BIVIC Bioinformatics momid) Centr

Methodology article

Integration of relational and hierarchical network information for
protein function prediction

Xiaoyu Jiang!, Naoki Nariai2, Martin Steffen34, Simon Kasif24 and

Eric D Kolaczyk*!

Address: 'Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA, 2Bioinformatics Program, Boston University,
Boston MA, 02215, USA, 3Department of Genetics and Genomics, Boston University, Boston MA, 02118, USA and 4Department of Biomedical
Engineering, Boston University, Boston MA, 02215, USA

Email: Xiaoyu Jiang - xiaoyu@math.bu.edu; Naoki Nariai - nariai@bu.edu; Martin Steffen - steffen@bu.edu; Simon Kasif - kasif@engc.bu.edu;
Eric D Kolaczyk* - kolaczyk@math.bu.edu

* Corresponding author

Published: 22 August 2008 Received: 14 March 2008
BMC Bioinformatics 2008, 9:350  doi:10.1186/1471-2105-9-350 Accepted: 22 August 2008
This article is available from: http://www.biomedcentral.com/1471-2105/9/350

© 2008 Jiang et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: In the current climate of high-throughput computational biology, the inference of a
protein's function from related measurements, such as protein-protein interaction relations, has become
a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term
basis, for each term in a database, such as the Gene Ontology (GO) database, a popular rigorous
vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain
top to bottom annotation rules which protein function predictions should in principle follow. Currently,
the most common approach to imposing these hierarchical constraints on network-based classifiers is
through the use of transitive closure to predictions.

Results: We propose a probabilistic framework to integrate information in relational data, in the form of
a protein-protein interaction network, and a hierarchically structured database of terms, in the form of
the GO database, for the purpose of protein function prediction. At the heart of our framework is a
factorization of local neighborhood information in the protein-protein interaction network across
successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with
computationally efficient implementation, that produces GO-term predictions that naturally obey a
hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing.

Conclusion: A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our
method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor)
and more refined Markov random field methods, whether in their original form or when post-processed
to artificially impose 'true-path' consistency. Further analysis of the results indicates that these
improvements are associated with increased predictive capabilities (i.e., increased positive predictive
value), and that this increase is consistent uniformly with GO-term depth. Additional in silico validation on
a collection of new annotations recently added to GO confirms the advantages suggested by the cross-
validation study. Taken as a whole, our results show that a hierarchical approach to network-based protein
function prediction, that exploits the ontological structure of protein annotation databases in a principled
manner, can offer substantial advantages over the successive application of 'flat' network-based methods.
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Background

Proteins are fundamental to the complex molecular and
biochemical processes taking place within organisms. An
understanding of their role is therefore critical in biology
and bio-related areas, for purposes ranging from general
knowledge to the development of targeted medicine and
diagnostics. High-throughput sequencing technology has
identified a tremendous number of genes with no known
functional annotation. On average, as many as 70% of the
genes in a genome have poorly known or unknown func-
tions [1]. Not surprisingly, therefore, the prediction of
protein function has become an important and urgent
problem in functional genomics.

Protein function prediction can take many forms. The tra-
ditional and most popular methodologies use homology
modeling and sequence similarity to infer biochemical
function [2,3]. In simple cases, such as certain families of
ribosomal proteins, globins, kinases or caspases, these
procedures work reasonably well. Sequence similarity has
been used with great success for inference of molecular
function. For biological process and pathway annotation,
guilt by association using functional linkage methods has
been a popular choice in recent years.

For example, microarrays are often used to cluster pro-
teins into groups of genes that respond concordantly to a
given environmental stimuli. When these groups are
strongly enriched in proteins in a given biological process
such as insulin signaling and also contain proteins with-
out annotation we often take the leap of faith and predict
the unknown proteins to be associated with this process
as well. Similarly, when two proteins are found to interact
in a high throughput assay we also tend to use this as evi-
dence of functional linkage.

However, enrichment and guilt by association are often
highly misleading and can lead to a very high false posi-
tive rate if not used with caution. The work in [4] and sev-
eral other papers, e.g., [5-7], attempted to frame these
inference problems in a precise network-based probabilis-
tic framework. Here we attempt to make a fundamental
advance in this area, by augmenting the network-based
perspective to additionally make explicit use of the struc-
ture of the GO hierarchy to compute more precise proba-
bilities, thereby improving on the quality of predictions
made by the inference algorithms.

More broadly, the work in this paper is important in dem-
onstrating that an important role can be played in this
context by the knowledge captured in biological ontolo-
gies, when properly harnessed. That this should be the
case is not obvious a priori. For example, while many sci-
entists use GO in their daily research, it can be (and has
been) claimed that overlap among categories, as well as
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the inherent ambiguity and semantic complexity of nam-
ing biological functions and processes, can frequently
lead to misleading interpretations and wild goose chases.
Classic statistical approaches are based on flat disjoint cat-
egories, and quantitative measures of annotation similar-
ity such as through semantic similarity remain somewhat
ad hoc.

Nevertheless, despite such concerns, our work here shows
that in the present context of automated protein function
prediction, the leverage of hierarchies grounded in biolog-
ical ontologies can yield real, quantifiable advantages over
'flat' network-based approaches.

Objective

Computational protein function prediction is typically
treated as a classification problem. From this perspective,
given a protein i and the label G of a potential function for
that protein, the goal is to predict whether or not i has
label G, using a classifier built from a set of training cases
and additional related data. Such related data can be of
many types (e.g., protein interaction data, gene expression
data, protein localization data) but often can be summa-
rized in the form of a functional linkage graph (e.g., pro-
tein-protein interaction network, gene association
network). The labels G typically derive from a database of
terms.

Protein-protein interaction (PPI) data are common, and
have been used widely in the protein function prediction
problem. A functional linkage graph is used to represent
the information in the PPI, where nodes represent pro-
teins and edges indicate pairwise interactions, as in Fig.
1(a). Numerous studies have demonstrated that proteins
sharing similar functional annotations tend to interact

Figure |

Visualization small PPl network and GO DAG. This
plot contains two toy examples of Protein-Protein Interac-
tion network and the Gene Ontology structure. (a) Sche-
matic network of local protein interactions; (b) schematic
GO hierarchy, where the thicker link indicates larger weight.
Among the neighbors of the central protein in (a), 4 out of 5
are labeled with term A; 2 out of 5 are labeled with term D.
One neighbor is not labeled with any term. We want to pre-
dict whether or not the central protein has term D.
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more frequently than proteins which do not share them,
both as members in relatively fixed complexes, e.g. the
ribosome, or as transient interactors, such as kinases and
substrates in signal transduction networks. Hence, it is
natural to want to take advantage of the neighborhood
information to predict protein functions. For example, to
predict for the protein with a question mark in the center
in Fig. 1(a), we can try to utilize any known functional
annotations of its neighbors, i.e., the proteins directly
interacting with it.

Databases of labels G are commonly structured in a hier-
archical form (more formally, as a directed acyclic graph
(DAG)). The Gene Ontology (GO) database is one such
example http://www.geneontology.org/. Viewed as a
DAG, nodes represent labels and a link represents the is_a
and part_of relations between labels. Function assign-
ments to proteins must obey the true-path rule: if a child
term (i.e., more specific term) describes the gene product,
then all its parent terms (i.e., less specific terms) must also
apply to that gene product. Fig. 1(b) shows a small sche-
matic illustration. For any protein labeled with term A, it
may or may not have term D, the child of A; on the other
hand, if it does not have term 4, it surely does not have D.

This annotation rule suggests that when predicting the
label of a term in the hierarchy, it is helpful to first con-
sider whether the protein has the parent term or not. Thus,
informative are not only the neighbors labeled with the
term of interest but also those labeled with the parent. For
instance, to predict the label of term D for the central pro-
tein in Fig. 1(a), we want to use both the neighbors
labeled with A and the neighbors labeled with D. The
exploitation of GO hierarchy is not novel, and indeed is
natural. It has been used in functional annotation of
genes, as mentioned in the Related Work section, as well
as for other purposes, such as identifying over- and under-
representation of GO terms in a gene dataset, and cluster-
ing functionally related genes [8-10].

As currently practiced in most instances, prediction of
protein function is done with classifiers trained separately
for each possible label G, asin [4,7,11,12]. (Please also see
the section of Related Work.) But, as just discussed, the
overall collection of labels to be assigned generally has a
hierarchical structure to it i.e., the labels are related to each
other in a specific manner. This structure typically is
enforced only after producing an initial set of predictions,
as post-processing steps, either using transitive closure,
[4], or using more sophisticated methods, [13,14].

To further illustrate this, we show a toy GO hierarchy in
Fig. 2, which contains a root and four descendant terms A,
B, C and D, where term A and B are the parents for C and
D, respectively. For a given protein, the label format for
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Root
A B
+1 (0.4) +1(0.7)
C D
-1 (0.6) -1 (0.5)
Figure 2

lllustration of obedience and disobedience to the
true-path rule. The plot demonstrates a small example of
GO hierarchy with four terms A, B, C and D. The true anno-
tations and the predicted probabilities of the terms for some
protein are also given, in a format of "true annotation (prob-
ability)". We use this to illustrate predictions that are con-
sistent and are not consistent with the the true-path rule.

the terms is "true label (predicted probability)". For exam-
ple, the protein is annotated with term A but not with
term D. The probabilities of having term A and D are 0.4
and 0.5, respectively.

Most existing methods, as discussed earlier, predict pro-
tein function in a term-by-term fashion, without consider-
ing the relationship among terms. Suppose the
probabilities in the plot are obtained from one of such
methods. If we apply a cut-off of 0.5, which is a com-
monly used threshold in this field, we will predict that the
protein is NOT annotated with term A, since the probabil-
ity of having A is 0.4, less than 0.5; and is annotated with
A's child C. This violates the true-path rule, since if the pro-
tein is predicted not having term A, then it is not having
any of A's descendent terms. On the other hand, the pro-
tein is predicted to be labeled with both terms B and D,
with probabilities of 0.7 and 0.5, respectively, which
obeys the true-path rule, with the prediction on D as a false
positive. Such a violation to the true-path rule is not
uncommon.
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The basic premise of this paper is that reference to this
hierarchical relationship among labels is best incorpo-
rated in the initial stage of constructing a classifier, as a
valuable source of information in and of itself. Our objec-
tive here is to demonstrate the power of this premise and
to show that it may be tapped in the form of a single,
coherent probabilistic classifier. In particular, we develop
a probability model that integrates relational data and a
hierarchy of labels, and illustrate its advantages in predict-
ing protein function using a PPI network and the Gene
Ontology (GO) hierarchy.

Related Work

Many methodologies have been proposed to predict pro-
tein functions. Most of the earlier methods tend to use a
single source of protein information, such as PPI. Typical
examples include the "Nearest-Neighbor" algorithm, also
known as "guilt-by-association" principle, and the Bino-
mial-Neighborhood (BN) method [4].

These earlier methods were followed later by a surge of
interest in combining heterogeneous sources of protein
information. For example, a machine learning approach
integrating datasets of PPI, gene expression, hydropathy
profile and amino acid sequences, in the form of different
kernels, has been introduced [11]. Various genome-wide
data can also be employed in a Bayesian framework to
produce posterior probability for function assignments
[5,6]. And a Markov Random Field model combining PPI
network and protein domain information was introduced
in [12]. A common characteristic of these methods is
detecting protein functions individually, without consid-
ering the relationship among them. As remarked, a pitfall
of this is that the predictions may conflict with the true-
path rule of ontologies.

Motivated in part by seminal work of [15], combining
protein data and ontology structure has recently become a
focus. One approach is using a Bayesian network structure
to correct inconsistent function predictions, by calculating
the largest posterior probability of the true-path consistent
labels, given the predictions from independent classifiers
for each of the proteins [13]. Similar work has been done
in [14], where multiple classifiers are built and training
data are modified according to the GO hierarchy. A Baye-
sian model consisting of a set of nested multinomial logit
models, where a prior describing correlations of parame-
ters for nearby GO terms is trained by the hierarchy, has
been proposed in [16]. Observing the fact that a protein is
actually associated with multiple GO terms, this problem
can also be treated as a hierarchical multi-label classifica-
tion task [13,17]. Yielding various degrees of improve-
ment in prediction accuracy, these methods all seek to
take advantage of the hierarchical label structure. How-
ever, importantly, we note that all of those that predict at
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multiple depths in the GO hierarchy take a separate step
to correct true-path inconsistent predictions, rather than
producing them directly in a probabilistically coherent
fashion.

In summary, combining relational protein data, such as
PPI, and hierarchical structures, as in GO, in one probabi-
listic model to predict true-path consistent function labels,
has to the best of our knowledge not been done to date.
This task is the focus of our work.

Methods

Ontologies like GO are structured as directed acyclic
graphs (DAG's), where a child term may have multiple
parent terms. The DAG structure, with alternative paths
from the root to internal and leaf terms, is one of the rea-
sons that formal approaches to annotation predictions
have been difficult. It is well known that computing the
most likely assignment of values to variables in a DAG of
size N given their conditional probabilities on the arcs is
a classical NP-hard problem in graphical models. In fact,
variants of this problem are actually formally harder by
some theoretical considerations. Therefore, people rou-
tinely use tree approximations of probability distribu-
tions, which goes back to the work in [18]. In our work,
clearly, a tree-based approach is the first step to something
concrete, rather than ad hoc. We will show in the following
sections that, as a way of balance, and in light of our
results, it would appear that a tree is a good compromise
between ad hoc and completely rigorous usage of the
DAG.

We apply a minimal spanning tree (MST) algorithm to
transform a DAG into a tree-structured hierarchy, by pre-
serving the link between the child and the parent with the
heaviest weight w, where w is the empirical conditional
probability of having the child term given having the par-
ent, based on a given PPI training set. Each GO term, in
such a hierarchy, may still have more than one child term,
but only one parent term (if the term itself is not the root
of the hierarchy).

As a result of this transformation, there now exists a
unique path from the root term to any non-root term.
That is, let G; denote a term at the d-th level below the
root. For example, d = 1 if the term is a child of the root.
Then in our tree-structured hierarchy there is always a
unique path of the form G, G, ;, ..., G;, G, with G, being
the root, and G, ; being the parent of G;. For example, in
Fig. 1(b), the result of applying our MST algorithm would
be to drop the (B, E) link.

We propose to build a classifier in this setting based on
the use of hierarchical conditional probabilities of the
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form P(Yé? =1|X) . Here i indexes a certain protein, and

G, is a GO term of interest. The binary variable Yé? =1

indicates that protein i is labeled with G, otherwise, it

takes the value -1. Finally, X denotes the status of all of
protein i's neighbors in the PPI network, across all GO
terms, as well as the status for protein i of all of the ances-
tor terms of G;. We will refer to X as the neighborhood sta-
tus of i.

In the remainder of this section, we present certain model
assumptions that in turn lead to a particular form for the

probabilities P(Ygd) =1|X), as well as an efficient algo-

rithm for their computation.

Assumptions

We assume that labels on proteins obey a Markov prop-
erty with respect to the PPIL That is, that the labeling of a
protein is independent of any other proteins given that of
its neighbors. Similarly, we assume that a Markov prop-
erty holds on the GO tree-structured hierarchy, meaning
that for a given protein the status of a GO term label is
independent of that of the other terms, given that of its
parent.

In addition, we assume that for any given protein i, the
number of its neighbors labeled with a child term, among
those labeled with the parent term, follows a binomial
distribution, with probability depending on whether pro-
tein i is with the child or not. More precisely, we model

P(kg, | Ygg = l,Yé?ﬁ =1k,

kca k k(; *k(;
= B(kcm;kcpu’pl)z( ’ Jplcm(l_pl) " o

kcch
and
Plke, | Y =-1, yggl =1;kg,)
kcﬁﬁ kcm kcpa _kcch
= Bk, kcpa Po) = I Po" (1= po)
Gch
where

e G, is the child term; G,, is its parent;

pa

® k¢, is the number of i's neighbors labeled with the G,

and kcpa is the number of neighbors labeled with G,,;
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® p, is the probability with which neighbors of i are inde-
pendently labeled with G, (being already labeled with
G,,), given i is labeled with G;

® p, is the probability with which neighbors of i are inde-
pendently labeled with G, (being already labeled with
Gp,), given i is NOT labeled with G, but is labeled with

Gopa-

We refer to this overall set of model assumptions as the
Hierarchical Binomial-Neighborhood (HBN) assumptions,
in reference to their extension of the Binomial-Neighbor-
hood (BN) assumptions of [4]. Note that the form of the
probabilities above assumes that kg, the number of

neighbors with the child term, is independent of the
neighborhood size N, given kcm , the number of neigh-

bors with the parent. This condition seems reasonable
since, recall that, by the true-path rule, only those among
i's neighbors that are labeled with the parent term can
possibly have the child term. In other words, those neigh-
bors with the child form a subset of those neighbors with
the parent.

Parameters p; and p, are term-specific: different terms have
different p, and p,,. For a given term G, all proteins share
the same p, and p,. They are estimated by pseudo-likeli-
hood approach, from the labeled training data, separately
for each G, to be predicted. When calculating k¢, k¢

*pa

we use only the neighbors in the training set.

More specifically, assume there are n proteins in the train-
ing set, with m proteins labeled with G, and n - m proteins
not labeled with G,. To simplify notation, let ky, ;and k,,
;be protein i's training neighbors labeled with G, and G,,,,
respectively. For the m G -annotated proteins, we have

Ky, j~Binomial(k,, ; p1),

where Ygl =1landi=1, 2, .. m With the Markov prop-

erty assumption, the likelihood function for p, based on

all G ,-annotated proteins is

L(P1 | kch,l' e kch,n; kpa,ll e kpu,n)
H;ilf(kch,i | kpa,i' pl)

R pa,i ; ke, i~k
H?;l[kpa'l prﬂhﬂ(l —py)

ch,i
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The estimator for p, is based on all G_,-annotated proteins'
neighborhoods in the training set, and is the ratio of the
total number of their G -annotated neighbors and the
total number of their G,,-annotated neighbors, i.e.,

A 21@1 kch,i
1= ... . 1
21 kpa,i

with Yg?h =1.

Similarly, the estimator for p, is based on all G-unan-
noated proteins' neighborhoods in the training set, and is
the ratio of the total number of their G ,-annotated neigh-
bors and the total number of their G,,-annotated neigh-
bors,

_ 27;{” keh,j

0 ’
Zii1kpa,j

with Yg)h = -1. Estimators p; and p, are formally

pseudo-likelihood estimators.

An issue of estimation is the lack of data. Few data will
affect the predictability and interpretability of the terms.
Thus, we focus on terms with at least 5 proteins annotated
with in the GO dataset. In principle, more formal work
could be done, by using smoothing techniques and
Empirical Bayes approaches, which we are exploring in
our current work. It appears that improvement is not uni-
form, and the issue clearly requires separate consideration
and will likely form a substantial component of a separate
paper. Its subtlety likely is due to the well-known issue of
classifiers doing well for classification while still being off-
target for estimation [19].

Also notice that we use one-hop neighborhoods in this
paper, i.e., neighbors that are directly connected to the
protein of study. The extension to larger neighborhoods
could be easily done, and would likely yield some
improvement in predictive performance, but at the
expense of some additional mathematical overhead,
replacing the BN framework with one like those in [20-
24]. Our choice to use a one-hop neighborhood structure
here simply reflects a desire of maintaining a certain trans-
parency in our model development, so as to emphasize
primarily the effect of adding hierarchical information.

Local Hierarchical Conditional Probability

By the Markov property assumed on the GO hierarchy, for
any non-root term, only the parent affects its labelling.
Therefore, to derive an expression for our hierarchical
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conditional probabilities P(YC(;? =1|X), we first concen-

trate on an expression for local hierarchical conditional
probabilities of the form

p (Y((;ll =1 ng)a =L oca) )
= P(Ygl :1|ng)“ =Tikg, ke, )- )
Applying Bayes' rule, we have
Py =1| Y((;Z =Tikg, k,)
= P(ke, ke, |YE =1, YC(;?H =1)
<P(YQ =110 =1)/Plkg, ke, | Y =1).

For the first term in the numerator,

P(kg, ke, |YE) =1,YY) =1)

P(k,, |Y§}h =1, ygg =Tk,
xP(kg,, |yg; =1)

Blke, i ke, p1) % Plkg,, | Y =1);

For the second term in the numerator, we use the plug-in
estimate f, where f is defined to be the empirical probabil-
ity of having the child term, given its having the parent,
ie.,

_py® —1170 =
f=prE) =11v¢) =1).

For the denominator, we apply the law of total probability
and as a result, together with the two results above, the
probability in (1) can be expressed as

P(Yg; =1] ng)“ =L kcmfkcpa)
B(kG g, iR G g P1XS
B(kG i, ik G g PIXF+BRG oy iR Gy POIXT

(2)
where ]_‘ =1-f

Global Hierarchical Conditional Probability
Equipped with the local hierarchical conditional proba-
bility, for any non-root GO term G, in the hierarchy, we

now derive an expression for P(Ygd) =1|X), the probabil-
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ity that protein i is annotated with G, given its neighbor-
hood status.

Note that by the true-path rule we have
P(Ygd) =1, Yé?_l =-1|X) =0, where G, is the parent of

G,

Hence,

PYE) =1|X)

Py =1v® =11X). (3)

Py =1y =1X)xP(v{) =1x).

This logic easily extends recursively back through all
ancestors of G;, and thus the conditional probability (3)
can be factorized as

Py =11x)

p . ,
I P (Yg: =1] Yé?H =1LX0caL, )

) . ,
PO =11YY =1kg ke, ),

where X ¢y, is the local hierarchical neighborhood
information on the parent-child GO term pair, G,,and G,,,.

1-

Importantly, note that due to the form of the factoriza-
tion, the global conditional probability for G,is no greater
than that for its parent G, , i.e., we have the inequality

Py =11x)
J , A
= Hm=1P(Yé2 =1| Y((:li,l =LX0car, )
s anlllP(Yé” =1| Yc(;i),1 =L 0car, )
= Py =1|X).

As we go down along the path from the root in the hierar-
chy, the probability that protein i is labeled with a more
specific term is always no more than the probability of
any of its ancestors. If the label of a term is predicted as -
1, according to some pre-chosen threshold, the labels for
every descendent below will also be assigned as -1. Thus,
our model is guaranteed to produce GO term label assign-
ments that comply with the true-path rule. Most existing
methods for protein function prediction use ad-hoc
enforcement to correct predictions in order to maintain
true-path consistency.

http://www.biomedcentral.com/1471-2105/9/350

Algorithm

Classification using our Hierarchical Binomial-Neighbor-
hood (HBN) model may be accomplished using a
straightforward top-to-bottom algorithm. Specifically, for
a given protein i, and a pre-determined threshold t, we
proceed from the child terms of the root in the MST repre-
sentation of the GO hierarchy in the following fashion.

initialize PROB = 1

form=1:d

max’

while 3 unlabeled terms G,, at level m,

compute PROB; « PROB; X
P(Yg,z =1| Y((:lj,l =LX0car,)
if PROB; >, set Y!) =1

else set Y((;i) = -1 and propagate to all descendants of

G

m

end
end

Notice that setting the labels at each step is not necessary.
However, doing so facilitates the computation efficiency,
by avoiding the calculation of the probabilities below the
threshold. By letting t = 0, we can obtain all probabilities.
The fact that we can do this is a direct outcome of the fact
that our predictions are guaranteed to obey the true-path
rule.

For a given protein, the algorithm requires at most
O(N¢p) steps, where N is the number of GO terms, and
therefore, for Np,,,.;, proteins, no more than O(Np,,.
«inlNco) steps are needed. Hence, the algorithm is linear in
the size of both the PPI and the GO networks. In practice,
it has been found to be quite fast, particularly because
each protein can be expected to have a large proportion of
-1 labels, and once a -1 is assigned to a term it is simply
propagated to all descendant terms.

Results
Data

The PPI data used in this paper is from the yeast Saccharo-
myces cerevisiae, as updated in January 2007 at http://

www.thebiogrid.org/. There are 5143 genes (nodes) and
31190 non-redundant physical interactions (edges), after
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deleting self-interacting and unannotated nodes, and
genetic interactions.

The Gene Ontology used is biological process, updated in
June 2006, as posted at http://www.geneontology.org/.
From the biological perspective, more specific terms are
more interesting than less specific ones, and we therefore
only predict for terms with 300 or less genes annotated in
the database. As a result, the entire biological process ontol-
ogy breaks down into 47 sub-hierarchies. In addition, to
avoid extremes with little to no information, we only pre-
dict for terms with at least 5 genes. We also delete
GO0:0000004, biological function unknown. The total
number of terms predicted is 1037. The GO term annota-
tions used to train the model are updated in June 2006,
from http://www.geneontology.org/.

From the initial data, a set of labels is constructed in a way
that follows the true-path rule. Specifically, for any protein-
term association in the data, we assign a +1 label to the
term for that protein, as well as to all of the ancestors in
the transitive closure of that term in the GO hierarchy. We
repeat this for all protein-term associations to get the set
of all positive labels. We assign -1 to all other protein-term
pairs.

Please visit http://math.bu.edu/people/kolaczyk/soft
ware.html for the datasets used in this paper and the Mat-
lab scripts for the HBN algorithm.

Cross-Validation Study

We apply our Hierarchical Binomial-Neighborhood
(HBN) method, as well as the "Nearest-Neighbor" (NN)
algorithm and the Binomial-Neighborhood (BN) method
of [4], to the data just described, using a 5-fold cross-vali-
dation design. The HBN and BN methods each produce a
probability of protein-term association, while the NN
algorithm similarly produces a number between 0 and 1
(i.e., the fraction of a protein's neighbors in the PPI net-
work possessing the term in question). For each test fold,
representing 20% of the proteins, all GO term annota-
tions are taken as unknown, and predictions of protein-
term associations are made with each of the three meth-
ods, based on comparison of their output to a threshold ¢
€ [0, 1], using the annotations in the other four folds as
training data.

Evaluation

We use three metrics by which to evaluate the perform-
ance characteristics of each classification method. The first
is the standard Receiver Operating Characteristic (ROC)
curve, which evaluates a classifier's performance in a man-
ner that aggregates across all terms. We examine ROC
curves both for the overall GO hierarchy and within each
of the 47 sub-hierarchies.

http://www.biomedcentral.com/1471-2105/9/350

Since the ROC curve, as a metric, is 'flat’, in that it ignores
any hierarchical structure among terms, we use as a sec-
ond metric a hierarchical performance measure, called
hFj proposed in [25,26] and defined as follows. For a
hierarchy of GO terms and any protein i that is annotated
with the hierarchy root, first take the transitive closure of
all of the most specific +1 predictions and change -1's into
+1's, if there is any. Note that this step is only necessary
here for "Nearest-Neighbor" and the "Binomial-Neigh-
borhood" method.

Next, for each protein i, calculate the true positive (TP),
false positive (FP), and false negative (FN) counts, based
on the true labels of all terms in the hierarchy and the cor-
rected predictions, denoted as TP;,

FP; and FN;, respectively. Define hierarchical precision
(hP) and hierarchical recall (hR) as

. 2?=11r0teins TP, - 2;l'afziiroteins TP,
T # proteins ! roteins ’
sih TP;+FP; sih TP;+FNj

The value hFjis then defined as a weighted combination
of hP and hR, in the form

2
(B2 +1)hPxhR
hFy = 2T,

B2hP+hR
where f € [0, =) is a tuning parameter. In this paper, we
use hF, with equal weights on precision and recall, simply
denoted as hF. Note that hF, hP and hR are all scaled
between 0 and 1, with higher hF indicating better per-
formance over the hierarchy.

Lastly, because accurate positive predictions are of most
biological interest in this area, and because predictions of
terms increasingly deeper in the GO hierarchy are of
increasingly greater use, we examine the positive predic-
tive value (PPV) of each of the methods, as a function of
depth in the hierarchy. However, as the prevalence of
known terms tends to decrease substantially with depth,
and PPV decreases similarly with decreasing prevalence,
we normalize PPV by prevalence to allow meaningful
comparison across depths. Specifically, we compute a log-
odds version of PPV in the form

PPV /(1-PPV)
f1a-1)

where f is the prevalence of a given term. This quantity
therefore indicates relative performance of a given classi-
fier, in comparison with a method that simply predicts
proteins to have a given term with a priori probability f.

LO-PPV = log , (4)
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An lllustration

To better appreciate the performance gains from HBN that
we describe momentarily below, we first present an illus-
trative example. Consider protein YGLO17W (AFT1) and
its neighborhood, as depicted in Fig. 3(a). Knowing that
YGLO17W is labeled with the parent term G, =
G0:0045449, or regulation of transcription, we want to pre-
dict whether YGLO17W is labeled with the child term G,
= G0:0045941, or positive regulation of transcription. All six
neighbors are in the training set, and used together with
other training nodes to estimate parameters. Three out of
six neighbors are labeled with G, and two with G,. The
prediction from HBN results from applying a threshold to
Equation. The analogous probability for BN is given by

B(k;N,pT X[

P(Yo =1|k N)= - s,z
B(k;N,p1)xf +B(k;N,po)xf

where
¢ G is the target GO term, GO:0045941;
¢ [z is the number of training neighbors labeled with G;

e N is the training neighborhood size;

e p; is the probability with which neighbors are inde-

pendently labeled with G, given protein YGLO17W is
labeled with G;

@
pa: GO:0045449

YGLO71W

4

http://www.biomedcentral.com/1471-2105/9/350

e p, is the probability with which neighbors are inde-

pendently labeled with G, given protein YGLO17W is NOT
labeled with G;

e f* is the relative frequency of G in the training set, and

fr=1-f*

Table 1 contains the parameters for each of the three clas-
sification methods, and the output they produce. HBN
provides substantially more evidence for YGLO17W being
labeled with GO term GO:0045941, which is in fact the
case. With a threshold ¢ = 0.5, only HBN provides a correct
positive prediction. The improvement here comes from
the additional information provided by including parent-
term information.

Cross-Validation Results

A comparison of the overall performance of the three
methods, by ROC curves and the hF measure, is shown in
Fig. 4 and Fig. 5, respectively. We are also interested in vis-
ualizing precision versus recall, shown in Fig. 6. A total of
1037 GO terms are studied on 5143 proteins. Sensitivity,
specificity and hF are calculated by combining, within
each of the 5 folds, the true positive (TP), false positive
(FP), true negative (TN) and false negative (FN) counts,
over all proteins and all terms for varying thresholds, and
averaging across folds. Precision and recall are defined as

TP TP
TP+EDP TP+EN - The HBN method

outperforms the other two methods by a clear margin in
all figures, except at very small thresholds (¢ < 0.1) in the
hF plot. Comparison of the area under the curve (AUC)
for each method, in the ROC and hF plots, through a sim-
ple paired t-test on four degrees of freedom, confirms this
observation, i.e., p < 10-> for comparison of HBN with BN

precision = , recall =

Table I: Parameters from Nearest-Neighbor (NN), Binomial-
Neighborhood (BN) and Hierarchical Binomial-Neighborhood
(HBN)

Figure 3

lllustration of HBN's working mechanism. The plot
shows (a) protein YGLOI7W and its neighborhood, (b) Small
GO hierarchy. Three neighbors are labeled with the parent
term GO:0045449; two of them are labeled with the child
term GO:0045941. We want to predict whether YGLOI7W
is labeled with GO:0045941.

ch: GO:0045941 NN BN HBN
k=2 k=2 k=2
N=6 N=6 N=6
p, = 02927
p; =0.066l
=0.0992
po = 0.0085 Po
: f=0.0106 f=02186
P=0.3333 P=0338 P = 0.6566

This table contains the parameters and the corresponding
probabilities estimated by the three methods, as discussed in the
paper, when predicting whether yeast gene YGLOI7W has GO term
GO:0045941, positive regulation of transcription.
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Overall ROC Curve

Sensitivity
o

—o— Nearest Neighbor

Binomial-Neighborhood
—#— Hierarchical Binomial-Neighborhood
o . n n n )
0 0.2 0.4 0.6 0.8 1
1 - Specificity
Figure 4

Overall method performance comparison by ROC
curve. This plot demonstrates the ROC curves of the three
methods based on the 5-fold cross-validation study on the
whole yeast genome. Colors: HBN (red); BN (light blue); NN
(blue).
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Figure 6

Overall method performance comparison by preci-
sion and recall. This plot demonstrates the precision ver-
sus recall curves of the three methods based on the 5-fold

cross-validation study on the whole yeast genome. Colors:

HBN (red); BN (light blue); NN (blue).

and with NN. The gains of HBN over BN directly reflects
the benefit of effectively integrating the GO hierarchical
information into the construction of our classifier.

Recall that, as a result of our predicting only for GO terms
annotated with less than 300 proteins in the database, the
full biological process hierarchy actually breaks into 47

Overall hF measure vs threshold
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Threshold for prediction
Figure 5

Overall method performance comparison by hF
measure. This plot demonstrates the curves of hF measure
of the three methods against predicting threshold, based on
the 5-fold cross-validation study on the whole yeast genome.
Colors: HBN (red); BN (light blue); NN (blue).

sub-hierarchies. Examination of performance on these
sub-hierarchies provides some sense of the extent to
which the HBN performance improvements are uniform
across the GO hierarchy. We compute a ROC curve and hF
plot for each of the sub-hierarchies (See additional file 1:
ROC curves and hF plots for 47 sub-hierarchies in cross-
validation study). Numerical comparison of the corre-
sponding AUC:s finds, at a 5% significance level that HBN
improves on BN in 38 of the 47 sub-hierarchies, according
to the ROC curves, 19 of the sub-hierarchies, according to
the hF plots, and 18 commonly between them. Con-
versely, BN outperforms HBN in only 1 of the 47 sub-hier-
archies, according to the ROC curves, and 9 of the sub-
hierarchies, according to the hF plots. (NN was uniformly
the worse performer.)

These ROC plots are constructed using the original BN
(and NN) predictions, without any correction for "true-
path" consistency. However, the overwhelming improve-
ment of HBN over BN indicated by the ROC curves is actu-
ally similar when the initial predictions of BN are post-
processed by applying transitive closure. Specifically,
HBN improves on BN in 28 of the sub-hierarchies, while
BN outperforms HBN in only 4 sub-hierarchies. These
results strongly suggest the validity of our premise as to
the importance of incorporating hierarchical information
in the GO database in the initial construction of a classi-
fier. The hF plots, which incorporate transitive closure for
BN (and NN) directly into their definition, and are
designed to provide a more accurate summary of classifi-
cation accuracy with hierarchically related class labels,
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support this conclusion. The gains of HBN over BN,
although reduced, are still substantial, with HBN outper-
forming BN in just over 40% of the 47 hierarchies, and BN
outperforming HBN, in less than 20%.

As an illustration, consider the performance on the sub-
hierarchy corresponding to Fig. 7 and Fig. 8. The root term
of the sub-hierarchy is GO:0050896, response to stimulus,
with 72 more specific terms below it, 40 out of which are
predicted for 536 proteins annotated with root. The
shapes and locations of the curves in these plots are simi-
lar to those in Fig. 4 and Fig. 5, with arguably a more sub-
stantial improvement from HBN in the hF plot. For
instance, using a threshold of t = 0.5 for prediction, HBN
produces an hF measure nearly 254% and 60% higher
than NN and BN, respectively (hFyy = 0.16, hFpy = 0.35,
and hF gy = 0.56).

In contrast, Fig. 9 and Fig. 10 show an example of a sub-
hierarchy in which the performance of HBN and BN are
too close to declare one or the other better. This sub-hier-
archy has root term GO:0019538, protein metabolism.
Examination of the predictions seems to suggest that the
comparatively poorer relative performance of HBN in this
sub-hierarchy is due to its over-optimistic positive predic-
tions, i.e.,, HBN produces a higher rate of false positives
(FP) that lowers the hierarchical precision (hP) and hence
the hF measure.

Sensitivity

i —=o— Nearest Neighbor
0.1} Binomial-Neighborhood
El —#— Hierarchical Binomial-Neighborhood

n n )

. n
0 0.2 0.4 0.6 0.8 1

1 - Specificity

Figure 7

Method performance comparison by ROC curve on
sub-hierarchy GO:0050896. The plot shows the ROC
curves of the three methods based on the 5-fold cross-vali-
dation study on the sub-hierarchy with root GO term
GO:0050896, response to stimulus. Colors: HBN (red); BN
(light blue); NN (blue).
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Figure 8

Method performance comparison by hF on sub-hier-
archy GO:0050896. The plot shows the curves of hF meas-
ure of the three methods against predicting threshold, based
on the 5-fold cross-validation study on the sub-hierarchy
with root GO term GO:0050896, response to stimulus.
Colors: HBN (red); BN (light blue); NN (blue).

Lastly, Fig. 11 and Fig. 12 contain plots summarizing the
positive predictive value (PPV) of the three methods. In
Fig. 11, we show how the averaged PPV varies against the
averaged negative predictive value (NPV), over all pro-
teins and GO terms for which all three methods produced

o
=)
T

Sensitivity
o
(5]

o
~

—=o— Nearest Neighbor
Binomial-Neighborhood
——— Hierarchical Binomial-Neighborhood
n n )

O.‘4 0.6 0.8 1
1 - Specificity

Figure 9

Method performance comparison by ROC curve on
sub-hierarchy GO:0019538. The plot shows the ROC
curves of the three methods based on the 5-fold cross-vali-
dation study on the sub-hierarchy with root GO term
GO:0019538, protein metabolism. Colors: HBN (red); BN
(light blue); NN (blue).
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Figure 10

Comparison of method performance by hF on sub-
hierarchy GO:0019538. The plot shows the curves of hF
measure of the three methods against predicting threshold,
based on the 5-fold cross-validation study on the sub-hierar-
chy with root GO term GO:0019538, protein metabolism.
Colors: HBN (red); BN (light blue); NN (blue).
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Figure 12

Visualization of the averaged log-odds positive pre-

dictive value comparison on GO hierarchy depth. The

plot demonstrates the curves of the averaged log-odds PPV

over cross-validation folds of the three methods for NPV =

0.987, as a function of the GO hierarchy depth. Colors: HBN

(red); BN (light blue); NN (blue).

at least one positive prediction, averaged over the five
folds (PPV versus 1-NPV). We see that the HBN method
has consistently higher PPV across all values of NPV. At an
NPV of 0.987 (i.e., 1 - NPV = 0.013), for example, where
the PPV for HBN is nearly 50% (i.e., PPV = 0.465), that for
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Positive Predictive Value
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1 - Negative Predictive Value

Figure 11

Visualization of the averaged positive predictive
value comparison. The plot contains the curves of the
averaged positive predictive values (PPV) over cross-valida-
tion folds of the three methods, against |-NPV, the averaged
negative predictive value (NPV). Colors: HBN (red); BN
(light blue); NN (blue).

BN and NN are only roughly 30% (i.e., PPV = 0.310 and
0.326, respectively). That is, for the same rate of correct
negative predictions, HBN produces nearly one in two
correct positive predictions, while the other two methods
produce not quite one in three. Note that the extremely
high NPV values for all three methods are largely a result
of the similarly high prevalence of -1 labels in the data-
base.

Shown in Fig. 12 is the log-odds PPV of all three methods,
for NPV = 0.987, as a function of depth in the GO hierar-
chy. We see that the improvement in positive predictive
capabilities of HBN is fairly uniform across depths. A one-
sided paired t-test at each depth confirmed the differences
to be highly significant (i.e., p-values roughly 0.001 or
less) at depths 3, 4, and 5, but not at depths 1, 2, 6, 7, or
8. We note, however, that the lack of significance at the
latter depths is likely partly driven by sample size, since at
each of these depths there were less than 30 cases of posi-
tive protein-term predictions by all three methods used in
calculating LO-PPV, while at the other three depths there
were well in excess of 100.

In Silico Validation Results

Recall that the above results are based on gene-GO term
annotations in the January 2007 GO database. As an in sil-
ico proxy to in vitro validation, beyond that of the cross-
validation study, we examined the performance of HBN,
in comparison to NN and BN, when applied to new gene-
GO term annotations found in the updated May 2007
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database. Here our goal is to evaluate the robustness of
our cross-validation results for predicting naturally occur-
ring unknowns (i.e., as opposed to those left out in a ran-
dom fashion through cross-validation).

We applied HBN, BN, and NN in each of the 47 sub-hier-
archies to genes that (i) were annotated with only the root
term in the June 2006 database, and (ii) were assigned
more specific functions in that sub-hierarchy in the May
2007 database. There were a total of 508 genes that had
received at least one new annotation in one of the sub-
hierarchies, with as few as 1 gene and as many as 74 genes
per hierarchy. There were 33 sub-hierarchies having such
genes. The methods were compared for their accuracy
through the hF function. We present the hF plots for only
those sub-hierarchies (17) with sufficiently many annota-
tions to yield meaningful results (See additional file 2: hF
plots for 17 sub-hierarchies in in silico study); the hF meas-
ures for the others are trivial, due to too few new annota-
tions. Over 40% (i.e., 7 out of 17) of these hF plots find
HBN to work best in correctly detecting more specific
associations, over a reasonably broad range of threshold
values; in the majority of the remaining plots, HBN yields
results similar to the at least one of the two other meth-
ods.

Overall, most of the plots are consistent with the cross-val-
idation results. Interestingly, however, there are a number
of cases where HBN clearly outperforms NN and BN by a
larger margin in the in silico validation than in the cross-
validation study. For example, for the sub-hierarchy with
root term response to stimulus, the new hF curve for HBN
exceeds that for BN by as much as 300%, dominating
those for the other two methods for most of the thresh-
olds. See Fig. 13. In addition, in some sub-hierarchies
where HBN does not perform best in cross-validation, its
hF curve is significantly improved in the in silico study,
and in fact outperforms the other two methods. The sub-
hierarchy with root term protein metabolism is of this sort.
The hF curve for HBN in Fig. 14 dominates the other two
methods for almost 60% of the possible threshold values
on the new predictions, even though HBN works no better
than BN in the cross-validation study.

Overall, these results suggest that the performance advan-
tages of HBN indicated by the cross-validation study are,
if anything, potentially understated.

Discussion

For a well-studied organism, such as S. cerevisiae, one can
make certain inferences about genes for which there is no
annotated function. First, it is likely that the gene has low
sequence similarity to any gene of known function, thus
preventing the most straightforward computational meth-
ods of predicting gene function. Secondly, it is likely that
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Figure 13

hF plots for new predictions on sub-hierarchy
GO:0050896. The plot shows the hF curves of the three
methods based on the updated annotation for sub-hierarchy
with root term GO:0050896, response to stimulus, as dis-
cussed in the in silico validation study. Colors: HBN (red); BN
(light blue); NN (blue).

no altered phenotype is observed upon protein overex-
pression, knockdown, or knockout, foiling first-pass
experimental attempts to discover gene function. In these
cases, the next step would involve more elaborate experi-
mental methods, which would typically be guided by a co-

0.71
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0.1f

0 O.‘Z O.‘4 016 0‘.8
Threshold for prediction

Figure 14

hF plots for new predictions on sub-hierarchy
GO:0019538. The plot shows the hF curves of the three
methods based on the updated annotation for sub-hierarchy
with root term GO:0019538, protein metabolism, as discussed
in the in silico validation study. Colors: HBN (red); BN (light
blue); NN (blue).
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expression analysis of publicly available microarray data.
The experiments selected will, in general, be time-con-
suming, costly, different for each gene being investigated,
and offer modest chances for success. Thus, the develop-
ment of more sophisticated and accurate methods of com-
putational prediction of function which could precisely
guide experimental activity remains a top priority.

Biological and biomedical ontologies have become a
prominent, and perhaps indispensable, tool in bioinfor-
matics and biological research. GO in particular has been
used in numerous papers to detect biological process
enrichment of co-expressed genes, identify biological
processes associated with disease, etc. However in the vast
majority of applications the hierarchical nature of GO is
actually not being used directly. For example, in enrich-
ment testing such as GSEA or GNEA we typically test for
every biological process if the differentially expressed
genes in some condition are associated with this process
more than expected by chance.

Thus while GO and other ontologies obviously organize
biological knowledge in an intuitive fashion, the structure
is not typically exploited for actual inference by predictive
analysis tools. This is rather different from evolutionary
analysis tools and genetics frameworks where probabilis-
tic ancestor/descendant relationships in phylogenies
(hierarchies) are exploited very directly with substantial
practical and theoretical benefits.

Our work here suggests that similar developments of
probabilistic frameworks are not only feasible, but prom-
ising, for improved protein function inference with gene
ontologies. In addition, it suggests the need for further
research to be done to clarify the utility of different repre-
sentations for such purposes. Finally, it also raises the
prospect of re-engineering ontologies or other similar rep-
resentations, from the perspective of seeking to provide
maximal value for probabilistic inference programs.

Conclusion

We have developed a probabilistic framework for auto-
mated prediction of protein function using relational
information (e.g., a network of protein-protein interac-
tions) which exploits the hierarchical structure of ontolo-
gies, and guarantees the predictions obey a 'true-path’
annotation rule. We have evaluated the performance of
our method and compared it with two other network-
based methods by both cross-validation and an in silico
study, on the genome of yeast, for terms from the biolog-
ical process category in the Gene Ontology. Results
showed that our proposed method, by utilizing the onto-
logical structure, significantly improved the prediction
accuracy and the capability of detecting positive annota-
tions over the hierarchies. Furthermore, our analysis sug-

http://www.biomedcentral.com/1471-2105/9/350

gests that such improvement persists across the ontology
depths.
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