIAA-00-0882), 2000.

8 of 8

American Institute of Aeronautics and Astronautics Paper 2003-0085

