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Abstract—Reactively dealing with self-collisions is an impor-
tant requirement on multi-DOF robots in unstructured and
dynamic environments. Classical methods to integrate respective
algorithms into task hierarchies cause substantial problems:
Either these unilateral safety constraints are permanently ac-
tive, unnecessarily locking DOF for other tasks, or they get
activated online and result in a discontinuous control law. We
propose a new, reactive self-collision avoidance algorithm for
highly complex robotic systems with a large number of DOF.
In particular, configuration dependent damping is imposed to
dissipate undesired kinetic energy in a well-directed manner.
Moreover, we merge the algorithm with a novel method to
incorporate these unilateral constraints into a dynamic task
hierarchy. Our approach both allows to specifically limit the
force/torque derivative to comply with physical constraints of the
real robot and to prevent discontinuities in the control law while
activating/deactivating the constraints. No redundancy is wasted.
No comparable algorithms have been developed and implemented
on a torque controlled robot with such a level of complexity
so far. The implementation of our generic solution on the
multi-DOF humanoid Justin clearly validates the performance
and demonstrates the real-time applicability of our synthetic
approach. The proposed method can be used to contribute to
whole-body controllers.

Index Terms—Self-Collision Avoidance, Task Hierarchy, Force
Control, Redundant Robots

I. INTRODUCTION

Establishing robots in domestic environments requires

them to be both compliant and versatile. Compliance can

be achieved by equipping the manipulator with sufficient

force/torque sensing capabilities so as to allow the system

to ”feel” contacts and interact with the environment or by

applying intrinsically compliant joints [1]. Versatility, amongst

others, can be realized by providing many independently

controllable degrees of freedom (DOF) which make it possible

to execute several tasks and comply with multiple physical

constraints simultaneously. Up to the present, several robotic

systems have been developed in this respect [2], [3], [4], [5].

Nevertheless, a multi-DOF structure significantly increases

the complexity in terms of whole-body coordination. A crucial

aspect is the treatment of (self-)collision situations, see Fig.

1. Using only planning algorithms to avoid collisions is

not sufficient if considering manipulators in unstructured and

dynamic environments. The robot must be enabled to detect

critical situations and react in real-time [6], [7], [8], [9], [10].

In [11], Sugiura et al. propose to generate repulsive forces

between potentially colliding body links and transform them

into corresponding joint motions in order to access the velocity
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Fig. 1. Unilateral constraints (repulsive potential fields) are utilized to
avoid self-collisions, exemplified on the humanoid robot Justin of the German
Aerospace Center (DLR).

control interface. Null space projection techniques [12], [13],

[14] are utilized in that whole-body control framework. Using

repulsive potential fields [6], introduced by Khatib, to achieve

collision avoidance is a well-established approach by now.

However, combining these unilateral constraints with classical

null space projection concepts causes a great problem. Usually,

one should settle such safety features at the top levels within

the priority order. When switching between inactive and active

repulsive potential fields, a discontinuity in the null space

projector occurs while using classical approaches, leading to

a discontinuous control law. One solution is to ”lock” the

respective directions so as to prevent the discontinuity. How-

ever, that is equal to a waste of the structural redundancy in

noncritical configurations. The already mentioned framework

[11] integrates a self-collision avoidance into a task hierarchy.

Concerning the collision avoidance interventions, damping is

not regarded. But dissipating kinetic energy becomes crucial

when considering more than one potential collision simulta-

neously. The irregularities caused by the unilateral constraints

are also not considered yet. In [15], Ellekilde and Christensen

use a dynamical approach to scale task contributions online.

Still, competitive dynamics result and the redundancy is not

optimally exploited. Brock et al. propose a dynamic hierarchy

in [16]. Herein, obstacle avoidance is realized in the null

space of another task. It is given a higher priority if that

null space reveals to be not sufficient to ensure a collision-

free motion. A suitable coefficient is calculated online and

induces the transition. However, the range for the coefficient

has to be determined experimentally and the approach requires



user-defined time windows to specify the transient behavior.

In [17], Lee et al. smooth the transition while using modified

null space projection techniques. The framework bases on con-

siderations in the kinematic domain where joint velocities are

inputs to the robot. As good compliance calls for force/torque

control instead of stiff position/velocity control, the approach

is not applicable for our purposes. Seminal work has been

done by Mansard et al. [18]. The work introduces a new inver-

sion operator for the computation of appropriate null spaces

and applies the continuous control law to a visual servoing

scenario. In [19], an extension for a hierarchy of tasks and

unilateral constraints is made which is based on [20]. However,

a specific adaption to the physical constraints of force/torque

controlled systems, i. e., the limits of the force/torque control

loops, is not provided. Several other established solutions are

optimization-based [21], [22]. In [22], inequality constraints

are incorporated into an optimization problem formulation.

In a kinematic example, the activation process is smoothed

by adding constraints to higher derivatives of the system

output. In [21], a weighting of different constraints has to

be performed and an activation coefficient is introduced. Fur-

thermore, there exist various established concepts to smooth

irregularities by utilizing damped least-squares techniques for

the inversion process. Deo and Walker provide an overview in

[23]. These approaches are widely used in inverse kinematics

[24], [25], [26], [27], [20]. These methods offer an easy

way to smooth discontinuities but the parameterization of the

damping values is not intuitive since the direct relation to

physical values of the real system is not given. Last we want

to mention iterative methods to deal with that redundancy

issue. Raunhardt and Boulic introduce temporary joint limit

constraints in an iterative inverse kinematics algorithm in

[28]. This kind of method is suitable for 3D characters or

virtual mannequins. However, using iterative approaches is

problematic if hard real-time matters. The complexity of a

self-collision avoidance poses difficulties in terms of non-

determinism of the redundancy resolution algorithm. Thus,

such methods are rarely applied on real robots.

In this paper, a new redundancy resolution method is

provided and a self-collision avoidance is integrated into the

obtained dynamic task hierarchy. The goal is to achieve an

order of various, prioritized tasks such that more important

tasks are fulfilled while less important ones are not necessarily

completed. The concept is based on our recent works [29],

[30] and combines them to a novel framework. Our algorithm

for reactive self-collision avoidance [29] extends the work

initiated by De Santis et al. in [9]. Compared to the majority

of the state-of-the-art approaches, we do not remain on the

kinematic level but we address the dynamic domain where

forces and torques are the inputs of the robot. Our concept

is a generic solution to the problem of self-collisions which

comprises a configuration dependent damping design for sys-

tematic dissipation of undesired kinetic energy in a well-

directed manner. The algorithm allows to incorporate a large

number of potentially colliding body segments simultaneously

while still remaining feasible in real-time1. Being unilateral,

1Here, the algorithm is implemented in a 1 ms control cycle.

these safety features call for special treatment concerning

their insertion into a task hierarchy. In this context, we

extend classical null space projection methods by transition

shaping to account for that special property [30]. We derive

the theoretical framework which allows to specifically limit

the force/torque derivative during the activation/deactivation

process of potential fields. By means of that we close the gap

between the abstract mathematical structure of a task hierarchy

and the influence on real physical values in the robotic

system. We prove that only the behavior in the direction of

the unilateral constraint is altered by the transition shaping.

Both self-collision avoidance and redundancy resolution are

merged and implemented on a torque controlled, multi-DOF

humanoid. There do not exist comparable approaches and

implementations in terms of complexity and performance so

far. Several experiments validate our concept and demonstrate

the real-time applicability of our synthetic approach.

The work is organized as follows. At first we derive the

self-collision avoidance algorithm in Sec. II. Experiments

are conducted to verify its performance. Sec. III focuses on

the redundancy resolution concept to incorporate unilateral

constraints in a dynamic task hierarchy. Simulations on a

simple 3 DOF system are presented. Sec. IV describes the

fusion of both concepts and the implementation on a real

robotic system. Sec. V compares our approach with state-of-

the-art techniques and hints at limitations. Experiments on the

humanoid Justin are performed and analyzed in Sec. VI.

II. SELF-COLLISION AVOIDANCE

As a basic prerequisite for our self-collision avoidance

approach which utilizes artificial repulsive potential fields

[6], we require information about potentially colliding body

links in real-time. That includes np contact point pairs with

minimum distance and a specification of the robot links they

are placed on. In this respect, we adapted the well-established

formulation by Gilbert et al. [31] for the geometric collision

model of the manipulator. Throughout the rest of this work,

we use the word joint torque in place of force/torque since

the majority of the robotic systems is rather equipped with

revolute than prismatic joints.

First, we define the torque command τ coll ∈ R
n for self-

collision avoidance on an n DOF manipulator:

τ coll = −

(
∂Vrep,tot(q)

∂q

)T

−D(q)q̇ , (1)

where Vrep,tot(q) ∈ R
+
0 expresses the total potential energy

of all np repulsive potential fields applied to the geometric

model of the robot. The configuration of the system is defined

by the joint vector q ∈ R
n. Each potential refers to the contact

point pair defined by point i and corresponding point j with

the assignment h : i 7→ j ∀ i = 1 . . . np and is denoted as

Vrep,tot(q) =

np∑

i=1

Vrep,i,h(i)(q) . (2)

In (1), additional damping is injected through the positive

definite matrix D(q) ∈ R
n×n. That configuration dependent

term for energy dissipation will be derived in a later section.
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and

repulsive forces Frep (di,j). The figure illustrates a 3-dimensional example.

A. Repulsive Effect

For the further analysis, the distance di,j ∈ R
+
0 between

two contact points xi,xj ∈ R
3 is defined as

di,j = ||x
C(i)
i − x

C(i)
j || = ||x

C(j)
j − x

C(j)
i || . (3)

The superscript describes the coordinate frame of the link the

indicated contact point lies on. Fig. 2 illustrates an arbitrary

contact point pair in a 3-dimensional example. The repulsive

forces Frep (di,j) ∈ R
+
0 are perpendicular to the surfaces of

the links and indicate in the directions ±ei:

ei =
x
C(i)
j − x

C(i)
i

di,j
. (4)

As of now, the superscript will be omitted in the notations. In

Fig. 2 it is indicated that the repulsive effect can be described

as a function of the distance di,j between two proximate points

xi and xj on different links.

∂Vrep,i,j(q)

∂q
=

∂Vrep,i,j

∂di,j

∂di,j

∂
(
xT
i ,x

T
j

)T

∂
(
xT
i ,x

T
j

)T

∂q

=
∂Vrep,i,j

∂di,j

(
∂di,j
∂xi

∂di,j
∂xj

)







∂xi

∂qi

∂xi

∂qj

∂xj

∂qi

∂xj

∂qj







.

(5)

Herein, vectors qi and qj denote the joint values which

directly2 affect the location of xi and xj , respectively. In this

example, qi and qj describe the joint positions of the left

and the right manipulator, respectively. Notice that in general

the contact points may have the same base of the kinematic

chain so that qi and qj have an intersection. However, just the

joints after the branch-off point are relevant. It follows from

the multiplication of ∂di,j/∂(x
T
i ,x

T
j )

T and ∂(xT
i ,x

T
j )

T /∂q

2Indirect influence implies the point’s motion on the surface of the link due
to the motion of the corresponding contact point partner.

that just the principal block diagonal of ∂(xT
i ,x

T
j )

T /∂q has

influence on the result. The residual multiplications result in

zero since the factors are always orthogonal. As an example,

let us consider ∂di,j/∂xj and ∂xj/∂qi in the context of Fig.

2. The direction of ∂di,j/∂xj is orthogonal to the surface of

the link on which xj is lying, whereas qi is only able to let

xj move on this surface (indirect influence). Hence, (5) can

be simplified to

∂Vrep,i,j(q)

∂q
=

∂Vrep,i,j

∂di,j
︸ ︷︷ ︸

−Frep (di,j)

(
∂di,j
∂xi

∂xi

∂qi

∂di,j
∂xj

∂xj

∂qj

)

︸ ︷︷ ︸
(
J i(q) J j(q)

)

. (6)

Notice that the right part describes the projection of the force

Frep (di,j) into joint space, i. e., the Jacobian matrices J i(q)
and J j(q), respectively. Further usage of these mappings will

be in the damping design section.

The repulsive potentials Vrep,i,j(q) are supposed to be zero

at a specified distance di,j = d0. This is due to the requirement

of the collision avoidance being a unilateral constraint. If d0 is

exceeded, no torque shall be applied. We propose the following

piecewise defined function:

Vrep,i,j (di,j) =







−
Fmax

3d20
(di,j − d0)

3
∀ di,j ≤ d0

0 ∀ di,j > d0

. (7)

Here, the potential Vrep,i,j (di,j) is of type C2, whereas the

corresponding repulsive force

Frep (di,j) =−
∂Vrep,i,j (di,j)

∂di,j

=







Fmax

d20
(di,j − d0)

2
∀ di,j ≤ d0

0 ∀ di,j > d0

(8)

is a C1 function w.r.t. di,j . An additional design parameter,

namely the maximum force Fmax ∈ R
+, must be specified in

(7) or (8), respectively. To parametrize the fields, the maximum

local stiffness (∂Frep (di,j) /∂di,j)|di,j=0 can be limited to

a feasible value which is determined by the sample time of

the controller. Since we have multiple contact point pairs

and configuration dependent relations between force and joint

torques, the design is not easy in general. However, a rough

estimation for the worst case Fmax, i. e. one contact point pair

for a collision endangered configuration, can be made [29].

The damping force which will be derived in the next section

is directly dependent on the local potential stiffness, i. e.,

∂2Vrep,i,j (di,j) /∂d
2
i,j . To ensure a continuous control law,

Vrep,i,j (di,j) must at least be of type C2.

B. Damping Design

In the following we propose a damping design for system-

atic energy dissipation. The method will allow to specify a

damping ratio ζ to a contact point pair. Therefore, we have to

transform the dynamical equations into the operational space

[12] which is defined by the collision directions.

In consequence of the configuration dependence we must

take the system inertia distribution into account. We define ḋi
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Fig. 3. Illustration of the projected motions of xi and xj into the direction
of the collision. Positive directions are defined from xi to xj .

and ḋj which express the velocities of the respective contact

points projected into the direction of the collision, see Fig.

3. Positive directions for both ḋi and ḋj are defined from xi

to xj . Following this, a desired, standard rigid body robot

differential equation [32] can be set up:

Md,i,j(q)

(
d̈i
d̈j

)

+Ci,j(q, q̇)q̇ + gi,j(q) = F d,i,j , (9)

F d,i,j = −Dd,i,j(q)

(
ḋi
ḋj

)

− Frep(di,j)

(
1

−1

)

. (10)

Coriolis and centrifugal effects are comprised by

Ci,j(q, q̇)q̇ ∈ R
2 and gravitational effects are represented by

gi,j(q) ∈ R
2. The mass matrix Md,i,j(q) ∈ R

2×2 contains

the reflected inertias at the contact points in the direction of

the collision, i. e.,

Md,i,j(q) =

(
Md,i(q) 0

0 Md,j(q)

)

. (11)

The damping matrix Dd,i,j(q) ∈ R
2×2 in (10) is designed

such that a desired damping behavior in the modal space is

realized.

The following derivation transforms the known joint mass

matrix of the manipulator into Md,i(q). Scalar Md,j(q) is

obtained analogously. Afterwards, the configuration dependent

damping matrix is derived.

1) Mass Projection Md,i(q): We consider the general re-

lation between joint torques τ ∈ R
n and joint accelerations

q̈.

M(q)q̈ + c(q, q̇) = τ , (12)

where M(q) ∈ R
n×n is the corresponding joint mass matrix.

Coriolis and centrifugal effects are represented by c(q, q̇).
Additionally, the well-known transformation from joint space

to Cartesian space via the Jacobian matrix Jx,i(q) ∈ R
3×n

with respect to an arbitrary point x
C(i)
i (q) ∈ R

3 is required:

ẋ
C(i)
i = Jx,i(q)q̇ , (13)

τ = JT
x,i(q)F

C(i)
x,i . (14)

The Cartesian velocity is expressed by ẋ
C(i)
i , and F

C(i)
x,i ∈ R

3

represents an external force applied at x
C(i)
i . As our goal is

to end up in the direction of the collision ei, we define the

mapping

Jd,i(ei) = eTi (15)

between motions along ei and the Cartesian coordinates of the

contact point. Combining (15) with (13) delivers the complete

projection.

ḋi = Jd,i(ei)ẋ
C(i)
i = Jd,i(ei)Jx,i(q)

︸ ︷︷ ︸

J i(q)

q̇ (16)

with J i(q) ∈ R
1×n expressing the resultant Jacobian row

vector which relates the joint space to the distance-space as

introduced in (6). Deriving ḋj is done analogously with ej
being oriented in the same direction as ei.

Based on (16), the acceleration constraint is obtained by

differentiation w.r.t. time:

d̈i = J i(q)q̈ + J̇ i(q, q̇)q̇ . (17)

Combining (12), (14), (16) and (17) leads to

d̈i =J̇ i(q, q̇)q̇ − J i(q)M(q)−1c(q, q̇)+

+ J i(q)M(q)−1JT
i (q)

︸ ︷︷ ︸

Md,i(q)
−1

F d
x,i . (18)

Herein Md,i(q) expresses the scalar mass of point x
C(i)
i to

be accelerated in the direction of the collision. Due to the

transformation, F d
x,i ∈ R now describes a scalar force acting

at x
C(i)
i . From a computational point of view, the calculation

of Md,i(q) is not expensive as the last inversion refers to a

scalar. Moreover, inverting the joint mass matrix M(q) has to

be done only once per sample time, independent of the number

of contact point pairs.

2) Damping Matrix Dd,i,j(q): Utilizing Md,i,j(q) allows

to apply desired damping ratios ζ1 and ζ2 in the modal space

(decoupled dynamics). However, since (9) is nonlinear, we

linearize around the actual working point d∗i,j = f(q∗), under

the additional assumption of a quasi-static analysis, ḋ∗i = ḋ∗j =
0. That leads to

Md,i,j(q
∗)

(
δd̈i
δd̈j

)

= F ∗
d,i,j , (19)

F ∗
d,i,j = −D∗

d,i,j

(
δḋi
δḋj

)

−K∗
d,i,j

(
δdi
δdj

)

, (20)

where F ∗
d,i,j denotes the control input which includes the

damping and the repulsion. The local stiffness matrix K∗
d,i,j ∈

R
2×2 is defined as follows:

K∗
d,i,j =

(
1

−1

)
∂Frep(di,j)

∂di,j

∣
∣
∣
∣
di,j=d∗

i,j

·
∂di,j

∂ (di dj)

=
∂2Vrep,i,j(di,j)

∂d2i,j

∣
∣
∣
∣
∣
di,j=d∗

i,j

·

(
1 −1

−1 1

)

.

(21)

Notice that the gravitational effects from (9) are omitted in

(19) as we assume a separate static gravity compensation in

the overall controller. The local damping behavior is specified

by D∗
d,i,j ∈ R

2×2. Based on (19), (20), and (21), various

methods from linear algebra theory can be applied in order

to realize the desired damping ratios3. We have chosen the

Double Diagonalization approach by Albu-Schäffer et al. [33].

The damping matrix can be formally written as

D∗
d,i,j = D

(
Md,i,j(q

∗),K∗
d,i,j , ζ1, ζ2

)
. (22)

It will be computed and applied in each control cycle. At

this point it shall also be mentioned that it is straightforward

3Although the damping design is done for the linear system, it is still
valid for the analysis of the nonlinear system as the term only appears in the
derivative of the Lyapunov function.



Fig. 4. Geometric collision model of the robot consisting of 28 bounding
volumes (left arm: 8, right arm: 8, mobile base: 5, torso: 4, head: 2, floor: 1).
The volumes are spheres, rounded cylinders, and bodies obtained by unrolling
spheres on triangles.

to design a relative damping instead of an absolute one by

slightly modifying (9) and (10). A benefit of that choice would

be a reduction of the dimension of the self-collision avoidance

(per contact point pair) from two to one.

C. Collision Avoidance Torques

The procedure has to be applied to each of the np contact

point pairs. The collision avoidance torques due to repulsion

and damping effects w.r.t. the actual values of q, di,j , ḋi, and

ḋj are

τ coll =

np∑

i=1

(
J i(q)
J j(q)

)T ((
−Frep(di,j)
Frep(di,j)

)

−D∗
d,i,j

(
ḋi
ḋj

))

.

(23)

D. Experimental Validation of the Self-Collision Avoidance

We applied the approach to the humanoid robot Justin of

the German Aerospace Center (DLR). The geometric model

for contact point calculations is illustrated in Fig. 4 (right).

The respective distance computation algorithm is based on the

formulation by Gilbert et al. [31] and has been adapted to the

system in [29]. In order to facilitate real-time applicability,

the collision model is calculated once per control cycle (1 ms)

incorporating 302 pairs of links. The computing time lies

between 0.3 ms and 0.4 ms on an Intel Core2Duo Processor

T7400 (2.16 GHz).

TABLE I
PARAMETERIZATION FOR THE EXPERIMENT #1 ON SELF-COLLISION

AVOIDANCE

Fmax d0 np ζ = ζ1 = ζ2

25 N 0.15 m 35 0, 0.7, 1.0, 1.3

Fig. 5. Initial configuration (left) and snapshot during the experiment #1
(right) on self-collision avoidance. Except for the left arm (7 DOF), all other
joints are locked in order to facilitate repeatability of the experiment.

For experiment #1, the parameterization in Table I is taken.

For each run, a different damping behavior is chosen. Through-

out, the robot is controlled in gravity compensation mode.

Except for the left arm (7 DOF), all other joints are locked.

Fig. 5 (left) shows the initial configuration. The user is re-

quired to feed kinetic energy into the system (right), throwing

the left forearm onto the right arm. A total number of 14

penetrated potential fields is counted during the measurements

including the arms, the torso, the mobile base, and the head.

The most critical ones are shown in Fig. 6. They refer to the

sets ”left hand - right hand” (left column plots) and ”left hand -

right wrist” (right column plots). The implementation for this

experiment allows a maximum number of 35 simultaneous

potential field penetrations. That number can be varied, but

in experiments it revealed to be sufficient such that each

penetrated potential field is taken into account, independent

of the configuration4.

As the user inserted about the same amount of kinetic

energy in all of the four scenarios5, the penetration of the

potential fields is significantly smaller while damping is active.

The returning velocities of the links are affected by the choice

of ζ as it can be seen in the upper plots in Fig. 6. Without

dissipation by damping forces, no energy is taken out of

the system. Due to the potential design, the repulsive forces

are continuously differentiable. Since the damping directly

depends on the local potential stiffness, the damping forces

are continous but not continuously differentiable as it can be

observed in the bottom plots in Fig. 6.

Since we assigned pure gravity compensation, the potential

4Of course, that is only valid if the potential fields are designed with a
proper and reasonable extent as done here, e. g. d0 = 0.15m. As the number
of possible pairs in the geometric collision model is 302, d0 → ∞ would
require 302 instead of 35 pairs to be taken into account.

5The energies which are absorbed by the most relevant potential field in
all four cases, i. e., ”left hand - right hand”, have a maximum deviation of
<12%.
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Fig. 6. Experiment #1 on self-collision avoidance: Repulsion between left
hand and right hand/wrist for an undamped (ζ = 0), underdamped (ζ = 0.7),
critically damped (ζ = 1.0), and overdamped (ζ = 1.3) system. These two
combinations are a selection of a total number of 14 active contact point pairs.

field Vrep,tot(q) does not compete with any other objectives.

Taking account of additional tasks and constraints raises the

question of a proper priority order or task hierarchy so as to

avoid undesired and undefined competitions.

The interested reader may refer to the supporting video for

more complex self-collision avoidance scenarios with a larger

number of actuated DOF.

III. REALIZING A TASK HIERARCHY WITH UNILATERAL

CONSTRAINTS

This section provides a redundancy resolution to integrate

the unilateral self-collision avoidance into an arbitrary task

hierarchy. It is fundamentally based on null space projection

techniques by Khatib [12], and Siciliano and Slotine [14] to

handle the numerousness of DOF. The major extension is

the consideration of online activation/deactivation processes

of unilateral constraints.

First, we recall some fundamentals about null space projec-

tions and state the problem of discontinuities when applying

classical methods to unilateral constraints. Afterwards, we

derive our solution based on [30].

A. Fundamentals and Problem Statement

A common way to induce a task hierarchy is to utilize null

space projection techniques [12], [14]. A high priority task

with dimension m is described by a virtual constraint f(q) =

0, to which a Jacobian matrix J = ∂f(q)
∂q

∈ R
m×n belongs.

Initially, J is supposed to be non-singular. In the redundant

case, i. e. m < n, a torque from lower priority tasks can be

projected into the null space of J via the projection matrix

N = I − JTJ+T (24)

where J+ denotes the Moore-Penrose pseudoinverse of J .

Note that this is only one specific choice for the definition of

the null space6. From a numerical perspective, the inversion

is mostly done by utilizing a singular value decomposition

(SVD):

J = USV T (25)

with U ∈ R
m×m being a unitary matrix, S ∈ R

m×n a

rectangular diagonal matrix containing the singular values σ1

to σm, and V ∈ R
n×n a unitary matrix. Following this, the

well-known representation of J+ based on SVD components

is

J+ = V S+UT . (26)

Inverting S in (26) is commonly realized by inverting the

diagonal elements and cancelling the singular values less

than a specified tolerance ε. At this point, the occurrence of

discontinuities becomes evident. If the rank of the Jacobian

matrix changes, threshold ε of one or more singular values

is crossed. That effect propagates back to (24) and causes a

discontinuous control law on torque level.

It shall be noted that cancelling the singular values less

than ε is an arbitrary choice to deal with the singularity while

inverting the diagonal elements of S. Another possibility to

handle that problem is to set a lower bound for the singular

values before inverting them. Moreover, an established method

from the field of inverse kinematics is to utilize damped least-

squares techniques [23], i. e.,

J† = JT (JJT + λI)−1 . (27)

Herein, † denotes the damped inversion operator. The damping

parameter λ ∈ R
+ is specified to smooth the transition. So

far, various different approaches concerning damped least-

squares methods have been proposed. First solutions suggested

a constant damping factor [24] but quickly revealed a crucial

problem: Accuracy of the inverse away from the singularity

and ensuring a smooth transition simultaneously is fairly

unfeasible. Later designs based upon variable damping factors,

e. g., dependent on the distance to the singularity [25] or

its time derivative [26]. However, several problems remain.

Beside the fact that J† is not a correct inverse of J ∀ λ 6= 0,

the choice of the damping parameter is not intuitive and the

direct consequence on physical values of the system is not

clear.

B. Continuous Null Space Projection Shaping

When transitions occur between active and inactive self-

collision potential fields, the respective Jacobian matrix

changes rank and leads to a discontinuous control law if that

issue is not handled appropriately. In the following, we will

systematically shape the transition behavior in order to limit

6Another frequently used inversion in robotics is called dynamically con-

sistent [12] which is obtained by taking M(q) into account.



the torque derivative during the transition phase. That closes

the gap between the mathematical mechanisms of the projector

calculation and the physical values of the real system. We

start with a 1 DOF system and extend the method step by

step, right up to the general case. Our approach does not

provide a dynamically consistent [12] but a static [34] null

space projection. However, as shown in [34], the static null

space projection can be augmented to a dynamically consistent

one by incorporating the inertia distribution.

An intuitive interpretation of the null space projector can

be performed by considering the SVD component notation of

(24):

N = I − V STUT (V S+UT )T (28)

= I − V STS+T

︸ ︷︷ ︸

A

V T . (29)

Herein

A = diag
(
a1, a2, . . . , am,01×(n−m)

)
(30)

with

ai =

{

0 if σi < ε

1 otherwise
∀ 1 ≤ i ≤ m . (31)

It becomes evident in (29) that only the right-singular

vectors comprised by V are relevant for the null space

projector7, whereas the left-singular vectors in U and the

absolute singular values in S do not have any influence on

the result. The latter can be shown when considering the so-

called activation matrix A ∈ R
n×n. That matrix is supposed

to contain either 1 (active) or 0 (inactive) diagonal elements.

The i-th diagonal element refers to the i-th column vector in

V and either activates that direction or locks it.

Since the absolute singular values of the Jacobian matrix are

not of interest, we just require the directions of the constraint.

In the following, the notation Jm×n ∈ R
m×n for the Jacobian

matrix will be used.

C. Considering a 1 DOF System

A n = 1 DOF system is illustrated in Fig. 7. The depicted

mass may move horizontally on the chain dotted line, the

location is described by z. At z = zuni, a repulsive potential

field is penetrated whose purpose it is to avoid a collision with

the wall. The potential shall be the high priority task, whereas

arbitrary tasks define the mass behavior in the null space of

the collision avoidance task.

We provide the Jacobian matrix of the primary task

J = σJ1×1 (32)

where the direction J1×1 = [1] is invariant and the singular

value σ is extracted from J beforehand. A SVD of (32) leads

to (25) with U = [1], S = [σ], V = [1]. Applying (29)

delivers

N = 1− SS+ = 1−A (33)

with all matrices degenerated to scalars.

7Actually, only the first m column vectors in V are relevant here. Thus, a
reduced SVD suffices to compute V .

mass

repulsive potential

z

wall

zuni

Fig. 7. 1 DOF system with unilateral constraint (repulsive potential) to avoid
a collision of the mass with the wall.

D. Desired Transition Behavior for the 1 DOF system

The discontinuity stated in (31) raises the question: Which

behavior for the null space projector do we actually desire?

Evidently, a continuous transition between 0 and 1 is required

at least. Moreover, a desired behavior is to specifically influ-

ence the values which are affected in the end: the projected

torques or their derivatives, respectively. In this context we

shape the projector (33) such that N = Ndes(z). The variable

z determines the state of the activation of the unilateral

constraint. An example for z is the distance between an object

and a potential collision partner to describe the closeness to a

collision, see Fig. 7.

Following (33), the required and desired activator is defined

by

a1,des = 1−Ndes(z) . (34)

A desired behavior could be to limit ∂Ndes(z)/∂t. Projecting

a secondary task τsec into the null space of the primary task

(hierarchy level 1), we obtain the control input

τsec,proj = Ndes(z)τsec , (35)

τ̇sec,proj =
∂Ndes(z)

∂z

∂z

∂t
τsec +Ndes(z)τ̇sec . (36)

Obviously, Ndes(z) must be at least of type C1 in order to

ensure continuity of (36). For the further analysis, we make

the following assumptions:

1) We neglect τ̇sec. This is valid as we assume the transition

to be faster than the changing of torque τsec from a

regular task.

2) A maximum or worst case τsec can be specified. If this

is not possible, an online calculation or measurement is

provided.

3) We are able to estimate a maximum or worst case value

for ∂z/∂t. If this is not possible, we are able to calculate

or measure ∂z/∂t online.

We suggest a piecewise defined function for Ndes(z) contain-

ing a third order polynomial, i. e.,

Ndes(z) =







0 if z < z1

g(z) if z1 ≤ z ≤ z2

1 otherwise

(37)

g(z) = k1z
3 + k2z

2 + k3z + k4 (38)

with [z1, z2] defining the interval from full locking

to unconstrained null space projection. Limiting

N ′
max = max (∂Ndes(z)/∂z) allows to ”stretch” the



TABLE II
CONSTRAINTS FOR THE TRANSITION FUNCTION

z1 z2 (z1 + z2)/2

g(z) 0 1

g′(z) 0 0 N ′
max
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Fig. 8. Examples of transition shaping in case of a 1 DOF system as depicted
in Fig. 7. The plots illustrate the compromise between smoothness of the
transition and the interval size.

torque change/discontinuity over a well-defined range. More

precisely, a maximum torque derivative τ̇sec,proj,max can be

specified8:

N ′
max = τ̇sec,proj,max

∣
∣
∣
∣

∂z

∂t
τsec

∣
∣
∣
∣

−1

. (39)

One choice for τ̇sec,proj,max is a parameterization according

to the performance of the torque control loop. We set the

conditions in Table II for (38). That over-determined system

of equations can be solved by adding the range {z2 − z1} to

the set of unknown parameters {k1, k2, k3, k4} in (38).

Notice that limiting N ′
max for (38) is a conservative ap-

proach to limit τ̇sec,proj as the maximum slope of N is only

reached once within the transition interval. It will be shown in

the following simulation that using a third order polynomial is

only marginally more conservative than the fastest continuous

transition, i. e., an affine function, but it has the advantage of

a significantly smoother behavior.

Fig. 8 shows results for N ′
max = 2, 5, 20. The upper plots

depict the activator. At z = z1 = 0.2, the unilateral constraint

is fully activated and the DOF is locked for all lower priority

tasks than the highest one. The parameterization of N ′
max can

be identified in the bottom plots when regarding the maximum

slope of N .

As described above, other transition functions than (38) may

be used. Applying an affine relation would bring the benefit

of a constant ∂N(z)/∂z within the transition phase instead of

8If ∂z/∂t and τsec are taken from measurements or estimations online, a
loop is closed. In order to ensure passivity a separate proof has to be made.

the quadratic ones shown in Fig. 8 (bottom). It can be shown

that the interval size would reduce to 2/3. However, a lack of

smoothness would result at the beginning of the interval and

at z = 0.2. Notice also that z1 does not have to be set equal

to zuni from Fig. 7.

In our implementations, we define z1 as the point of full

activation of the primary task. That is a design choice of

the hierarchy concept. By defining N ′
max, the location of z2

becomes determined uniquely.

E. Considering a (1× n) Constraint

The 1 DOF case is trivial as the null space projector equals a

complete fade-out of the secondary task torque at the activation

point of the constraint. Now, we will extend the method to the

nontrivial (1×n) case such that J = σJ1×n ∈ R
1×n. Hence,

J1×n is already normalized. Starting from (29), we apply the

desired diagonal activation matrix Ades and obtain

N = I − V AdesV
T (40)

= I − JT
1×na1,desJ1×n . (41)

Only the first element a1,des of Ades is important. As J is

a row vector here, v1 = JT
1×n. That turns the method into a

very computationally efficient technique.

In various redundancy resolutions variable weights or ac-

tivators are used in terms of null space computations [35],

[16], [19], [17]. The purposes and conditions of the activation

strongly differ from each other. In [35], for example, a

weighted least-norm solution to avoid joint limits is proposed.

It bases on a configuration dependent weighting matrix in

order to scale between the different joint contributions. In that

approach, the joint limit avoidance is applied on the lowest

level where discontuinities never occur. A time-based param-

eterization for blending and fading out of tasks is proposed

in [16]. As we have clarified in the preceding paragraphs, we

are in contrast to existing techniques since we provide direct

control over the critical directions via Ades and are able to

design the transition behavior according to physical limitations

of the actuators.

F. Desired Transition Behavior in the (1 × n) and (m × n)
Case

One approach to handle the complexity in the (m×n) case

is to decompose the lower level torques τ sec by projecting

them into the critical directions of V . The contributions in

these critical directions can be used as a basis for the methods

from Sec. III-D, see assumption 2). Notice that an online

decomposition and a feedback into the generation process

of Ades closes an additional loop. However, as stated in

assumption 1) in Sec. III-D, the transition is supposed to be

significantly faster than the changing of torques from the lower

levels. Thus, the effect is expected to be rather limited. An

offline consideration is more conservative but does not close

a further loop. At this point it shall be noted that the design

in the (1× n) case is straightforward when applying such an

online decomposition as the critical direction is J1×n.
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Fig. 9. Schematic representation of the planar 3 DOF system used for the
simulations.
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Fig. 10. Activation of a unilateral constraint with N ′
max = 30 in case of

a 3 DOF system simulation. The system is designed with low damping to
provoke several penetrations of the transition area. The state of activation of
the primary task is given by z = mkin(q), and the threshold is z2 = m0.

G. Validation of the Redundancy Resolution in Simulation

We performed simulations on a planar system as depicted

in Fig. 9 (left). It consists of three links and three revolute

joints. Viscous joint friction is modeled and the masses are

decoupled. As task with low priority, a Cartesian impedance

is chosen whose goal it is to lead the tool center point (TCP)

to the goal configuration. The respective Jacobian matrix is

J sec(q). The primary task is defined by a singularity avoidance

which is designed via a repulsive potential field Vsing(q)
based on the kinematic manipulability measure mkin(q) of

the secondary task [36]:

Vsing(q) =

{

ks (mkin(q)−m0)
2

if mkin(q) ≤ m0

0 if mkin(q) > m0

,

mkin(q) =
√

det(J sec(q)J sec(q)T ) .

The positive scalar factor ks controls the gain of the sin-

gularity avoidance. That avoidance with torque command

τ prim = −(∂Vsing(q)/∂q)
T is a unilateral constraint which

gets activated if the manipulability measure falls below a

specified value m0. The primary task Jacobian matrix or

the direction, respectively, directly derives from τ prim. That

simulation example has been chosen to demonstrate the wide

applicability of our continuous null space projection concept.

Nevertheless, the primary task is basically comparable to a

repulsive potential for self-collision avoidance. The Cartesian

reference trajectory of the TCP (Fig. 9 left) is designed such

that the singularity indicated in Fig. 9 (right) is approached.

A conflict between the tasks is provoked. Recall that the

singular configuration could never be reached by the Cartesian

impedance in a steady state. The primary task would outplay

the Cartesian impedance finally. Fig. 10 depicts the results

for the first 6 s of the simulation. In this time interval, a full

transition occurs that will be analyzed in the following.

Starting from the initial configuration (Fig. 9 left), the end

effector moves towards the singular configuration (right). The

primary task gets activated at t = 1.8 s for the first time.

The transition with N ′
max = 30 can be observed in the

upper plot of Fig. 10. The second plot shows Ndes(t). In

this experiment, we designed the primary task (third diagram)

to start from z2 = m0 on. The bottom diagrams show

the Cartesian impedance torques τ sec and their projections

τ sec,proj into the null space of the primary task. We want

to draw attention to the projected torques when the primary

task becomes activated. As the singularity avoidance mainly

requires intervention at the third joint (1.8 s < t < 3.6 s), the

respective projected impedance torque alters the most (red,

dashed in bottom diagram).

When the unilateral constraint is fully activated, no torque

from the Cartesian impedance may remain in primary task

direction. According to this, we multiply the projected torques

τ sec,proj by J+T
prim. The results are shown in Fig. 11. Within

the time interval of full activation (shaded rectangle) no torque

comes through. Hence, the condition of an undisturbed priority

order is met. The control input τ cmd = τ prim + τ sec,proj is

depicted in Fig. 12 (top). For comparison, a discontinuous

null space projection based on a classical matrix inversion
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of the 3 DOF system simulation. The torque discontinuities in the bottom
diagram exemplify the problems of common null space projections.

is depicted in the bottom diagram. Significant discontinuities

can be observed at t = 1.8 s, t = 3.6 s and t = 5.4 s.

Applying such commands to a real robotic system would result

in unstable behavior as we demonstrated in the experiments

in [30].

In this simulation, a steady state in the continuous case is

reached after 6 s asymptotically. In that final configuration, z
is a little lower than z2 as indicated in Fig. 10 (upper plot). No

further full transition occurs after 6 s since the intervention at

1.8 s < t < 3.6 s induced a null space or internal motion that

reconfigured the manipulator to comply with the singularity

avoidance.

IV. IMPLEMENTATION OF THE SELF-COLLISION

AVOIDANCE WITHIN A TASK HIERARCHY

The aim of this section is to merge the presented self-

collision avoidance algorithm with the proposed redundancy

resolution. We will provide a method for the task hierarchy

design, namely the successive projection method which is a

common resolution in whole-body controllers [37]. A detailed

comparison to other techniques as well as a stability analysis

for the case of velocity controlled systems is done in [38].

The null space of one specific self-collision avoidance

direction from (23) described by contact point pair (i, j) can

be summarized to

N i,j = I − V i,jAi,j,desV
T
i,j (42)

with the activator

Ai,j,des =





a1,des(di,j) 0 0

0 a1,des(di,j) 0

0 0 0



 (43)

of size (n× n) and
(
J i(q)
J j(q)

)

V i,j =

(
× × 0

× × 0

)

. (44)

Eq. (44) states that the two Jacobian row vectors are linear

combinations of the first two column vectors in V i,j . Utilizing

(42) offers a multitude of different specifications of the task

hierarchy. We formulate the following control law as the

general case.

τ cmd = τ g + τ a +Na

(

τ coll +

(
np∏

i=1

N i,h(i)

)

τ b

)

. (45)

In that law, τ cmd represents the torque to be commanded to

the joints, and τ g is the gravity compensation. The subscript

a describes a hierarchy level which is placed above the self-

collision avoidance. On the contrary, subscript b represents a

lower priority level. These two (unspecified) levels may consist

of their own hierarchical structures. Moreover, the projection

into the null space of the structure a, described by Na, may

be defined alternatively as for example by the techniques in

[14].

V. DISCUSSION - COMPARISON WITH OTHER APPROACHES

AND LIMITATIONS OF THE METHOD

This section addresses the advantages and drawbacks of

our method compared to state-of-the-art approaches. That

comprises the two subparts, i. e. the self-collision avoidance

and the continuous null space projection.

A. Self-Collision Avoidance

Up to now, implementations of self-collision avoidance on

complex humanoid robots are quite sparse. Probably the most

relevant approaches are the realizations on HRP-2 [7] and on

ASIMO [11]. Both methods as well as our approach ground on

the same basic concept of repulsive potentials [6]. However,

some fundamental differences exist: Both [7] and [11] operate

in the kinematic domain, velocity commands are generated by

the controllers. Our algorithm utilizes a force/torque interface.

Moreover, damping is not considered there.

A few limitations and restrictions of our concept are men-

tioned in the following. First, the geometric resolution of the

contact point pairs decisively depends on the design of the col-

lision model (Fig. 4). Therefore, the more critical and relevant

body parts have been modeled via smaller bounding volumes.

That can be seen, for example, when comparing the tightly

modeled arms with the roughly modeled mobile base. In a

large number of experiments and public demonstrations, the

geometric model of Fig. 4 turned out to be a very practicable

solution. However, it shall be noted that the design of that



model is not trivial, and, up to now, it is manually performed.

Another problem (theoretically) exists concerning the collision

model: As the distance calculation is computationally very ex-

pensive, the bounding volumes are kept as simple as possible.

In order to avoid discontinuities, they are convex. However,

parallel bounding volumes could occur during operation and

the respective contact point pair may move (infinitely) fast on

the surfaces. Using strictly convex bounding volumes would

solve that issue [39]. From a practical point of view, we can

say that we have not encountered any problems with the actual

model so far. A last issue concerns the torque command of

the overall repulsive potential field. As (23) is a superposition

of multiple repulsions, the desired behavior, esp. the stiffness

specification, is not precisely realized in any case. However,

that leads to a more natural and reasonable behavior of the

robot. In other words, if several collisions are close, the robot

”feels” stiffer which is necessary to avoid the self-collisions.

That aspect highlights the need of a proper damping design to

increase the robustness once more.

B. Continuous Null Space Projection

As indicated in Sec. IV, we use the successive projection in

our approach. That method is well-established in many multi-

objective controllers as the one by Sentis and Khatib [37]

or by Lee et al. [17], and it revealed to be very efficient.

However, it is a known fact that a successive projection into

the null spaces of all higher priority tasks does not lead

to a strict compliance with the priority order because the

projectors are not compulsorily orthogonal. Thus, the overall

successive projection matrix N suc usually has the property

N suc 6= N sucN suc which is a well-known fact. An alternative

is the so-called augmented projection [14] which is associated

with more expensive numerical computations but it enforces

an orthogonality of all involved tasks so that the projection

matrix Naug always fulfills Naug = NaugNaug. Especially

when a large number of priority levels is defined, the numer-

ical cost increases severely. The sophisticated framework by

Mansard et al. [19] is an example of a hierarchy that strictly

complies with the priority order while avoiding discontinuities.

A detailed discussion and comparison of the successive and

the augmented projection is given in [38].

Compared to scaling and blending techniques as [15],

wherein secondary tasks may be completely disabled when

higher priority constraints become active, we provide an

invariance of the remaining directions. In other words, only

the contributions in the critical directions are influenced. That

also becomes evident through the well-known property

vT
i N =

{

(1− ai,des)v
T
i if 1 ≤ i ≤ m

vT
i if m < i ≤ n

(46)

which is based on (28). This invariance property of the

remaining n − m directions is shown in (46) (bottom line)

if a projected task is decomposed into the contributions in

the different directions. Moreover, all successive projection-

based approaches as [17], [37] or the method proposed here

have the advantage that algorithmic singularities do not appear

due to conflicting tasks on different priority levels [38].

TABLE III
PARAMETERIZATION FOR THE EXPERIMENTS ON SELF-COLLISION

AVOIDANCE WITHIN THE TASK HIERARCHY

Experiment #2 #3

Fmax [N] 30 30

ζ 0.5 0.5

d0 [m] 0.10 0.10

z1 [m] 0.05 0.02

z2 [m] 0.13 0.18

N ′
max [1/m] 18.8 9.4

Kt [N/m] 500 500

Kr [Nm/rad] 100 100

All augmented projection-based concepts have to deal with

that problem additionally. We also want to mention that our

approach is real-time applicable. That is not only due to the

small numerical cost but also to the easy worst case estimation

of the computing time. In contrast to iterative methods as [28]

which have been developed for 3D characters mainly, our ap-

proach fulfills the condition of real-time applicability. A salient

advantage of our concept is the intuitive parameterization of

the transition. As stated in Sec. III, we provide the capability

of specifying the transient behavior in terms of limitations of

the real, physical system. Adapting to the force/torque loops

allows to exploit the full performance of the hardware. We

provide direct control over the critical directions such that the

design is not performed on an abstract level but it is intuitive

and easily interpretable. That kind of intuitive parameterization

is partly missing in other works [19], [17], [21]. Another major

benefit of our approach is its computational efficiency. That

characteristic is directly linked to the drawbacks caused by

the successive projection method as stated above. Since we

use the simple form of (42), any computational methods, e. g.

the SVD, can be reduced to a minimum9 at the cost of the

strictness of the hierarchy.

The kinematic approach by Lee et al. [17] uses a blending

on the control input level (task velocities) instead of modifying

the inversion. Although the strategy is fundamentally different,

the approach could be adapted to the dynamical case and

applied to a hierarchy as used in this work.

VI. EXPERIMENTS ON THE HUMANOID JUSTIN

To validate our approach, we implemented the algorithms

on the humanoid Justin. The robot has 51 actuated degrees of

freedom and torque sensors in most of the upper body joints10.

That allows to access a joint torque interface. In the following

experiments, only the right arm (7 DOF) is active, all other

joints are locked, and the priority order is set as follows:

• High priority: Self-collision avoidance τ coll for the whole

upper body of the manipulator and gravity compensation.

• Low priority: 6 DOF Cartesian impedance applied to the

right TCP.

9As stated in [27], a trimmed-down or reduced SVD is sufficient to compute
the projector.

10Only the two neck joints are not equipped with torque sensors.



1) Experiment #2: The parameterization is given in Table

III. The parameters Kt (translational) and Kr (rotational)

define the Cartesian stiffnesses which are applied in the

three translational and rotational directions. The Cartesian

impedance is projected into the null space of the self-collision

avoidance between the left and the right hand. That contact

point pair is the most critical one here. Thus, z is chosen to

be the distance di,j between these links. The brakes of the

left arm are engaged. The initial configuration of the robot is

shown in Fig. 15 (a). The snapshots depict the motion of the

robot up to the goal location of the right TCP, see Fig. 15 (e).

Obviously, the right hand is repelled from the left one during

the motion. After reaching the goal location, the right TCP is

assigned to move to the initial location again.

The collision avoidance commands during the motion can

be observed in Fig. 13 (top left). Below, the distance between

left and right hand is plotted. Since the avoidance ”disturbs”

and filters the Cartesian impedance, a deviation between

commanded and real TCP location results. The respective

translational error is also depicted in this diagram. A higher

Cartesian stiffness would reduce the translational error but at

the point of complete activation of the high priority collision

avoidance task, a further increase of the stiffness would not

have an effect anymore. The direct relation between transla-

tional Cartesian error and the penetration of the potential field

(di,j hand-hand plot) can be identified here easily. The steady

state error of the Cartesian impedance is due to the fact that

the controller is basically a PD-controller. Furthermore, the

impedance is not designed with a feed-forward term. In the

right/top diagram of Fig. 13, the transition can be observed.

The measured right arm joint torques τmeas (right/bottom)

indicate no discontinuities during the transition phase. The

original Cartesian impedance torques of the right arm are

provided in Fig. 14 (top). Tendentially, the shoulder and upper

arm joint torques are higher than the lower arm and wrist

joint torques. This is due to the longer lever arm w.r.t. the

right TCP. The second diagram in Fig. 14 shows the secondary

task torques filtered by the null space projector11. Below, their

derivatives are depicted and feature the desired boundedness.

Beside the expected noise due to the numerical differentiation,

peak values lower than 60 Nm/s can be identified, mainly

generated in the first arm joints. The curves from elbow

to wrist are omitted here and represented by the shaded

rectangle instead. The ratio rsec = ‖τ sec,proj‖ / ‖τ sec‖ at

the bottom indicates the actual capability to accomplish the

secondary task. While the Cartesian impedance is disturbed

in the direction ”right hand - left hand”, the torques resulting

in other directions pass the null space projection unaffectedly.

Notice that the peak at t = 2.3 s is only a side effect of the

manner of representation as the torque norms are close to zero

and the ratio is very sensitive to variations there.

2) Experiment #3: In this experiment, the focus is laid on a

more complex priority order utilizing (45). This time, the right

TCP is commanded into the left hand as illustrated in Fig. 16.

After t = 3 s, a continuous trajectory which starts from that

11Notice that the ordinates of the τ sec plot and the τ sec,proj plot have the
same scaling for better comparison.

intermediate TCP location leads back to the initial pose.

Evidently, the intermediate position cannot be reached due

to a self-collision and the Cartesian impedance has to be

deactivated appropriately to ensure safety. The impedance is

projected into the null space of the most critical self-collision

avoidance potentials successively. The priority levels are de-

fined by the contact point pairs of the combinations ”right hand

- left hand” (cpp 1), followed by ”right wrist - left hand” (cpp

2) and ”right hand - left wrist” (cpp 3). The top plots in Fig. 17

show the activator elements of the three projectors. Although

no collision avoidance task is completely activated, all of the

repulsive potentials partially disturb the secondary task. Notice

that they all ”work” in different directions, and therefore, they

interfere the impedance multidimensionally. The distances di,j
from the collision model are depicted in the second chart. Due

to the parameterization of the self-collision avoidance with

d0 = 0.1m, repulsive forces are only generated by the field

”right hand - left hand”. In this experiment, the repulsion

is designed to start in the middle of the transition interval.

Thus, the transition begins without a simultaneous collision

avoidance intervention. That ”overlap” is also illustrated in

Fig. 16. The third diagram in Fig. 17 shows the Euclidean

norms of the Cartesian impedance, its projection via the three

null space projectors, and the measured joint torques of the

right arm. Obviously, most of the secondary task commands

are filtered after t = 1 s. It is noticeable that the measured

torques have a significant offset compared to ‖τ sec,proj‖.

This is due to the gravity compensation. But the resemblance

between ‖τ sec,proj‖ and ‖τmeas‖ is distinct. The bottom

plots give insight into the motion of the active, right TCP.

According to the infeasibility of the (secondary) impedance

task, a significant steady state error remains in the intermediate

configuration between t = 1.5 s and t = 3 s that verifies the

compliance with the priority order. That deviation from the

reference location is also the reason for the slightly increasing

‖τ sec,proj‖ after t = 1.3 s since the Cartesian impedance is

not completely deactivated.

A supplementary video is attached to this paper which

shows: a) several exemplary scenes recorded at a public

presentation of the self-collision avoidance, b) a comparison of

different damping behaviors, c) reactive self-collision avoid-

ance in a task hierarchy during human-robot interaction, and

d) reactive self-collision avoidance in a task hierarchy during

autonomous operations.

VII. SUMMARY

In this paper, a framework for the integration of torque-

based self-collision avoidance into a task hierarchy was given.

We derived a new algorithm for reactive self-collision avoid-

ance that featured several characteristics beyond the state

of the art: A configuration dependent damping enabled the

manipulator to systematically dissipate kinetic energy which is

crucial if multiple potential collisions are considered. Despite

the large number of degrees of freedom, the collision model

took all possible collisions into account simultaneously while

remaining real-time applicable. As safety features like our

self-collision avoidance are described by unilateral constraints,
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Fig. 15. Snapshots during experiment #2: Primary task is the self-collision avoidance between the hands. Secondary task is a 6 DOF Cartesian impedance
of the right TCP. The trajectory (yellow line) with a total length of 0.8 m and a maximum translational velocity of 0.6 m/s is realized within 2 s.

common redundancy resolution techniques could not be ap-

plied to integrate them into a task hierarchy. We extended

the well-established, classical null space projection methods

to deal with the problems induced by this peculiarity. In

a last step, we merged the self-collision avoidance and the

redundancy resolution. An implementation of the combined

approaches on the multi-DOF humanoid robot Justin of the

German Aerospace Center (DLR) was done. Several exper-

iments have been conducted to validate the performance of

our synthetic approach. It was shown that our method ensured

avoidance of collisions with the own structure while providing

a continuous control law and complying with the priority order.

Our redundancy resolution for unilateral constraints is a

generic solution and can be applied to arbitrary manipulators

and scenarios. While this paper specifically focused on the

integration of self-collision avoidance into a task hierarchy,

there are no limitations to utilize the redundancy resolution

for other unilateral constraints like collision avoidance with

external obstacles or further potential field-based tasks. The

proposed approach will serve as a fundamental part of a whole-

body control concept initiated in [40], [41].
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[34] A. Albu-Schäffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian
Impedance Control of Redundant Robots: Recent Results with the
DLR-Light-Weight-Arms,” in Proc. of the 2003 IEEE International

Conference on Robotics and Automation, Sept. 2003, pp. 3704–3709.
[35] T. F. Chan and R. V. Dubey, “A Weighted Least-Norm Solution Based

Scheme for Avoiding Joint Limits for Redundant Joint Manipulators,”
IEEE Transactions on Robotics and Automation, vol. 11, no. 2, pp. 286–
292, April 1995.

[36] C. Ott, Cartesian Impedance Control of Redundant and Flexible-Joint

Robots, ser. Springer Tracts in Advanced Robotics. Springer Publishing
Company, Berlin Heidelberg, 2008, vol. 49.

[37] L. Sentis and O. Khatib, “Synthesis of Whole-Body Behaviors through
Hierarchical Control of Behavioral Primitives,” International Journal of

Humanoid Robotics, vol. 2, no. 4, pp. 505–518, January 2005.
[38] G. Antonelli, “Stability Analysis for Prioritized Closed-Loop Inverse

Kinematic Algorithms for Redundant Robotic Systems,” IEEE Transac-

tions on Robotics, vol. 25, no. 5, pp. 985–994, October 2009.
[39] A. Escande, S. Miossec, and A. Kheddar, “Continuous gradient proxim-

ity distance for humanoids free-collision optimized-postures,” in Proc.

of the 7th IEEE/RAS International Conference on Humanoid Robots,
Nov.-Dec. 2007, pp. 188–195.
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