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Abstract — Recent catastrophic bridge failure clearly indicates 

the urgent need of improving interval-based bridge inspection 

procedures that are qualitative and subjective in nature. 

Structural Health Monitoring (SHM) can mitigate the 

deficiencies of interval-based inspection techniques, and provide 

real-time diagnostic information regarding the bridge structural 

health. SHM is not flawless however; the variability in the vehicle 

characteristics and traffic operational conditions makes it prone 

to false-diagnosis. Recent advancements in the integration of 

SHM with Intelligent Transportation Systems (ITS) demonstrate 

the successful use of ITS devices (e.g., machine vision, traffic 

sensors) in the analysis of bridge responses to multi-modal traffic 

with varying loads or during the critical events (i.e., excess 

vibration beyond normal limit). In ITS-informed SHM system, 

the ITS device collected data can be integrated with SHM to 

increase the reliability and accuracy of the SHM system. This 

integration would reduce the possibility of false diagnosis of the 

SHM system (such as vibrations caused by heavy vehicles on a 

bridge could be read by a SHM sensor as a structural health 

problem of the bridge), which would eventually decrease the 

bridge maintenance costs. Similarly in SHM-informed ITS 

system, SHM sensor data can provide data on bridge health 

condition for ITS applications, where ITS uses this bridge health 

condition information for real-time traffic management. In this 

paper, literature related to both ITS-informed SHM and SHM-

informed ITS is reviewed. Based on the literature review, 

potential challenges and future research directions associated 

with ITS-SHM integration are also discussed.  

 

Index Terms— Bridge condition assessment, Condition-based 

monitoring techniques, Integrated SHM-ITS, Intelligent 

transportation system. 
 

I. INTRODUCTION 

N August 2007, the I-35W Bridge in Minneapolis, 

Minnesota, US, collapsed due to the insufficient load 

carrying capacity of its structural components, which raised 

significant concerns about the nation’s bridge inspection and 

maintenance procedures [1]. As a result, a focused effort was 

begun to evaluate practices and procedures utilized in bridge 

inspection and maintenance. Five safety issues were identified 

in a study conducted by the National Transportation Safety 

Board (NTSB), two of which detailed the lack of inspection 

guidance and the improper use of resources to accurately 

determine the structural condition of bridges [2]. Important 

considerations for reliable bridge inspection to improve 

traveler safety have been highlighted in the NTSB report [3].  
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There are two basic types of bridge inspection techniques 

currently used: 1) the interval-based inspection technique and 

2) the condition-based inspection technique. Interval-based 

inspection is the most common one, and has long been in use 

to evaluate the condition of bridges. The minimum 

requirements of interval-based inspection techniques are 

mentioned in the National Bridge Inspection Standards or 

NBIS [4], in which site visits are performed at a pre-

determined frequency, such as once in every two years for 

routine inspection of bridges [2]. Only when the bridge is at 

high risk of catastrophic failure, interim bridge inspection is 

performed. Currently, the NBIS only requires that bridges 

undergo interval-based inspection. There are two types of 

interval-based inspection techniques available: 1) the routine 

visual inspection technique and 2) the non-destructive 

inspection (NDI) technique. Among them, the most common 

type of inspection required by the NBIS is routine visual 

inspection by a knowledgeable and experienced inspector. 

Unfortunately, the results from such inspections often vary 

greatly [5]. NDI, another interval-based inspection technique, 

can identify and determine bridge damage without causing any 

further damage to the structure. Acoustic sounding, chain 

drag, ultra-sonic testing, impact echo, and reflected radar wave 

methods are but a few of the commonly used NDI inspection 

methods [6]-[10]. While the interval-based inspection 

techniques are typically, their accuracy is hindered by the 

requirement of an inspector’s interpretation, the method’s 

dependency on the test conditions, and the inaccessibility to 

the area of damage. The applicability of non-destructive tests 

may be limited due to the scatter in data resulting from the 

spatial variability of the bridge material [11], and substantial 

time and resources requirement for such tests [12].  

The restoration of aged and decaying infrastructures is 

identified as one of the greatest challenges for the United 

States in the American Society of Civil Engineers (ASCE) 

report [13], [14]. The substantial increase in the prevalence of 

these aged infrastructure and the limited resources available 

for their repair necessitates an urgent need to increase the 

effectiveness and efficiency of the interval-based technique. 

This has resulted in the development of a second, but still 

emerging technique: condition-based inspection. Condition-

based inspection entails the near continuous monitoring of 

selected response features of a bridge (e.g. vibration 

responses, operational deflection shape, strain measurement). 

If any observed values of these features crosses a certain 

threshold, maintenance is requested. This condition-based 

inspection technique, which the engineering community 

recognizes as Structural Health Monitoring or SHM, is used to 

identify the damage and determine the damage extent as it 

occurs in real time, which mitigates the risk of damage going 

undetected between interval-based inspections while lowering 
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inspection costs [15]. However, SHM-enabled inspection may 

yield false diagnosis due to the variability in vehicle 

characteristics under which the bridge functions [16], [17]. An 

integrated ITS-SHM framework can mitigate these false 

diagnoses.  

SHM is an emerging and innovative structural condition 

assessment technique, which has been used in both developed 

and developing countries to monitor the behavior of critical 

infrastructures (e.g. historic architectures, high-rise buildings) 

and to assess the structural performance of bridges under 

various service loads [18]. Using data generated from SHM 

sensors, an automated warning system can disseminate real-

time pavement conditions during periods of severe weather 

condition (i.e., heavy rain, snow, high temperatures) [19]. 

High ambient temperatures may cause unexpected expansions 

in the highway bridge pavement, which may cause an 

expansion failure. Extreme temperatures cause SHM sensors 

installed at critical bridge components trigger alerts, which can 

be used to impose restrictions or divert traffic to other routes. 

The Alaska Department of Transportation uses such a system 

to adjust seasonal load restrictions by measuring the 

temperature at various pavement layers [20]. Similar to SHM, 

ITS is a rapidly expanding realm of research, in terms of 

coverage and functionality, with its applications on freeway 

traffic operations including incident management and traffic 

control [21], real-time traffic condition assessment [22], and 

travel time prediction using traffic measurements [23] etc. 

Travel time prediction is required for traffic operation 

management in case of sudden incidents or ongoing bridge 

maintenance work. In addition, developing countries are using 

ITS for traffic surveillance and advisory operations [24]. It is 

plausible to believe that the combined ITS-SHM will replace 

interval-based techniques currently in use. ITS could be 

implemented through the integration of different components 

that includes multiple traffic monitoring sensors, instrumented 

probe vehicles, traffic management centers (TMCs). 

Continuous improvements in communication system and 

sensor technology are now making it possible to integrate both 

SHM and ITS.  The integrated use of SHM and ITS system 

can provide a unique opportunity to leverage these two already 

in place system, and to maximize the effectiveness of both 

systems. This integration can also significantly reduce the cost 

compared to the implementation of stand-alone SHM and ITS 

systems [25]. 

The objectives of this research are to review literature on 

the integrated ITS-SHM system, and to identify challenges 

and provide future research directions for proper SHM-ITS 

integration. In Section II of this paper, the steps associated 

with SHM (i.e., condition-based inspection method) are 

discussed, followed by a summary of the limitation of SHM in 

Section III. In Section IV, literatures where ITS is used to 

improve the reliability of SHM diagnosis (i.e., ITS-informed 

SHM) is detailed. In Section V, discussion on the earlier 

research, where SHM sensors are used for gathering 

information to help ITS (i.e., SHM-informed ITS), is included. 

The challenges and future research direction of both ITS-

informed SHM and SHM-informed ITS systems are discussed 

in Section VI.   

II. STRUCTURAL HEALTH MONITORING TECHNIQUE  

Historically, non-continuous or interval-based inspection 

methods have long been in use to evaluate the condition of 

bridges. There has been a recent noticeable transition from 

traditional preventive maintenance to SHM for in-service 

bridges [26]. Herein, the authors confine the discussion to 

SHM (i.e., condition-based inspection method). SHM entails 

the near continuous and autonomous monitoring of selected 

damage sensitive response features of a structure of interest 

through a sensor network system. SHM links the observed 

changes in these response features to the onset of structural 

damage. This new approach for inspection allows bridge 

owners to make pertinent maintenance decisions based on the 

condition of the structure without relying on a human 

inspector to assess the bridge condition and to interpret the 

data, offers low cost operation, and suggests a reliable 

approach to assess the infrastructure condition in inaccessible 

regions [27], [28]. Many SHM systems involving both wired 

and wireless sensor networks have been developed over the 

last two decades [29], [30]. If the near-continuous structural 

data acquisition and processing steps of SHM can be 

combined with the visual inspection technique (i.e., an 

interval-based inspection technique), early identification of 

bridge health problems can be enabled with minimum human 

error from standalone visual inspection technique [31]. 

In the context of standalone SHM, damage refers to the 

material, connectivity and/or changes in the structural 

geometry that adversely affects the structural performance. 

These changes include, but are not limited to material 

deterioration, the accumulated effects of aging, the changes in 

boundary condition and the loss of connectivity within the 

structural components. The concept of damage identification 

is a five step process [32]. 

Step 1: Detection of the damage area 

Step 2: Localization of damage  

Step 3: Classification of the damage type  

Step 4: Quantification of the damage extent  

Step 5: Prognosis or estimation of the structure’s remaining 

life 

A complete SHM system has four distinct steps [33]. These 

steps are summarized as follows: 

1) Operational evaluation 

The purpose of an operational evaluation is to gather as 

much prior information as possible on the structure to 

investigate the feasibility of implementing the SHM system. 

The four criteria commonly determined during such 

operational evaluations are:  

a) The type and severity of damage; 

b) The operational and environmental conditions of the 

road/bridge; 

c) The restrictions on data collection due to the 

operational and environmental conditions; and   

d) The economic and/or safety feasibility of 

implementing an SHM system.  

2) Data acquisition and cleansing 

The ability to obtain accurate measurements of the 

structural characteristics is vital to the success of a SHM 

system. One of the key aspects of obtaining accurate 

measurements is the selection and placement of the sensors.  
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The bridge vibration and deflection can be measured with a 

laser doppler vibrometer installed in the bridges [34]. Another 

emerging approach is the use of digital cameras to quantify 

bridge deflection under dead and moving loads, and to identify 

and quantify structural damage [35]. The Train Intelligent 

Monitoring System is also now available to detect 

irregularities in railway tracks by observing the vibration 

responses, as is the Vehicle Intelligent Monitoring System, to 

collect road data via a vehicle mounted Global Positioning 

System (GPS) sensor and an accelerometer, and a portable 

computer to monitor the condition of highway pavement and 

expansion joints [36].  In each of these systems, the desired 

data is collected and stored in the data acquisition stage, and 

transmitted in an automated manner in real-time to facilitate 

continuous and remote monitoring of the structure. In the data 

cleansing process, the accuracy and reliability of the collected 

data are evaluated and decision is made to forward the data to 

the feature extraction process [37]. Data cleansing is used to 

eliminate data that has become corrupted or unreliable during 

the data acquisition process.  

3) Feature extraction 

 Feature extraction involves extracting low-dimensional 

feature vector from the measured field data that are sensitive 

to changes in the structural condition of a system. A 

comparison of these features makes it possible to differentiate 

between the damaged and undamaged structural states [33]. 

Selected features should ideally be insusceptible to ambient 

noise, sensitive to structural damage and computable in a 

timely manner [38]. Features with a low dimensionality are 

preferable since they allow for statistical evaluation of the 

trends in the collected data in a more straightforward manner. 

The features that have an intuitive, physical meaning allow 

easy communication between involved parties and features 

that reflect the nature of the structural response, i.e. linear 

versus nonlinear responses tend to be effective in indicating 

changes in the system behavior.  

The most widely used features to identify, locate, classify 

and quantify structural damage are those that are based upon 

vibration responses, including natural frequency [39], [40], 

mode shape [41], [42], operational deflection shape [43], [44], 

modal strain energy [45], residual force vector [46], and 

frequency response [47]. Moreover, ITS applications also have 

features useful for SHM. For example, the features used by the 

video camera monitoring system are the coordinates of 

reference points to find in-plane displacements and rotations 

[48], operational deflected shapes [49], and locations of 

vehicles that can be used to devise an index called the unit 

influence line [50]. Fiber optic sensors use features such as 

displacement [51], strain and temperature [52], acceleration 

and inclination [53]. 

4) Statistical model development 

 The purpose of a statistical model is to identify changes 

and trends in the response of a structure. Statistical models to 

detect changes in bridge behavior are the algorithms that use 

the damage sensitive features extracted in the previous step 

(Step 3) to appraise the structure’s condition [37]. The 

algorithms of statistical model development are classified as 

either supervised or unsupervised learning algorithms. In a 

supervised learning algorithm, data is collected from the 

damaged and undamaged condition of the structure. If data is 

obtained from only the undamaged condition, the algorithm is 

classified as an unsupervised learning algorithm. Common 

statistical models include a) Moving Average (MA), b) Auto 

Regressive (AR), and c) Auto-Regressive-Moving Average 

(ARMA) models [47]. The algorithms used in this stage are 

broadly categorized as data based algorithms (i.e., algorithms 

that rely on the measured data) and model based algorithms 

(i.e., algorithms which integrate measurements with a 

numerical model developed based on physics principles) [54-

56].  

III. LIMITATION OF EXISTING SHM TECHNIQUE 

For SHM to replace conventional interval-based assessment 

techniques, further research is needed to enhance its practical 

applicability. Bridge vibration characteristics (i.e., natural 

frequency and damping) are influenced by the speed and mass 

of the moving vehicles as they alter the effective mass of the 

bridge. In their study on a long plate girder bridge, Kim et al., 

concluded that the presence of heavy traffic decreased the 

natural frequencies by 5.4%, unlike the study of Farrar et al., 

which determined a 5% variability in frequency in a 24 hour 

time period [40], [57]. This level of variability can cause two 

problems in damage diagnostics: it may either mask the onset 

of damage (false negative) or it may interpret the changes in 

the data from the traffic as damage (false positive). Moreover, 

the variations in both the mass of the vehicles on the bridge 

and the traffic-induced excitations can alter the time history 

vibration response of a bridge, which in turn affects both the 

central tendency of the measured response data and excitation 

levels. Therefore, statistical modeling methods, which do not 

consider variations in traffic operational condition (e.g., traffic 

speed, vehicle position) or vehicle characteristics (e.g., vehicle 

size, loading) are prone to making false diagnosis. Previous 

researchers, for instance, Farrar and Jauregui did not consider 

traffic loading while comparing damage detection algorithms 

for a bridge structure [58]. Lee et al. presented an artificial 

neural network-based bridge damage assessment framework 

that uses the ambient vibration data induced by traffic [59]. 

However, in standalone SHM system, there still remains a gap 

in statistical modeling for not considering traffic speed, 

vehicle location, and other traffic parameters that influence the 

bridge structural vibrations. These limitations can be 

overcome by improving the knowledge of operational 

conditions of bridges through ITS [60]. Determining this 

traffic-induced mass loading and ambient excitation is 

necessary for normalizing the measured vibration response 

data [61]. The inclusion of dynamic traffic characteristics 

(e.g., traffic speed, volume) and vehicle loading information 

into the statistical damage detection algorithms can yield 

significant improvements in diagnostic evaluation accuracy.   

The proper integration of ITS and SHM system can yield a 

mutually beneficial relationship. Real-time traffic data 

collected by ITS devices can be fed into the SHM system, 

which will increase the reliability of bridge health condition 

diagnosis. The structural state of the bridge identified by SHM 

can in turn be communicated to TMCs. Recent research 

incorporating the occurrence of SHM and ITS is discussed in 

Section IV and V.  
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IV. ITS-INFORMED SHM 

In an ITS-informed SHM system, the integration of data 

collected through the ITS devices and SHM sensors in turn 

improve the reliability of SHM. ITS devices include roadway 

traffic monitoring sensors, such as loop detectors, weigh-in-

motion station (WIMS), digital traffic monitoring camera etc. 

By integrating the collected traffic information with a SHM 

system, the effect of traffic operational condition on the bridge 

structure can be evaluated [61]. Different study of ITS-

informed SHM system have been reviewed in the following 

subsections.  

A. ITS-informed Bridge Response Study for Regular Traffic 

Flow 

ITS has been used to investigate bridge behaviors under 

normal traffic flow. Zaurin and Catbas used data collected 

from both ITS and SHM sensors, and synchronized the data to 

construct Unit Influence Lines (UIL). UILs are considered as 

the index to monitor the bridge behavior under particular 

loading conditions [63]. At any given point on a structure, UIL 

shows the response variation caused by a moving unit load. 

ITS devices (i.e., video cameras) were used to identify, 

classify, and locate vehicles on the bridge. UIL was obtained 

based on the responses from SHM sensor (i.e., strain gauge, 

accelerometer) corresponding to the movement of the vehicles 

across the bridge surface. The UIL obtained using the 

predetermined vehicle positions were then compared to the 

UIL obtained by the integrated ITS-SHM system. Results 

from the study show an agreement between the UIL obtained 

from the integrated system and those obtained from the 

predetermined load locations. After developing the UIL, 

Zaurin and Catbus used it to identify the critical load 

combination effects on the bridge for predicting the bridge 

behavior under those load combinations. Their findings are 

promising concerning the use of ITS-informed SHM system to 

accurately diagnose bridge health.  

In a similar study on the Sunrise Bridge, in Fort Lauderdale, 

Florida, Catbus et al. incorporated traditional SHM sensor 

(i.e., strain gauge) with ITS device (i.e., video camera) to 

create an effective structural monitoring tool under unknown 

loading conditions [64]. Here, Catbas et al. used a computer 

vision process to analyze the images to understand the image 

content (i.e., vehicle types, vehicle locations). Using data 

derived from the strain gauge and video camera, the authors 

experimentally performed the load rating analysis to calculate 

the bridge structure’s load carrying capacity. The extracted 

UIL from the SHM sensor and the synchronized image 

measurement were used to calculate the bridge rating. In this 

experiment, the authors compared the load rating results with 

a finite-element model and validated the result. It is observed 

that for empty trucks, the variation of the load rating data from 

the proposed method is only 0.48% when compared with the 

finite-element model, thus it highly correlates.  

To determine the level of traffic needed to induce bridge 

excitement, a stochastic model was developed by Chen et al. 

[65]. Authors assumed that the traversing vehicles can be 

represented as the sequence of Poisson processes moving load, 

where considering the movement of the load as a stochastic 

process, shifting load and time points of the load advancement 

are counted. In this experiment, noises due to traffic 

operational variation were accommodated by extending the 

excitation model. The authors videotaped moving vehicles and 

synchronized that movement with the data recordings from an 

accelerometer. Later, each vehicle speed was derived from the 

time difference between two timestamps attached with the 

entering and exiting frames of the camcorder recorder. 

Moreover, the authors measured the covariance between 

equivalent nodal forces at various node points. It is found that 

the covariance between any node pair is a non-zero function, 

and thus, the bridge traffic excitation is spatially correlated. 

Such spatial correlation is not observed in bridges, which 

carry two-way traffic. In order to monitor the change in bridge 

behavior due to traffic-induced vibration, the Cut River Bridge 

is instrumented by the Michigan Department of Transportation 

with different contact sensors and traffic monitoring devices 

[66]. The traffic data collected from wireless weigh-in motion 

station are verified with the video cameras. The archived data 

can be used to correlate and compare the actual bridge service 

loads and the loads which are used as design load.  

B. ITS-informed Bridge Response Study for Critical Events 

Bridge critical events entail special types of events where 

bridges experience vibration beyond the normal limit. In this 

regard, Fu and Moosa presented a method to diagnose the 

condition of the bridge structures with the help of high-

resolution images provided by a camera [67]. According to the 

authors, use of camera offers a cost-effective solution to 

diagnose whole bridge structure. Using accelerometers placed 

on a bridge to determine such vibrations is also possible, but it 

is more expensive in that such analysis requires many 

accelerometers compared to camera. Also, no technique is 

available to diagnose whole structure using the measurements 

from only few accelerometers. Authors demonstrated their 

research in the laboratory. With the help of camera, they 

detected structural damages causing as low as 3% loss in the 

stiffness of the structure. Result from the study shows that 

high-resolution cameras can be used to clearly recognize the 

structural damage and identify location of the damages. One 

of advantages of the camera used in their study is that it can be 

redirected to critical events. Basharat et al. used this particular 

function of the camera for studying network traffic activity 

from a remote location (i.e. a remote observatory) in their 

research [68]. As the activity metric value, Basharat et al. used 

the mean shift vector in this research, which is compared 

against the threshold value. When the value of the activity 

metric is lower the threshold value, it indicates that the 

vibration occurs due to normal traffic and the data should not 

be considered as an event. When the vibration levels exceeded 

the established threshold value, the base station was notified 

and the camera was directed towards the point of interest, and 

panned, tilted or zoomed to the event using the information 

gathered.  

An integrated SHM-ITS system is also effective in 

identifying the damage caused by overweight vehicles. Loh et 

al. synchronized the video streaming data from a high 

resolution camera (i.e., ITS device) with the data collected by 

wireless accelerometer sensor (i.e., SHM sensor) to trace the 

cause of damage from specific vehicles, such as an overweight 

truck or trailer on the Voigt Bridge, California [69]. In this 
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study, the acceleration response and the operational deflected 

shapes due to the loads from vehicles passing over the bridge 

were measured using the wireless SHM sensor network. 

Results from this study show that correlating the video camera 

data with the recorded acceleration time histories obtained 

from wireless sensors can identify a vehicle’s influence on the 

bridge response. After identifying vehicle-induced vibration, 

false diagnosis by SHM sensors can be identified, which 

would in turn reduce the bridge maintenance costs.  

C. ITS-informed Complete Bridge Management System  

It is important to establish a bridge management system that 

consists of the following four components: information 

acquisition, data management, evaluation and decision-

making, and application service. Chen et al. conducted a study 

that combines SHM and ITS for intelligent management of 

Zhijiang Bridge in Hangzhou City, China [70]. Vehicle 

characteristic data (i.e., vehicle load) along with bridge health 

monitoring data (i.e., strain, deflection, vibration) were 

collected to assess bridge health condition. An ITS device 

(i.e., weigh in-motion station with a video capture function) 

was used to capture vehicle weight and to obtain the license 

plate numbers of overweight vehicles. The core of the 

intelligent bridge management system is the structural status 

evaluation subsystem, which uses the data collected by 

different SHM and ITS sensors. The data processing module 

and the status evaluation module are the two modules of this 

status evaluation subsystem. The data processing module 

conducts statistical analysis using data from each sensor. The 

status evaluation module localizes, quantifies, and identifies 

damage by monitoring trends of structural response and 

evaluates the bridge health status. In this study, Chen et al. 

used ITS-informed SHM system to generate time-specific 

status information, which provides data support for bridge 

maintenance and decision making. By providing reliable data 

for bridge maintenance and decision making, this ITS-

informed SHM system eventually reduced the maintenance 

cost of the structure. The problem of managing large amounts 

of multi-parameter traffic data has also been addressed by 

Glisic et al. [71], who developed a software package that gives 

users real-time access to both present and historic data. The 

developed software has three main components: (1) software 

linked with the SHM system to acquire data, (2) live portal 

software that allows remote visualization of live traffic data in 

real-time and (3) playback software that helps users to 

visualize and interpret historic data. 

Integration of SHM with the traffic monitoring system 

poses a data analytics problem. In 2011, Vespier et al. 

conducted a study on the large Hollandse Brug Bridge in 

Netherlands that successfully linked the real time traffic data 

with SHM [72]. The bridge was instrumented with 145 

sensors and a camera is used to record the traffic to 

continuously record time-specific data. The authors used 

Hadoop data analytics framework to manage the large quantity 

of data using a cluster of 5 quad-core computing nodes. 

The review of recent studies focusing on ITS-informed 

SHM suggests that ITS devices can help to locate the exact 

source of bridge excitation and to verify critical events, thus it 

can mitigate the potential false-diagnosis of standalone SHM 

systems due to variable traffic excitation. Within very short 

time intervals, ITS device incorporated data management 

systems can process an enormous amount of data that has been 

generated continuously from the traffic movement. Table I 

presents the main aspect of the research on ITS-informed 

SHM, devices used, strategies followed, research outcomes, 

the advantages and limitations of each as well as the type of 

the project. 

V. SHM-INFORMED ITS  

   A study by the Texas Transportation Institute revealed 

that for the year 2007, congestion costs for US urban travelers 

was $78 billion from 4.2 billion extra hours on the road and 

2.9 billion gallons of fuel during congestion [73]. According 

to the Federal Highway Administration (FHWA), non-

recurring congestion causes about half of the total congestion. 

Non-recurring congestion is the temporary disruption of 

normal traffic flow which includes congestion due to 

incidents, temporary bridge shut-down and/or emergency 

bridge maintenance work. Real-time information regarding 

bridge health conditions provided by SHM can help ITS 

improve traffic management during bridge maintenance work 

on the bridge. ITS can inform and/or reroute traffic, in real-

time, before a shutdown occurs due to emergency bridge 

maintenance work or during/after natural disasters and restrict 

overweight vehicles. Real-time traffic rerouting is a critical 

component of incident management through ITS to minimize 

traffic delays and reduce the probability of secondary 

incidents [74], [75]. Receiving early notification regarding the 

bridge health, significant traffic diversions from the route 

towards the bridge can take place using ITS devices (e.g., 

variable message signs), which could reallocate traffic 

volumes across the network and minimize the impact of non-

recurring congestion [76]. In SHM-informed ITS system, data 

collected by SHM sensors for a bridge can be integrated with 

existing ITS services. Here, based on the structural conditions 

of a given bridge, real-time traffic management decision can 

be made to minimize safety risks and traffic congestion 

potentials at the bridge. Related literature where SHM is 

successfully integrated with ITS is discussed in the following 

subsections.  

A. SHM-informed ITS to Determine Traffic Operational 

Condition 

SHM systems can help ensure the smooth and safe flow of the 

traffic stream by providing necessary information required by 

different ITS applications to determine traffic operational 

condition (i.e., macroscopic traffic information such as traffic 

volume, density). Sun and Sun incorporated the structural 

response monitoring sensors (i.e., strain sensor, accelerometer) 

with ITS devices (i.e., video camera, inductive loop) to 

measure traffic volume, traffic density, vehicle speed, vehicle 

space and many other traffic flow parameters [60]. From their 

analysis on strain-history, they found that moving vehicles 

directly contribute to the main girder vibration. As the video 

monitoring system is unable to determine the axle load and 

axle spacing, the weight measuring devices (e.g. the weigh-in 

motion and inductive loop technologies) were used to mitigate  
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traffic flow 

Analyzed and 

synchronized 

sensor data with 
video image to 

create a UIL as 

the index to 
monitor bridge 

behavior 

 

 Video camera 

placed in the 
direction of traffic 

flow 

 Sensors (strain 

gauge1,2 and 

accelerometer1) 

connected to the 

bridge 

Video processing and 

computer vision 

algorithms 

Development of UIL 

from the responses of 

vehicle as an index in 
order to monitor 

behavior of bridge for 

identified1and 
unknown 2 loading 

conditions 

Study of UIL can track 

the structure 

deterioration with time 

Synchronizing time 

with distance, data 

filtering, 
environmental issues 

etc. causes 

uncertainties in using 
the UIL as a health 

condition monitoring 

index 

Experimental 

study 

Zaurin and 

Catbas1 

[63] 
Catbus et 

al.2 [64] 

Synchronized 
images of passing 

vehicles to 

develop traffic 
excitation model 

 Accelerometer fitted 
with the bridge 

 Digital traffic 

camera 

Image processing 
algorithm (for 

vehicles’ speed 

calculation)  

Stochastic model  
development for 

vehicle excitation on 

bridge structure 

 Traffic camera  does 
not interrupt the traffic 

flow  

 Data can be collected 
continuously 

Image capturing 
performance of 

camera can be 

hindered by 
environmental 

conditions 

Experimental 
study 

Chen et 
al.[65] 

Coordinated contact 

sensor data with 
crossing traffic 

vehicle data 

 Wireless fiber optic 
strain gauge 

 Temperature and 

environmental 
sensors 

 Weigh-in motion 

station along with 

vehicle monitoring 

system 

 Close circuit camera 

Embedded algorithm 

in the weigh-in 
motion system 

with video capture 

function 

Establishment of a 

baseline from the 
collected data to use 

in future 

 Wireless data 
transmission is 

available 

 Close circuit camera is 
mounted on a tower 

which does not 

interrupt the regular 

traffic movement 

Close circuit camera is 

susceptible to 
variable weather 

condition 

Real-world 

application 

 Darwish et 

al. [66] 

ITS-
informed 

bridge 

response 
study for 

critical 

events 

Monitored critical 
events (i.e., 

bridge vibrations) 

using traffic 
camera  

 Sensors 

(acceleration and 

temperature) 

installed on the 

bridge 

 Video camera 

Event detection 
technique 

Inspection and 
recording of the 

events which may 

cause increased 
vibration in bridge 

structure 

Video clip regarding an 
activity can be 

recorded and logged 

into a database 

Environment has 
adverse effect on 

video camera 

performance 

Experimental 
study 

Basharat et 
al. [68] 

 Studied wireless 

video-enhanced 

traffic monitoring 
system 

 

 Wireless sensors on 

bridge 
superstructure 

 Video camera 

 Accelerometer  

installed on the 

bridge 

Automated image 

processing 

techniques and  
peak-picking 

algorithm to 

identify bridge’s 
modal frequencies 

 

Quantification of the 

vehicle number and 

finding the 
correlation between 

its effect with the 

response of the bridge 
structure  

 

 Traffic monitoring 

camera  does not 
interrupt traffic flow 

 Wireless sensors allow 
reconfiguration of 

sensor locations  

 Wireless system is less 
labor intensive than 

cabled monitoring 

system 

Image capturing 

performance of 

camera can be 
hindered by 

environmental 

conditions (i.e., rain, 
fog etc.) 

 

Experimental 

study 

Loh et al. 

[69] 

 

TABLE I 

STUDIES ON ITS-INFORMED SHM  
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Key 

feature 

Main aspect of the 

research 
Devices/ 

Sensors/Station 
Strategies 

Issues investigated in 

the research 
Advantages Limitations 

Type of 

project Source 

ITS–
informed 

complete 

bridge 
managem

ent 

system 

Monitored vehicle 

load for integrating 

SHM and 
intelligent bridge 

management 

 Professional 

meteorological 

station in the 
middle main span 

of the bridge 

 Temperature and 
humidity sensor in 

steel box girders 
and steel arc tower 

 Weigh-in motion 
station 

Embedded algorithm 

in the weigh-in 

motion system 
with video capture 

function 

Assistance for the 

management and  

control of overweight 
vehicles by collecting 

vehicle weight and 

license plate number 

 Real-time and accurate 

vehicle axle loads can be 

collected 

 The accuracy of the 

weigh-in motion station 
to record speed and 

weight are tolerable  

 The initial installation 

and maintenance cost of 

weigh-in motion system 
is high.  

 Video capture 
performance can be 

affected by bad weather 

Real-world 

application 

Chen et 

al.[70] 

 Developed software 

to integrate both 

real-time and 
historic data of 

SHM and traffic 

monitoring 

 SHM sensors 

(dynamic strain 
sensors, static 

strain sensors, 

temperature 
sensors) fixed with 

the bridge 

 Video surveillance 
camera  

  Embedded 

algorithms for 

statistical analysis,  
data visualization 

and reporting  

 Management of  large 

amounts of SHM and 

traffic monitoring  
data   

 Real-time and/or on-

demand access to data 
(both live or historic) is 

available  

 Software package is user 
friendly and it is 

oriented for a wide-
ranging audience 

Performance of video 

surveillance camera can 

be hindered due to 
adverse weather 

Real-world 

application 

Glisic et 

al. [71] 

Determined 

maintenance work 
frequency 

 Vibration, 
temperature and 

strain sensors 

connected to the 
bridge 

 Video cameras 

Time series 

subsequence 
clustering 

technique  

Identification of the 

traffic events by 
bridge response 

A scalable implementation 

of the proposed 
framework is 

demonstrated 

Depending on the input 

data, some undesirable 
behavior can be 

observed from the 

classic subsequence 
clustering method 

Real-world 

application 

Vespier et 

al. [72] 

TABLE I (Cont.) 

STUDIES ON ITS-INFORMED SHM  
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this image processing burden and improve the traffic 

identification results. ITS needs reliable traffic information 

(i.e., traffic volume, vehicle speed) to optimize traffic signals, 

and to detect and manage incidents. Xue developed an 

integrated transportation monitoring systems to 

simultaneously collect the traffic speed and monitor the 

pavement health condition [77]. 

 

B. SHM-informed ITS to Determine Vehicle Characteristics 

Data  

To determine the individual vehicle configuration and the 

weight of the moving vehicle, Wang et al. integrated the 

conventional infrastructure monitoring systems such as in-situ 

sensors with traffic classification system and weigh-in motion 

system [78]. Using this integrated monitoring system, the 

authors introduced a back calculation method to infer 

parameters (e.g., vehicle weight and speed, and passing 

vehicle configurations) from the strain measurements. The 

back-calculated speed was reported to exactly match with the 

speed derived from a speed gun, and the distance between 

axles and calculated tire weights are found to have excellent 

agreement with the actual axle spacing and weights. In their 

study, Gonzalez and Karoumi also integrated ITS with SHM 

to determine vehicle load [79]. From their research, authors 

observed that a bridge system deteriorates mainly due to 

traffic load and other environmental factors. With the help of 

the bridge weigh-in motion system, they proposed a railway 

traffic monitoring technique for the Soderstorm Bridge in 

central Stockholm, Sweden. This weigh-in motion system has 

two strain gauges (i.e., SHM sensor). Data extracted from 

these gauges help to determine the train axle spacing and the 

axle load. Results from the research show an average of 22 

train crossings per hour on the instrumented track. With a 95% 

confidence level, accuracy of the estimated load by the bridge 

weigh-in motion system was within 15% for the calculated 

axle load and 8% for bogie load. 

Fraser et al. used SHM sensor (i.e., accelerometers) and ITS 

device (i.e., video camera) to detect individual vehicle in the 

Voigt Drive/Interstate-5 bridge test bed in the University of 

California, San Diego campus [80]. Continuous time-

synchronized visual and accelerometer data are made available 

through a secured web portal. The System resonant 

characteristics were monitored by generating and viewing the 

frequency domain displays of time histories. Although the 

bridge is affected by the major traffic crossing below the I-5 

corridor, the developed automated system identified the bridge 

vibration induced by the crossing traffic on the bridge deck 

using stabilization diagrams. As per the stabilization diagrams, 

a bridge physical vibration mode is only considered if: 1) the 

natural frequency of the bridge deviates by less than 1% from 

the models; 2) the modal assurance criterion between the 

mode shape is more than 95%; 3) the damping ratio is less 

than 20% and positive; and 4) the modal parameters satisfy the 

previous three conditions for minimum 10 times. To determine 

the exact vehicle location on the bridge, markers were used on 

both sidewalks at known locations. By processing the video 

signal records, both vehicle speed and location are determined 

later. To detect the moving vehicles from the video stream, the 

background subtraction method was used, which compares 

and separates the pixels of each frame that have different 

properties from the updated background scene. Using this 

subtraction method the vehicles from the background image 

are separated.  

In their study of video and contact sensor responses, Chang 

et al. [81] developed a computer vision algorithm to identify, 

track and classify vehicles. Subsequently, Gandhi et al. studied 

the synchronization of data captured by contact and visual 

instruments to identify, track, and classify each vehicle 

traveling across a bridge [82]. Such synchronization requires 

the use of video images to provide real-time estimations of the 

ambient excitation caused by traffic density and vehicle 

weight on the bridge. The corresponding data is then fed into 

the SHM pattern recognition algorithm. The authors found that 

the time series properties from seismic sensors and texture, 

shape, and color features collected from vision sensors is 

useful in classifying the recorded data into the detectable 

vehicle classes. 

Review of recent literature highlights applications where 

traffic conditions and vehicle characteristics are investigated 

through visual aids and contact sensors. In order to plan traffic 

routing, it is necessary to correlate the traffic conditions and 

vehicle characteristics with their effects on the bridge 

structure. The reviewed studies have distinct strategies, 

advantages and limitations, which are summarized in Table II. 

In addition, Table II includes main research aspects, issues 

investigated in the projects, devices used and the project type. 

VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS OF 

INTEGRATION OF ITS AND SHM 

In Section VI and V, earlier research about the successful 

integrations of SHM sensors and ITS devices for both ITS-

informed SHM and SHM-informed ITS is presented, where 

the coupling of ITS and SHM have improved the functionality 

of both systems. With time, technologies and functionalities of 

both ITS and SHM are anticipated to continually improve. 

More efforts are required to implement ITS, as this emerging 

system still has many challenges to overcome to achieve 

maturity as a practically applicable and, feasible technology 

[83] for ITS-SHM integration. Major challenges for proper 

integration of ITS and SHM are listed below along with the 

future research directions to address the challenges. 

A. Introduction of reliable data collection technology 

1) Challenge 

SHM is mainly a data-driven decision making system, 

which needs a consistent flow of reliable data from the contact 

sensors, and visual instruments. Traffic monitoring devices, 

such as video cameras, however, cannot collect data in less-

than-ideal conditions such as at night or in poor weather.  

Shadow and low lighting conditions are the fundamental 

technical limitation of current computer vision systems, which 

are now integrated into many existing SHM applications [84]. 

Thus, proper introduction and implementation of timely and 

reliable data collection technology still remains a challenge.  
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Key feature 
Main aspect of the 

research 
Devices/ Sensors/Station Strategies 

Issues investigated in the 

research 
Advantages Limitations Type of project Source 

SHM-informed 

ITS to  

determine 

traffic 

operational 

condition 

Investigate image 

processing of 

video records 

about background 

model, image 

segmentation 

process, shadow 

suppression 

process and object 

matching method 

 Traffic video 

monitoring device  

installed on the mid-

span of the main 

navigation channel 

bridge 

 Inductive loop 

 Structural response 

monitoring devices 

(strain gauge, 

accelerometer) 

Image 

processing 

algorithm 

Determination of the 

traffic volume, traffic 

density, vehicle speed 

Due to relatively low 

implementation cost, no 

interference with traffic and 

no damage to road, use of 

video camera is widespread 

Use of inductive loop and 

WIMS to support video 

camera increases the 

operational and maintenance 

cost of the system 

 

Experimental 

study 

Sun and Sun 

[60] 

SHM-informed 

ITS to determine 

vehicle 

characteristics 

data 

 

Monitor railway 

traffic 
 Contact sensors 

(accelerometers, strain 

gauges) 

 Weigh-in motion 

station 

Embedded  

algorithm in 

bridge weigh-

in motion 

station 

Estimation of the axle 

load and axle spacing  

The proposed algorithm 

requires simple 

computational effort and 

uses only two strain gauges 

The sensor placement is not the 

most ideal for traffic load 

estimation  purpose  

 

Experimental 

study 

Gonzalez and 

Karoumi [79] 

Perform back 

calculation from 

synchronized data 

captured by 

sensors 

 Weigh-in motion 

station  

 Sensors (load cells, 

thermocouple, strain 

gauges, moisture 

sensor) installed on the 

bridge 

Back calculation 

process (from 

response of 

strain gauges) 

 Detection, tracking, 

and classification of the 

vehicles traveling 

across the surface of a 

bridge  

 Passing vehicles’ 

configuration 

 The time requirement for 

back calculation analysis is 

low 

 It has ignorable storage 

requirement compared to 

image processing method 

 Low cost monitoring system 

has multiple functionalities 

and high efficiency 

There was no arrangement to 

consider different loading 

condition of vehicle and 

effect of temperature on 

pavement 

Experimental 

study 

Wang et al. [78] 

Develop an  

integrated 

structural 

monitoring 

framework to 

detect the moving 

traffic 

 Accelerometer on 

bridge superstructure 

 Digital camera installed 

on light post 

Stochastic 

subspace 

identification 

algorithm and 

image 

processing 

Detection and tracking of 

vehicles 
 Established sensor network 

does not interfere with 

traffic and it is not affected 

by the ambient weather 

conditions 

 Real-time data transmission 

was secured through high 

speed internet 

Enhancement of the vehicle-

identification  algorithm to 

handle merging vehicles, and 

implementation of the 

shadow suppression 

algorithm is required  

Experimental 

study 

Fraser et al. [80] 

Use contact and 

vision sensors to 

identify, track and 

classify vehicles 

 Contact sensors  

   (accelerometers, strain 

gauges) connected to 

the bridge 

 Video camera 

Computer vision 

algorithms 

Detection, tracking and 

classification of 

vehicles 

Data collected by the 

combined contact and video 

sensors increase the 

reliability of the whole 

system 

Image capturing performance of 

camera can be hindered by 

environmental conditions 

Experimental 

study 

Chang et al. [81] 

Use multiple 

modalities that 

includes contact 

sensors and 

distributed video 

array (DIVA)  

 Contact sensors 

(accelerometers, strain 

gauges) along the 

roadway 

 Video camera on street 

lights or neighboring 

buildings 

Image-based 

vehicle 

identification 

and tracking 

algorithms 

Detection, tracking and 

classification of 

vehicles 

Data collected by the video 

sensors and seismic sensors 

are more reliable than using 

single sensors 

 Image capturing performance 

of camera can deteriorate 

environmental conditions 

 The peak gap in strain gauge 

response for small vehicles 

was unreliable and the 

response had noticeable 

spread 

Experimental 

study 

Gandhi et al. 

[82] 

TABLE II 

STUDIES ON SHM-INFORMED ITS  
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2) Future Research Direction 

The following techniques, if implemented can contribute to 

both SHM and ITS system by maintaining the reliability of the 

collected data. 

 Mobile vibration-based bridge health monitoring 

A mobile unit (i.e. a probe vehicle) traversing a bridge 

constitutes a dynamic system with multi-degree-of-freedom. 

The inertial, damping, and stiffness properties of the mobile 

unit as well as the bridge govern the response from the system. 

Any change in these properties over time (e.g. change related 

to the bridge aging or accumulated lifetime damage) causes 

changes in the combined system’s response. Thus, changes in 

the vehicle vibrations are attributable to changes in either 

pavement or in bridge stiffness. The changes in the vibration 

response from changes in pavement surface and bridge 

stiffness are expected to be concentrated within vastly 

different frequency ranges. It is possible, however, through 

proper data cleaning, filtering, and interrogation techniques, to 

develop such a scheme. The spatial integrity of the collected 

data will be assured with high-accuracy GPS positioning. GPS 

technology is also useful in verifying the displacement of the 

bridge structure, as indicated in the Knecht and Manetti study 

[85]. Fig. 1 shows a GPS-instrumented vehicle collecting data 

from its built-in accelerometer. This vehicle can also be used 

to collect traffic data (i.e. vehicle speed, headway, number of 

stops). According to Kim et al., using vehicles integrated with 

accelerometers reduces both the installation and maintenance 

cost of additional wireless communication sensors for vehicle-

bridge monitoring [86]. This system can potentially serve as a 

reliable data source for the interim transitional period before 

the Connected Vehicle Technology (CVT) is fully matured 

and implemented, where connected vehicles can communicate 

and exchange data with other vehicles and/or bridge 

infrastructure through wireless communication.  

 Collection of infrastructure information with CVT 

FHWA developed a Connected Vehicle Reference 

Implementation Architecture (CVRIA) to show the primary 

interfaces in different CVT applications and to prioritize 

activities regarding standards development [87]. The 

‘Infrastructure Management’ application from CVRIA is 

developed to monitor and maintain the performance of an 

infrastructure in a connected vehicle environment [88]. Fig. 2 

shows a typical example of bridge infrastructure management 

in a connected vehicle environment. Here the maintenance and 

construction management center (MCMC) receives the 

connected vehicle generated vehicle size and vehicle loading 

information from TMC, and SHM sensor-based bridge health 

condition data from the bridge management center (BMC). 

Once bridge damage is identified, immediate action is taken 

by the MCMC (e.g. the immediate dispatch of a bridge 

maintenance and construction vehicle). In addition to the 

vehicle characteristics data, connected vehicles can provide 

data on adverse weather conditions and support the integration 

of weather data with road condition and traffic operational 

condition data [89]-[91]. CVT also offers a cost effective 

pavement monitoring system [92]. Data collected from 

connected vehicles can be integrated with existing pavement 

deterioration forecasting models to estimate the time-wave-

length-intensity-transform (i.e., a wavelength-unbiased 

characterization of pavement roughness from a wide range of 

vehicle types and speeds) and proportionality constant (i.e., 

proportion of the road impact factor and the international 

roughness index) providing a repeatable low-cost performance 

measure of the pavement.    

 Automated mobile corrosion monitoring system  

Although the corrosion of the reinforcing steel within a 

bridge has a direct consequence on infrastructure 

sustainability, steel bar corrosion measurement remains a 

challenge where these steel bars are embedded in the concrete. 

An automated mobile corrosion measurement system has been 

developed to address this difficulty [93], [94]. For detecting 

and measuring different types of surface corrosion, the use of 

a digital fringe projection technique with a high-resolution 

camera is studied by Huang et al. [95]. However, further 

research is necessary for evaluating the new generation of 

corrosion sensors [96] in a mobile vehicle-based data 

collection environment. Specifically, a new reliable corrosion 

data acquisition system for monitoring the infrastructure must 

be established which can acquire and transfer accurate 

corrosion data in real time. Using connected vehicles, 

collected data can be transferred from the corrosion 

monitoring system to BMC without any incurring additional 

costs of deployment in the infrastructure.  

Fig. 1. Schematic diagram of detecting bridge dynamic signatures. 
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B. Implementation of data infrastructure for Big Data 

Analytics  

1) Challenge 

Data analytics is used to derive useful information from raw 

data extracted from different SHM sensors (e.g., strain gauges, 

accelerometers), ITS devices (e.g., traffic surveillance camera, 

inductive loop detectors), cell phones, weather stations and 

social media (e.g., Facebook, Twitter) or news feeds. Apart 

from a few studies about the distributed data acquisition 

system [71], [72], very limited literature has addressed the 

challenges associated with data analytics for ITS-SHM 

integrated systems. Knobb et al. demonstrated the usefulness 

of data analytics for monitoring the Hollandse Brug. Bridge, 

Netherland which has 145 sensors [97]. They identified the 

bridge health monitoring application as a large complex data 

analytics application in terms of data capture, management, 

analysis and reporting. In this study, the monitoring system 

installed in the Hollandse Brug. Bridge, Netherland has 145 

sensors. These sensors produce 56 kB of data per second, 

which results in about 5 GB data per day. To broadcast real-

time traffic status in their website, the video camera produces 

a data stream with very low latency. Data from all the high-

frequency sensors are stored in the data warehouse for 

permanent storage. It is not possible to manage the large 

amount of real-time data with high frequency using existing 

data mining approaches, which require either the data to be in-

memory or to be repeatedly scanned on the disc. Knobb et al. 

have recommended the use of a specific data analytics method 

called “Grid Technique” for bridge health monitoring. Thus, 

data analytics can support SHM offering a feasible solution for 

SHM to manage the acquired raw data. To assess the bridge 

condition and manage traffic in real-time, continuous data 

streaming from multiple SHM and ITS sensors is needed. The 

data collected from vastly different ITS and SHM sensors is 

aggregated and correlated according to temporal requirement 

of the SHM and ITS applications. Data delivery delay from 

the data sources to data users can increase due to the 

challenges associated with real-time data extraction and 

processing from a large number of SHM sensors, multiple ITS 

devices (i.e., video camera, connected vehicles, roadside 

equipment or RSE for connected vehicles) and other data 

sources (i.e., weather stations, cell phones, social media). The 

primary challenge for the combined SHM and ITS involve the 

data aggregation, data processing and data redistribution 

according to the specific temporal requirement of bridge 

management and traffic management applications. These 

requirements highlight the necessity of Big Data Analytics for 

the integrated SHM-ITS system. Within the scope of both 

ITS-informed SHM and SHM-informed ITS systems, Big 

Data Analytics tools are needed to support: 1) the enormous 

amount of data generated from SHM sensors and ITS devices; 

2) the different data arrival rate from multiple data sources 

(e.g., SHM and ITS sensors); 3) the different data format 

standard (e.g., PDF, CSV, structured/unstructured XML etc.) 

of various sources, sampling rates, and types of data generated 

from SHM sensors and ITS devices [98], [99]; and 4) the 

potential of data uncertainty (i.e., abnormality or noise in data) 

due to sudden ITS and/or SHM sensor failures. Vespier et al. 

have identified the inability of traditional tools to handle the 

amount of data generated by a group of bridge sensors over a 

long-time range [72]. Big Data Analytics tools are needed to 

handle continuous streaming of massive data with varying 

velocity, accuracy and in vastly different format produced by 

both the SHM and ITS system. The design and 

implementation of data infrastructures to support ITS-SHM 

integration remains one of the greatest hurdles. 

2) Future Research Direction 

For integrated ITS-SHM applications, a data collection 

system could consist of onboard sensors from connected 

vehicles, RSE for connected vehicles, SHM sensors, personal 

devices (e.g. cell phones, portable computers) and online 

media, which would produce large amounts of data that cannot 

be analyzed using traditional data analysis tools. By definition, 

Big Data implies that size of data sets cannot be possible to 

capture, curate, manage and process using traditional software 

tools within a reasonable time frame. Previous studies 

identified the distributed data acquisition system for ITS-SHM 

integrated system at a local level without considering multi-

tier data infrastructure from local level to national level using 

different middleware systems and technologies for Big Data 

[71]-[72]. To capture the aggregated data flows from 

numerous ITS and SHM applications, a multi-tier data 

infrastructure can ensure the maximum availability of such 

filtered data. Fig. 3 presents a conceptual architecture for 

integrated SHM-ITS data infrastructure to serve the combined 

SHM-ITS applications using different middleware systems 

and technologies for Big Data. At the local level, raw data is 

collected from different sources (e.g. SHM sensors, connected 

vehicles, RSE for connected vehicle, traffic monitoring 

camera, mobile phones, social media), and stored in city 

TMCs. Once processed, data from all regional level BMC and 

TMCs are aggregated and forwarded to the state level data 

center. Finally a national-level massive data warehouse will 

store and archive the data for further use. Raw data from 

different sources of integrated ITS-SHM system at a local 

level typically come in under XML/JSON format [100]. At 

regional level, document store, which is a component of the 

information infrastructure to support rapid, large-scale data 

ingestion in the absence of a unified data schema, can use the 

most popular open source solutions such as MongoDB [101] 

and CouchBase [102]. In the next stage, the data from the data 

document needs to be normalized, indexed, and integrated 

with other data to support near-real-time analytics, trend 

detections, and forecasting. This requires the implementation 

of extensible records store solutions to extract, transfer and 

load (ETL) to manage the unstructured, dynamic, and 

temporal characteristics of ITS and SHM data. HBase [103], 

HyperTable [104], HPCC [105], and Cassandra [106] are the 

available solutions for implementing extensible records for 

ITS and SHM.  Accumulo [107] can be used to understand 

how the additional overhead required for security and privacy 

affects the overall performance of the integrated ITS-SHM 

infrastructure. To support very strict service-level agreement 

(SLA) demands of integrated ITS-SHM applications, in-

memory databases (SQL or NoSQL), such as VoltDB [108] 

and MySQL [109] can be used. CouchBase, Accumulo, and 

HPCC can be used as options to perform a comprehensive 

evaluation of the entire infrastructure on different aspects 
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including performance, integration ability, scalability, and 

benefit/cost tradeoffs. Such a system will have two major 

benefits for ITS-SHM. First, as the processed data is stored in 

different level, it will help to prevent the impact of any 

performance degradation or failure of critical transportation 

infrastructure, which may have catastrophic consequences. 

Second, the data storage will be accessible and available 24/7 

for any applications for traffic operations and structural health 

monitoring 

C. Institutional Coordination Requirement 

1) Challenge  

For an integrated SHM-ITS system, operation and 

maintenance of the aging critical highway bridges in a safe, 

efficient, and cost-effective manner require coordination 

between multidisciplinary agencies [62]. Coordination 

between different SHM and ITS related agencies can ensure 

proper handling and management of massive amount of data, 

which will be collected from bridge health monitoring sensors 

and ITS devices. As discussed earlier (Section VI Subsection 

A), in a connected vehicle aided SHM system, data will be 

transferred between centers (i.e., BMC, TMC, MCMC), 

connected vehicles, SHM sensors and RSE for connected 

vehicles. Bridge condition monitoring, traffic condition 

monitoring, and bridge maintenance activities may be handled 

by different agencies who are responsible for different centers 

(e.g., bridge management authority for BMC, traffic 

management authority for TMC, bridge maintenance authority 

for MCMC). A successful coordination between the respective 

stakeholder agencies is critical for proper SHM-ITS 

integration. In any standalone ITS and SHM system, each 

agency has its own objectives to accomplish. For instance, 

BMC is responsible for monitoring and managing bridge 

health condition in a standalone SHM system, whereas a key 

objective of TMC is to monitor real-time traffic condition and 

manage traffic in a standalone ITS. MCMC has its own 

functions, which include supervising bridge maintenance and 

construction activities. Standards and practices for data 

collection, processing and distribution vary from agency to 

agency. These variations in agency-specific task objectives, 

standards and protocols necessitate future research on 

institutional coordination among stakeholder agencies for a 

successful ITS-SHM integration. 

Fig. 3.Architecture for Integrated SHM-ITS Data Infrastructure  
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2) Future Research Direction  

For an integrated ITS-SHM system, a successful 

institutional coordination will lead to the proper management 

of diverse activities (i.e., bridge health condition monitoring, 

real-time traffic condition monitoring, bridge maintenance and 

construction activities management) of different agencies 

which are stakeholders in SHM-ITS integration. Coordination 

will occur only when agencies will have extended objectives 

to serve the integrated SHM-ITS system beyond meeting the 

objectives of standalone SHM or ITS. Future research will 

include the development of a joint concept of operations 

developed collaboratively by both SHM and ITS agencies, and 

development of protocols and standards to support SHM-ITS 

integration. Fig. 3 shows a big-data architecture required to 

collect, process and distribute massive amount of data from 

multiple SHM and ITS sources for an efficient operation of 

integrated SHM-ITS system. Since different agencies will be 

involved to collect, manage and distribute data at local, 

regional, state and/or national levels in an integrated SHM-ITS 

system, inter-agency coordination and data exchange protocols 

are needed. By efficiently collecting and fusing data received 

from different SHM sensors and ITS devices, and managing 

the data and distributing the collected data to different 

agencies and other users according to their respective 

requirements, a successful and sustainable big data analytics 

framework for the integrated SHM-ITS system can be 

implemented.  

VII. CONCLUSIONS 

 The authors observed, through a detailed review, that the 

reliability and efficiency of both ITS and SHM system can be 

improved where these two systems are properly integrated. 

Visual bridge inspection routines used by most bridge 

management systems have proven inadequate, as clearly 

evidenced by the recent catastrophic failures of major bridges. 

Consequently, extensive research has been undertaken to 

increase the reliability and consistency of bridge condition 

assessment systems. Though NDI methods are useful in 

limiting the flaws of visual inspection on an interval-basis, 

they are time-consuming and only performed if damage is 

suspected within the structure. SHM systems, however, are 

uniquely suited to continuously monitor the structural 

condition of a bridge in that they can immediately identify the 

onset of damage. SHM systems have proven to give reliable 

information in assessing the condition of the bridge structural 

systems, but excluding the effects of traffic acting on the 

bridge and environmental conditions, often lead to false 

positive or negative responses. Various state departments of 

transportation have supported the research necessary for 

integrating ITS and SHM. When integrated with SHM, ITS 

devices, such as video camera, traffic sensors, helped to locate 

the source of critical events, and to capture the bridge response 

under different traffic flow.  The authors also found that data 

collected from SHM sensors, when incorporated with the ITS 

devices supported ITS applications to identify the traffic 

operational condition and necessary vehicle characteristics 

information. However, an efficient integrated ITS-SHM 

scheme requires determining the deficiencies of the existing 

data collection techniques, creating a standards-driven data 

infrastructure, and enhancing the institutional coordination 

needed to implement this infrastructure. Connected vehicles 

can be considered as a reliable data source to mitigate any 

false-diagnosis of SHM. In the near future, the existing trend 

of SHM data collection is expected to change drastically with 

the increasing market penetration of connected vehicles. With 

higher penetration of connected vehicles, the continuous flow 

of real time and reliable traffic information are possible. Probe 

vehicles, mobile vibration-based bridge monitoring systems 

and automated corrosion monitoring system are also expected 

to provide cost effective solutions for the continuous 

monitoring of bridges health condition. With the initiation of 

large-scale data infrastructure, and a strong coordinated inter-

agency framework, long-term benefit from the integrated ITS-

SHM system can be ensured. Once the challenges are properly 

addressed, the incorporation of ITS technologies with SHM 

sensors can provide the system the ability to calibrate the 

bridge health monitoring systems depending on different real-

time traffic conditions and vehicle characteristics on the 

bridge to significantly reduce erroneous results.  
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