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In extracting three-dimensional positional information
from images, both static stereo processing and
monocular structure-from-motion processing possess
shortcomings for a general purpose vision system. A
solution to these problems is to use stereo structure-
from-motion processing. This paper addresses the
problems of integrating stereo and structure-from-
motion data to determine the camera ego-motion and the
locations of features by Kalman filtering. Results from
monocular and stereo structure-from-motion algorithms
are presented.

INTRODUCTION

Since the early days of computer vision, attempts have
been made to extract information about the three-
dimensional (3D) structure of the observed scene using
only the information available from the imagery. Some
of the most successful systems developed have been
based upon 'meaningful' features extracted from the
images. Such features - corner points, edges, regions,
etc. - often arise from real world objects. The initial
techniques were stereo, using a pair of static cameras,
and structure-from-motion, using a single moving
camera. However both of these techniques have their
short-comings, and this has prompted researchers to try
and combine both stereo and motion into a single
framework. We are concerned here with developing
techniques to coherently integrate the data in two of the
most important areas; the 3D location of features, and
the calculation of the camera viewpoint (the so-called
camera ego-motion). The results are given for the
motion of a binocular pair of cameras, though they
apply to any number of cameras.

Stereo systems [1,2] use two (or more) cameras in
known relative positions (and orientations). The known
camera dispositions are used to reduce the search areas in
feature matching by using the epi-polar constraint, and
once features are matched, in calculating the resulting
3D position by using the camera separation as the
baseline for triangulation. The resulting accuracy of the
feature positions decreases quadratically with depth (the
distance from the cameras). This range limitation means
that stereo can be applied only in situations where the
objects of interest are close to the cameras. Attempting
to overcome this difficulty by increasing the camera
separation causes difficulties in matching, and also
reduces the number of possible matches because of
occlusion.

The monocular structure-from-motion approach uses a
single camera moving through the scene [3]. Unlike
conventional (ie. snap-shot) stereo, the number of
frames is unlimited, allowing the possibility of refining
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the positions of features by observing them over a wide
baseline. The disadvantage is that the camera position
for any frame may not be known exactly, necessitating
the ego-motion to be determined from the images
themselves. This calculation for a single moving
camera introduces the speed-scale ambiguity into the
system, since from visual data alone the scale of the
scene and the magnitude of the motion form an
irresolvable ambiguity.

The solution to these problems is to combine the two
techniques, that is to use stereo structure-from-motion.
The absolute base-line provided by the separation of the
stereo cameras enables the speed-scale ambiguity to be
resolved, and the long base-line resulting from
processing a long image sequence enables good long-
range accuracy to be obtained.

The problems involved in matching are not addressed in
this paper, but the algorithms we have used are
discussed in [3]. Both 2D-2D matching (eg. stereo
matching; see Figure 4) and 3D-2D matching will be
assumed to have been performed, with the majority of
matches correct. Incorrect matches will adversely affect
the position of the 3D features involved, but the
calculation of ego-motion being dependent upon all the
matches may be made robust (see below).

The analysis developed below is for a moving stereo
camera head in an otherwise static world. We use
feature-point data extracted from images using the comer
operator [4], to form a scene representation consisting
of 3D feature-points. These are specified by their
positions and positional uncertainties expressed as
normal probability distribution functions. Straight
edges are widely used in extracting 3D information and
the results presented below could be reformulated to use
them. This is, however, beyond the scope of this paper.

KALMAN FILTERING OF POINT
LOCATIONS

At this stage we assume that the camera location and
attitude are known correctly from the ego-motion
calculation (see below), or at least known to sufficient
accuracy. Each extracted image point possesses
uncertainty as to its exact location, due mainly to the
effects of spatial sampling. We assume therefore that
the image position of the true point is described
probabilistically by a normal distribution centred upon
the located point; this we call the observation error.
The resultant distribution of point positions in 3D is of
a non-normal form, possessing conical equi-probability
density surfaces with apex at the camera pin-hole. To
overcome the problems associated with this non-normal
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form, we choose to work in so-called disparity space,
with coordinates (X/Z ,Y/Z ,1/Z). Here, the Z axis lies
along the camera optical axis, and the X and Y axes lie
in the image plane. This gives a feature-point
observation a normal 3D form, which can be described
by its disparity mean or centroid position, R, and a
disparity covariance matrix C. Use of disparity space is
not essential to the analysis, and may be replaced by a
cartesian representation if it makes the reader more
comfortable.

Monocular Approach

Let the Kalman Filter (KF) representing a 3D point

before the incorporation of the information of the

current (t'th) observation have centroid R t and co-

variance matrix Ct in the disparity-space of the camera

local coordinate system. Let the match on the current

image be located at st, with observation error (ie. co-

variance matrix) Ht. The KF update equations are given

by [5]

H H + p n~t
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1 s t

0
where P =

matrix.

1
0 1 I is the 2D to 3D projection
0 0 j

This update is shown graphically in Figure 1, illustrated
by the surfaces of constant probability density.
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where e ^ is the Levi-Civita symbol

This ego-motion is undertaken with respect to a
reference coordinate system, which we shall choose to
be our best guess at the actual camera location, as this
makes the numerical value of the ego-motion small,
and permits subsequent linearisation of the equations.
The ego-motion is denoted by the 6-vector q=(8,t). The
optimal estimate of the ego-motion is calculated by
finding the vector q which brings the projection of the
3D features into best alignment with the observed
image points to which they are matched. The error in
alignment is measured in terms of a combined
probability error distribution of the 3D features and the
image points.

Single Camera
To determine the optimal ego-motion, we define a cost
function, E(q), which measures the mis-alignment of
the observed features and the projected 3D features by
calculating the squared Mahalanobis distance (ie.
number of standard deviations) between the projection rj

of the 3D feature Rj, and the image point Sj to which it

has been matched. The total cost function is the sum of
the squared Mahalanobis distances for all n of the
matches:

E(q)

Stereo Approach
For stereo, just the same procedure may be applied,
sequentially updating the Kalman Filter of a point from
the data from each camera in turn. The conventional
stereo approach is to use the stereo matches from the
current image to instantiate (ie. start off) a new Kalman
Filter for each pair of matched points on the current
image, then to combine this with the previous Kalman
Filter for the point. As expected from the use of KFs,
this may be shown to give an identical result to the
sequential approach.

DETERMINING THE EGO-MOTION
The ego-motion is the location and attitude of the
camera (or stereo camera head) with respect to a
reference coordinate system, and is necessary for the
proper integration of data from images comprising a
sequence. The ego-motion is defined by a translation t,
followed by a rotation specified by the vector 8, whose
direction is the axis of rotation, and whose magnitude is
the angle of rotation. The rotation matrix generated by
6 is

= cos(G)8
i j

where the match covariance, Lj(q), is the sum of Kj(q),

the projected covariance matrix of the 3D feature, and
Hj, the covariance matrix of the observation Sj.

Minimising the cost function leads to the best estimate
of the ego-motion. The minimisation is performed
iteratively using the Newton-Raphson method. At each
step, k, of the iteration we refine the ego-motion
estimate:

q ( k + D = q ( k ) . E . . - l E .

where E ^

An initial estimate, q®\ of the motion, may be derived
either from some external measurements (eg. odometry),
or by motion prediction from earlier frames.

In calculating the partial derivatives of E we assume
that the projected co-variance matrix K is only slowly
varying with q, and that the projection of the 3D point
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is in good alignment with the observations, ie. that r-s
is small. Noting that the matrix L is symmetric gives,
for the m'th matched point,

d E m ( q ) / 3 q i - -2 (rm(q) - s m ) T L ^ 3r m ( q ) /3 q i

3rm(q)/3q
j

To prevent incorrect matches spoiling the
minimisation, a robust deweighting is used. To each
point contributing to the total cost function is
associated a weight, which falls smoothly to zero as the
Mahalanobis distance of that point rises above a few
standard deviations. This serves to gracefully disregard
incorrectly matched points as the minimising iteration
proceeds.

Multiple cameras

When using two (or more) cameras we do not want to
calculate a separate ego-motion for both cameras since
this fails to capitalise on the strong constraint of
relative camera displacement. Nor can we combine
together two q vectors since they will not in general
represent the same motion. We therefore combine the E
derivatives, so providing a single estimate of q.
However, the two cameras in a stereo system do not
undergo the same ego-motion, because of their relative
displacement. Let the second camera be situated a
distance p from the first camera, and have a relative
attitude expressed by the rotation vector cp. Suppose
that the first camera undergoes an ego-motion q=(8,t)
then the second camera will undergo an ego-motion
(relative to its own start position) of

q" =

= (AT((p)e AT((p)( p + t

as shown in Figure 2. Thus the cost function we wish
to minimise contains the following term from the n'
matches obtained from the second camera

E(q1) =

I/ ;-1 (!•;((,')-S;)

To introduce this additional term into the Newton
minimisation, the first and second derivatives with
respect to q must therefore be calculated. To obtain
these differentials, make use of the chain rule of
differentiation

= (3q ' /3q)3/3q '

Noting that

30730 = AT(<p)

3O'/3t = 0
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3t'/30 = AT(q>) 3 [A(8)p] /30

3t'/3t= AT(q>),

the explicit form of the first and second differentials
may be determined. These are given in the appendix.

The calculations performed for each matched point (ie.
the differentials of E with respect to q ' ) are independent
of the camera on which they were located. Only the sum
of derivatives need be transformed. Thus the
transformations, given in the appendix, need only be
applied once per camera per iteration of the Newton
minimisation.

Stereo Approach
A second approach to calculating the ego-motion first
instantiates the stereo matches into 3D to form KFs for
each stereo matched pair of points, with centroids Sj

and covariances Dj, the latter constructed from the

observation errors, Hj. A total cost function similar to

that above may now be defined using the square
Mahalanobis distance between the 3D feature, Rj, and

the transformed (by the ego-motion, q ) stereo feature

E(<J) = I X T ( Cj + Dj( q ) )
A X

T
where Sj(q)= A (fl)(Sj-t) is the transformed stereo

feature-point position, and Dj(q) = A™(8) Dj A(6) is

the transformed co-variance matrix (all the above

variables are in cartesian space). As before, Cj is the co-

variance of the 3D feature Rj.

If we compare the contribution of a single stereo
feature, which is the square of the Mahalanobis distance
between the stereo feature and the 3D feature, against
the value from the squared Mahalanobis distances of the
observations which combined to form the stereo feature,
we find that they are identical. This shows that the
stereo ego-motion determination can be performed in
either approach, and the same answer obtained, provided
the same matches are used. In practice, the first
approach is better, because it also takes account of
points seen in only one camera.

RESULTS
A comparison of the performance of monocular and
stereo structure-from-motion was made using synthetic
data, as this provided knowledge of the true camera
motion that we currently lack on real imagery. The
camera(s) traversed a sinusoidal path over a flat textured
floor, always pointing in the +Z direction. In Figure 3
are shown the true path and the calculated camera ego-
motions from both monocular and stereo structure-from-
motion, as obtained from the DROID computer vision
system (figure 5) [3]. Good motion estimates were



provided to both the monocular and stereo systems, so
that the difference in the paths is due to feature-point
positional noise alone. It is clearly shown that stereo-
motion confers the advantages hoped of it.

The main problem with the monocular processing is
due to lack of odometry. The breaking of the speed-scale
ambiguity on the first two frames of the sequence by
specifying the camera speed, 'freezes' a scale factor into
the rest of the sequence. In fact, long term drift can
occur on the scale, position and orientation of the ego-
motion. This can be seen in Figure 3, where the latter
portion of the sequence is shrunk in magnitude towards
the origin.

Figure 4 shows an example of stereo matching for a
single pair of images (matched points shown bright).
The matcher is similar to the 2D-2D temporal matcher,
[3], which uses weak epi-polar constraints and grey-
level attributes.

CONCLUSIONS

For stereo structure-from-motion both the determination
of ego-motion and the updating of the Kalman Filters of
the 3D points may be undertaken by either the
conventional stereo or our alternative approach, and
identical results obtained if the same matches are used.

However, the conventional stereo approach is
computationally more expensive as it involves working
in 3D as opposed to 2D. In addition, the conventional
stereo approach will give worse results if the matches
are reduced by stereo occlusion, by inconsistent feature
detection (due to features being close to the detection
threshold), or by a reduced stereo overlap region (due for
example, to multiple cameras not being used in a
conventional stereo configuration, but with limited
overlap or different magnifications).
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APPENDIX - EGO-MOTION DERIVATIVES FOR MULTIPLE CAMERAS
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Figure 1. The Kalman Filter update of a 3D point
position.

Figure 2. The motion, q', of a second camera in a
stereo configuration.
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Figure 3. A comparison of monocular and stereo structure-from-motion.
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Figure 4. Stereo Matches (shown bright)
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Figure 5. Stereo DROID flowchart
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