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ABSTRACT

This paper presents a novel combination of a high-performance
speaker identification system and an isolated word recognizer.
The front-end text-independent speaker identification system
determines the most likely speaker for an input word. The
speaker identity is then used to choose the reference word mod-
els for the speech recognizer. When used with a closed set of
speaker, the combination is a system capable of automatically
producing speech and speaker identification, For an open set
of speakers, the speaker recognition system acts as a “speaker
quantizer” which associates the unknown speaker with an acous-
tically similar speaker. The matching speaker’s word mod-
els are used in the speech recognizer. The application of this
front-end speaker recognizer is described for a DTW and HMM
speech recognizer. Results on a combination using a DTW word
recognizer are 100% for closed set experiments. Open set re-
sults are 92.6%; an increase of 11.4% from cross speaker word
recognition rates and comparable to speaker-dependent perfor-
mance.

1 INTRODUCTION

Despite the similarity between the areas of speech and speaker
recognition, relatively little research has been done in combin-
ing these areas. The speech signal is a complex information
bearing signal which can be considered to be comprised of two
major components: the underlying text and the characteris-
tics of the speaker. Traditionally, speaker recognition is con-
cerned with determining the source of the speech signal, consid-
ering the phonetic variations to be extraneous noise, whereas
speech recognizers are aimed at minimizing the speaker depen-
dent variations in the speech signal in order to concentrate on
the textual component. However, due to the complicated inte-
gration of these components, a better approach is to combine
these systems in such a way that as much information as possi-

ble is extracted and used for the final task. One problem which
" is well suited for this integration is improving speaker indepen-
dent performance in speech recognition systems. This combi-
nation would have applications not only in improving speaker
independence in speech recognizers but also in producing a sys-
tem which simultaneously recognizes spoken text and speaker
identity.

As speech recognition systems aim toward large vocabular-
ies, it is infeasible to train the system for each new speaker, so
speaker independent system are required. In order to achieve

speaker independence, present speech recognition systems em-
ploy several methods which are somewhat similar to a crude
speaker recognition system. Clustering techniques which pro-
duce multiple models per word attempt to find representative
exemplars for groups of similar sounding speakers. However,
this training uses all the training speakers’ data in the unsu-
pervised clustering so that the speaker differences are “blurred”
in the final word models and generally perform worse than us-
ing unclustered models derived from an individual speaker {1].
Using all reference speakers’ word models preserves individual
differences but produces a computationally expensive search
during recognition.

To alleviate these problems, this paper presents the use of a
speaker recognition system as a front end processor to a speech
recognition system . This work is based on a statistical speaker
recognizer capable of recognition rates >90% for 1 second test
utterances (2]. The combination operates under two situations.
With a closed set of speakers the system produces simultaneous
speaker and speech recognition. For an open set of speakers, the
front-end system acts as a “speaker quantizer” which matches
a new speaker to a reference word model from an acoustically
similar training speaker. The speech recognizer then uses the
associated reference speaker’s word templates to perform word
recognition. In this way the word templates are automatically
adapted to any new speaker. The combination is modular and
can be used with any speech recognition system. The use of
the speaker recognizer with a DTW isolated word recognition
system is examined and its with a HMM speech recognizer is
described.

The rest of the paper is organized as follows: The next
section presents the Gaussian Mixture Model (GMM) speaker
recognition system. A description of the use of the speaker
recognizer with a DTW and HMM system follows. Then results
from some experiments using a combined GMM-DTW system
are presented.

2 SPEAKER RECOGNITION SYSTEM

A robust text-independent speaker identification system ca-
pable of high recognition rates for utterance lengths as short
as 1 second was introduced in [2]. This system, based upon
the use of Gaussian mixture densities to statistically charac-
terize speakers, acts as a hybrid between two effective mod-
els for speaker identification: uni-modal Gaussian classifiers [3)
and vector quantizer codebooks [4]. The Gaussian mixture
model (GMM) combines the robustness of the parametric Gaus-
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sian model with the short utterance performance of the non-
parametric VQ model.

Similar to a uni-modal Gaussian classifier, the GMM classi-
fier represents each speaker by a pdf governing the distribution

of hisfher feature vectors. The Ga mixture model has
the form o
P(FO) = Y Plw:) p(Ehwi)- (1)
=1

The density is a weighted linear combination of C' component
uni-modal Gaussian densities, p(Flw;), each parameterized by
a mean vector and covariance matrix, fi; and Z; (collectively
denoted as ©). The ith component has the interpretation of
representing a “hidden™ acoustic class w; as shown in Figure 1.

The structure of this model is quite flexible in form and has
several strong points. The first is the mixture model’s ability to
form smooth densities of irregular shape. Secondly, the GMM
is. & general parametric model that can take on various forms.
As shown, the GMM has a full covariance matrix per mixture
component, but. the model can have diagonal covariance ma~
trices, a global covariance for all components, or even a fixed
covariance matrix for all speaker models. The decision of what;
form the model should take is usually an empirical trade-off
between the number of free model parameters and the amount
of training data available. In this work speaker models use 10
Gaussians per mixture each with a diagonal covariance matrix.
Also, due to its form, the GMM can be made quite robust to
noise and channel degradations [2, 5, 6].

In Eq (1} only the number of classes C is assumed to be
known, while all other parameters must be estimated simul-
taneously. Given an appropriate starting point, the iterative

P(x{8)

X

Figure 1: Gaussian mixture speaker model. Acoustic
classes, wy, are represented by Gaussian distribution.

Expectation Maximization (EMY) algorithm (7} is used to find
the maximum likelihood estimates of the density parameters.
Training generally requires only 5-10 iterations. The models
are trained using the same data used for the speech recognizer,
so only one training data collection is required.

It is also possible to introduce discriminant training into
the GMM training procedure. Referring to Figure 1, note that
the GMM has a similar topology to a radial basis function
network, which allows for using similar discriminant training
methods. First we obtain maximum-likelihood estimates of
the GMM parameters using the EM algorithm. The mixture
weights are then replaced by discriminant weights derived from
all the speaker’s data. The discriminant weight training is non-
iterative requiring enly a single matrix inversion [8]. While
discriminant training is quite important for large speaker pop-
ulations with many similar sounding speakers, for the small
speaker set: employed in this work the single stage maximum-
likelihood' training method was sufficient.

For classification, the likelihood function for each speaker’s
model is computed over the input word and the speaker model.
producing the highest likeliood score indicates the chosen speaker.

3 SPEAKER QUANTIZATION

3.1 Application toe DTW

In Pigure 2 a tandem connection of the GMM speaker recog-

nition system and the DTW word recogrizer is shown. The:
system operates as follows: After the input utterance is pro-

cessed to produce a.stream of feature vectors (20th order mel-

cepstral vectors in this work), the most likely speaker § is de-

termined by the GMM speaker identification subsystem. The
word templates for the estimated speaker are selected from the.
super-set of all speaker’s templates and passed on to the DTW
word recognition system. The word recognizer then determines
the unknown word in a normal fashion using the estimated
speaker’s reference templates. I the whole system is run with
a closed set of speakers, then both the estimated word and
speaker identity are final outputs.

Since the DTW word recognizer does not require any model
training, the system training is straightforward. First, as with
other speaker independent methods, a representative set of
speakers sliould be selected. This set should cover all expected
speakers in the final user population. However, if the system is
‘to-be used for speaker and word identification, then the training
gpeakers need only be those of the closed reference set. Next,
reference word templates for each speaker are collected to pro-
duce the D'TW super-set reference codebook. These same word
references are then used to train each speaker model via the EM
algorithm. For a vocabulary size of more than 10 words, there
should be ample data per speaker for training the speaker mod-
speaker models do not need a large amount of data to train the
acoustic: classes.

This system can be viewed as performing “speaker quan-
tization™ prior to speech recognition. The GMM speaker rec-
ognizer will associate a new speaker to a closely matching ref-
erence speaker in much the same way a vector quantizer asso-
ciates a vector to the best match in its codebook. Thus alarge
reference model codebook can be maintained and the speaker
recognizer acts to direct the codebook search during recogni-
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tion. This approach is similar to work on speaker clusters [9]
and speaker hierarchical clustering [1].

One of the main advantages to this approach is that it allows
a relatively simple way to maintain a large set of reference mod-
els that cover many different speaker acoustical variations while
not incurring the large computational cost of searching through
all models during word recognition. After speaker identifica-
tion, the recognition cost is the same as a single model system.

3.2 Application to HMM

The speaker-speech recognizer combination can also be used
with a HMM word recognizer in the same manner as with the
DTW word recognizer. For a whole word left-to-right HMM,
each word model now consists of the transition probabilities
and the state densities rather than a collection of reference
templates. The speaker recognizer then performs as above,
by determining the most likely speaker and directing the word
recognizer to use that speaker’s word models.

However, since the both the HMM and the GMM are sta-

tistically based classifiers, a more interesting combination is for
the speaker and speech recognizer to use the same probability
models. Both the GMM and HMM are trained on the same
data to optimize the ML criteria, so their underlying densi-
ties should be similar. Whereas the GMM is less constrained
than the HMM, the HMM is a generalized model and it should
be possible to use the HMM state densities as the acoustic
class densities in the GMM. The idea is to train each speaker’s
HMM word models as normal and then form a speaker’s GMM
by pooling the state densities over all of his/her word models.
The weights of the GMM could then be trained using the dis-

criminant method described in Section . Clustefing of similar
component densities would be applied if there were too many"
components in the GMM (Models with S states and W words in
the vocabulary would give § x W component Gaussians.) This
pooling approach takes advantage of the similarities between
the speaker and speech models and allows a form of model
sharing which can reduce storage and training time.

The speaker recognizer is also easily adapted for use in
a continuous speech recognition. Using a HMM continuous
speech recognizer, the speaker recognizer would select the ap-
propriate sub-word models to be used out of a collection of
speaker-dependent models. The above pooled training approach
could also be used with the sub-word models. The speaker rec-
ognizer would be used in a continuous mode wherein it pro-
duces a time-varying likelihood score for each speaker model.
The likelihood scores are then used to label segments of speech
as to speaker identity.

4 RESULTS AND DISCUSSION

In this section, the results from experiments using a com-
bined GMM speaker recognizer and DTW isolated word recog-
nizer are presented. These preliminary experiments were per-
formed to evaluate the effectiveness of using the combined sys-
tem and were carried out using the following setup:

Sample rate: 8000 Hz

Features used: 20th order FFT derived mel-frequency cep-
stral vectors

Number of speakers: 5 (3 male, 2 female)

speech Feature Speech | “
wave Extraction Recognizer I
‘ speaker 1
Speaker word templates
.
speaker N
:nps;:lesr word templates

Figure 2: UCombined speaker-speech recognition system. GMM speaker identification system
determines estimated speaker, 3§, which is used to select the word models used by the speech

recognizer.
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Vocabulary: isolated digits (0~9)
Training data: 5 tokens per word per speaker
Testing data: 5 tokens per word per speaker

The speakers are identified by initials: dar, kpn, rhb (male)
and kcg, uhh (female}. The speaker GMMs consisted of 10
Gaussian components with a diagonal covariance matrix per
component and were trained using five digit sets (approx 20
sec).

The: first experiment examined how the combined system
performed for a closed set of speakers (i.e., digit templates
and speaker models were available for all input speakers). Us-
ing the speaker recognizer front-end, 100% digjt and' speaker
recognition was achieved, which is in agreement with 100%
digit recognition using speaker-dependent reference templates.
With perfect speaker recognition, this result is not surpris-
ing. The main result was that speaker-dependent performance
wis achieved without knowing the input speaker’s identity and
without searching through all speaker’s reference templates. An
experiment using a large set of speakers and examining perfor-
mance with speaker misclassifications would be the next step
to give a better picture of system performance under more rig-
orous conditions.

Next, to evaluate the ability of the speaker quantizer to
match a new speaker with an acoustically similar speaker, the
combined system was operated using an open set of speak-
ers (i.e., the input speaker’s digit templates were not available
and the speaker recognizer had to choose the best matching
speaker). The results are shown in Table 1. For compari-
son, results are shown from cross speaker recognition, where
speaker A’s input digjts are recognized using speaker B’s ref-
erence templates. The results in the table are the average of
using each speaker as the reference speaker. The cross speaker
results represent the average DTW performance when a single
speaker is chosen as the reference speaker. It is clear that the
speaker quantizer improves on this recognition rate; increasing
the average digit recognition rate by 11.4%. It is also seen that
the speaker quantizer compares favorably to speaker-dependent
performance.

Cross Speaker | Speaker Quantization ||

! (open set) 3

Tar 815 970 7

keg 745 790 ,
“kpn 8§35 100.0
- rthb 88.5 96.0
uhh 78.0 91.0

AVG | 812 926

Table 1. Digit recognition results (in %) for all speakers.

This increased performance is believed to be due to the
system’s ability to choose different reference models for word
recognition for each new input ufterance. The reference tem-
plates are not set, but are.adaptively changed according to the
input utterance, thus allowing for cases when an input speaker’s
pronunciation on different words matches different speakers. In
fact, for the above experiment, reference templates for a: test
digit were often from different speakers for different occurrences

of the test digit. A notable exception was that the two female
speakers always matched to each other. However, the open
set results highly depend on a complete speaker population to
ensure a new speaker will have an acoustically close: match.

5 CONCLUSION

A novel combination of & speaker recognizer and a word rec-
ognizer was presented in this paper. This combination can be
used as an automatic speaker and speech recognition system
or as a means to associate an input speaker with an acous-
tically similar reference speaker to improve the speech recog-
nizer’s speaker-independent performance.

Using a DTW word recognizer in the combination, both
closed and open speaker sets were examined for the isolated dig-
its. Perfect speaker and digit recognition was achieved for the
closed set task. Although not surprising for this small speaker
set, the result demonstrates that the speaker recegnizer can.
be used to reduce the template search space and still produce
speaker dependent performance. Future experiments will focus
on working with a larger speaker set. For an open. speaker set,
the speaker quantizer improved digit recognition performance
by 11.4% when compared to cross speaker digit recognition.
The speaker quantizer recognition rate of 92.6% also. compares
favorably to the speaker dependent recognition rate. These re-
sult are promising and point to the benefits of a tighter link
between the areas of speech and speaker recognition.
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