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Abstract. The Composite Finite Element Mesh method is useful for discretization error estima-
tion and, in addition, for solution improvement with no appreciable increment in the computational
cost. The technique consists in redefine over a given mesh the linear operator that arises from the
discretization of a partial differential equation. This operator is modified according to an appropriate
linear combination between the operators of the given mesh and of a coarse mesh, which must be a
coarsening of the first one. On the other hand, Multigrid methods solve a linear system using systems
of several sizes resulting from different discretization levels. This feature motivates the study of the
application of the Multigrid strategy in conjunction with the Composite Mesh technique. In this
work, we propose a scheme for solving the linear system arising from the Composite Mesh strategy
using a Multigrid method. Particularly, we use a geometric version of the Multigrid technique. The
proposal is based on a modification of the operators in some levels of the Multigrid algorithm in
order to achieve both, the advantages of Multigrid for linear systems resolution and the solution im-
provement that could be achieved with the Composite Mesh strategy. Several elliptic test problems
with analytical solution are presented, where the convergence rates are analyzed and the decrease in
discretization errors is quantified.
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1. Introduction

In this work, an integration of the Multigrid (MG) technique with the Composite
Mesh (CM) strategy is presented. In the CM method each component of the ‘mixture’
represents a mesh with different approximation error. Given two finite element meshes
with nodes in common, an appropriate linear combination between the discrete oper-
ators that arise on each grid could give a better solution than the solutions obtained
from each mesh individually without incrementing the computational cost [2]. The
resultant linear system obtained with the CM technique can be solved by means of
a direct method or an iterative smoothing method which, besides of being easy to
implement, have the smoothing property, which allows the removal of high-frequency
components of the error in the first iterations leaving practically unchanged the less
oscillating ones. In order to modify the smoothing methods to reduce simultaneously
all the components of the error, a suitable initial approximation to the solution for
the relaxation scheme is needed. This approximation is obtained by performing some
iterations on a coarse mesh because the process have fewer variables to be updated
and, furthermore, it will have a convergence rate marginally improved. Assuming
that a relaxation scheme has been applied until only the low-frequency components
of the error are left, it is observed how these components look like on a coarser mesh.
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Since these components are less smooth in the coarse grid, then it will be necessary to
perform a new relaxation in order to reduce them. Faced with the question of how to
move from one mesh to the other one and relax, the developing of the MG technique
was started [1, 4, 10, 15, 20, 21].

In this paper, an integration of the Geometric Multigrid and Composite Mesh
methods is presented. The technique is applied to some elliptic test problems with
exact solution on unstructured meshes, where discretization errors are analyzed.

2. Multigrid method

Let Ω a bounded domain in R
d with boundary ∂Ω, d=1, 2, 3 being the spatial

dimension. Consider the following differential equation with homogeneous boundary
conditions

Lu= f in Ω

u=0 on ∂Ω
(2.1)

Assume that the operator L is self-adjoint, i.e. (Lu,v)= (u,Lv) for any u,v∈H⊂
L2(Ω) and that is positive in the sense that (Lu,u)>0 for all u∈H , u 6=0, where the
subspace H contains smooth functions which vanish on ∂Ω. With these properties, to
solve the differential equation (2.1) is formally equivalent to minimize the quadratic
functional

F (u)≡
1

2
(Lu,u)−(f,u), u∈H (2.2)

The problem can be rewritten in compact form as follows

u=argmin
v∈H

F (v) (2.3)

which denotes finding the argument that minimizes F over all the functions in H .

Given a triangulation of Ω with size h, denoted by Ωh, let Hh the finite subspace
of H consisting on the functions vh which are continuous in Ω, polynomial in each
element and vanish on the boundary domain. The discrete problem is written as
follows

uh =argmin
vh∈Hh

F (vh) (2.4)

Since the operator L is positive and self-adjoint, the problems of determining the
function u∈H which satisfies (2.3) and (Lu,v)= (f,v) for all v∈H are equivalent [4].
Thus, to solve (2.4) is equivalent to find uh∈Hh so that

(Luh,vh)= (f,vh) for all vh∈Hh (2.5)

In order to solve (2.5) in its weak form, let εh
i the function of a base of Hh, with

εh
i such that εh

i (Nj)= δij, Nj being the nodes of Ωh. These basis functions are chosen
as the test functions vh. Then, after assembling all the rows of the matrix and their
corresponding right sides, the resulting equation system Ahuh = fh is obtained.

Given two meshes, where the first is a homogeneous refinement of the second one,
the two-grid iteration is the basis for building the MG method. In summary, this
iteration is composed by the following steps:
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• Pre-smoothing step: A few iterations of some iterative method such as
Gauss-Seidel or damped Jacobi are performed in order to smooth the residue
rh = fh−Ahūh, where ūh is an approximation to the solution of the linear
system. This step will reduce the high-frequency components of the error
but no completely the low-frequency ones. The reduction of the oscillatory
errors can be achieved carrying out local changes in the following way: ūh←
ūh−sεh

i , where s∈R is a suitable size step. The choice of s is carried out in
the sense of minimizing the functional over all the possible choices, i.e.

s=argmin
t∈R

F (ūh− tεh
i ), i=1, 2, . . . (2.6)

• Coarse grid correction: The residue is projected on the coarse mesh, where
the error equation minimizing its low-frequency components is solved. The
abstract formulation for this process is the following: Let HH ⊂Hh the space
of the coarse grid, i.e. the set of piecewise polynomial functions associated
with a standard coarse grid ΩH . The goal is to correct the approximation ūh

with a function ūH ∈HH that will approximate the new smooth error. The
correction is ūh← ūh + ūH . The choice of ūH is made in order to obtain the
best correction on the coarse mesh in a sense of functional minimizing, i.e.

ūH = argmin
wH∈HH

F (ūh +wH) (2.7)

• Prolongation step: The solution on the coarse grid is transferred to the
fine mesh, where it is used to improve the smoother approximation of the
first step.
• Post-smoothing step: Finally, the approximation computed in the last step

is smoothed in order to remove any remaining high-frequency error compo-
nent.

In the process of adding a function ūH ∈HH to a function ūh∈Hh, appropriate
coefficients must be found in order to write ūH as a function of Hh. Then, the
prolongation operator Ih

H is sought to carry over ūh = Ih
H ūH [4].

To determine the coarse grid operator AH corresponding to the operator Ah, it
is necessary to work with nodal vectors and to transfer the minimization principle
to matrix terms. Let Ni, i=1, . . . , M the nodes of the mesh Ωh, thus the system
Ahuh = fh is equivalent to the minimization problem

uh =argmin
vh∈RM

Fh(vh) (2.8)

where Fh(vh)≡ (Ahvh,vh)/2−(fh,vh). Similarly, the problem of the coarse mesh
correction is equivalent to the matrix minimization principle1

ūH =argmin
wH∈RM̄

Fh(ūh +Ih
HwH) (2.9)

But Fh(ūh) is independent of wH since Fh(ūh +Ih
HwH)=Fh(ūh)+FH(wH). There-

fore, to minimize Fh(ūh +Ih
HwH) is equivalent to minimize FH(wH) on the vectors

wH ∈R
M̄ .

1Here we assume that the coarse mesh ΩH have M̄ nodes.
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Then, carrying out the calculations AH =(Ih
H)TAhI

h
H , is obtained the version of

Ah in the coarse mesh. The matrix (Ih
H)T takes a vector from the fine grid and leads

to a vector in the coarse one, i.e. is a restriction operator. Hence, it makes sense
having IH

h =(Ih
H)T . Finally, let rh = fh−Ahūh and fH = IH

h rh.
The MG algorithm is obtained by applying the two grid iteration recursively.

Specifically, the problem in the coarse mesh is solved by a two-grid iteration involving
a coarser mesh. This procedure is applied at each mesh level until a coarse enough grid
is obtained, in which the system could be solved by a direct method. A MG iteration
from the finest grid to the coarser one and returning to the fine one, is called cycle.
The exact structure of a cycle depends on the value of γ, the number of iterations of
two grids in each intermediate step. The case γ =1 is called V-cycle, while γ =2 is
called W-cycle.

3. Composite Mesh technique

The goal of this work is to solve linear problems arising from the application
of the CM technique using the MG method. The composite finite element mesh
applied to elliptic problems can be used to improve the numerical solution without an
appreciable increment in the computational cost and also to estimate the discretization
error [2, 16, 17]. In the h version, the method consists in replacing the discrete operator
for a given mesh (fine mesh), by a linear combination of the operators computed
by using that mesh and a coarser mesh with nodes in common with the first one.
In this case, the interpolation polynomials retain the same degree in both meshes.
Then, assuming that the fine mesh is obtained from the homogeneous refinement of
a given grid, the connection between both meshes is forced in the shared nodes. The
participation factor of each mesh in the compound model, i.e. the coefficient in the
linear combination between the meshes, is introduced in such a way to minimize the
discretization error.

Let ΩH a discretization of the problem domain Ω and Ωh the mesh obtained by
a homogeneous refinement of ΩH . Grids ΩH and Ωh have discretization sizes H and
h, respectively. Applying the Finite Element Method (FEM) for the discretization
of problem (2.1), the systems of equations Ahuh = fh and AHuH = fH are obtained
with the meshes Ωh and ΩH , respectively. Now, we define the discrete operator AHh

as the matrix with the coefficients of AH and the same size as Ah where, in order to
obtain the required size, null coefficients are imposed for the nodes belonging to the
fine mesh but not to the coarse mesh. In an analogous way, the vector fHh is defined.
The approximate solution by the CM method uHh is obtained from the following
system [17]

[αAh +(1−α)AHh]uHh =αfh +(1−α)fHh (3.1)

where the coefficient α depends on the regularity of the exact solution of the prob-
lem [2].

The asymptotic error of the FEM numerical approximation has the form [17]

‖u−uh‖=Chp +O(hq) (3.2)

where C is a constant and q >p. Then, an extrapolation analysis of the error leads
to the following estimation [2, 17, 18]

α=
(H/h)p

(H/h)p−1
(3.3)
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The improvement introduced by the CM method with respect to the FEM solution
is verified in the nodal values of the solution and, thus, it must be evaluated using
a discrete norm of the error. Let Ni, i=1, . . . ,M the nodes of the fine mesh Ωh and
Hh the discrete space associated with the mesh Ωh. The interpolant πhu of u in the
space Hh is defined as

πhu(Ni)=u(Ni), i=1, . . . ,M (3.4)

Then, the solution of the system (3.1) is a better approximation to πhu in Hh than
the uh solution given by FEM. This fact is verified in the tests presented in section 5.
For the tests, we use in the analysis the standard L∞ norm (‖a‖∞ =maxi |ai|) and the

euclidean norm (‖a‖2 =
(
∑

ia
2
i

)1/2
) for vectors. The nodal vector error e is computed

as the difference u−uh, where u∈R
M , ui =u(Ni) and uh are the nodal values of some

approximation to u in the Hh space.

4. Scheme of Multigrid with mesh composition

As pointed out above, the main objective of this paper is the integration of the
MG and CM techniques for solving elliptic problems. Suppose that there are n levels
involved at each MG iteration and that the corresponding mesh to the j-th level is
obtained from the (j−1)-th homogeneous refinement of a given initial mesh (corre-
sponding to level 1). Now, we introduce m mix levels, 1≤m<n, in which the standard
linear operators of the MG method are replaced by the linear combination proposed
in the CM strategy. In the k-th mix level, 1≤k≤m, the grids of levels n−k+1 and
n−k take part in the ‘mixture’. In other words, for the level k, Ah =An−k+1, where
An−k+1 is the corresponding matrix of the level n−k+1, and AHh is obtained com-
pleting appropriately with zeros the matrix An−k in order to reach the dimension of
An−k+1 (see equation (3.1)). Figure 4.1 outlines the strategy.

n
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2

1

2

m

m
ix level

n−m+1

gr
id
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ve

l

Fig. 4.1. Multigrid for Composite Mesh (V -cycle).

With the same set of parameters (smoother, number of pre- and post-smoothing
steps, etc.) the resolution of each level increases the computational cost if in such a
level the grid ‘mixture’ is introduced. This occur since the mixture makes to grow
the matrix bandwidth of a given level. Therefore, the number of mix levels m should
be kept at the minimum possible while keeping the full error reduction attainable by
the CM technique. As will be shown in the numerical examples, the finer the (finest)
mesh, the higher the decreasing in the nodal error produced by the CM strategy
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with respect to FEM. Hence when the grid levels are increased, it is expected that
the levels of mixing need to be increased because the FEM and CM nodal solutions
departs away as the discretization size is decreased. We named the strategy presented
MGCM, for Multigrid with Composite Mesh.

5. Test Problems

In order to show the effectiveness of the proposed MGCM strategy, we will con-
sider three different 2D cases with analytical solution.

5.1. Poisson problem with constant coefficients

Consider the following problem of Poisson in a quadrangular domain

−∆u(x,y)=f(x,y), in Ω=(0,1)×(0,1) (5.1)

u(x,y)=0, on ∂Ω

The source term is such that the exact solution is given by the following expression

u(x,y)=31250x(x−1)(x−
3

5
)(x−

1

5
)(x−

9

10
)y(y−1)(y−

4

5
)(y−

1

5
)(y−

1

10
)

In this case, the domain is discretized by means of an unstructured grid with 82
triangular elements and 52 nodes. This grid is the coarsest mesh of the problem and
the grid sequence is obtained by homogeneous refinement. The parameters selected
for this problem consist in three steps of pre and post smoothing of damped Jacobi
with relaxation parameter 0.7. The participation factor for the mesh composition is
obtained taking into account the regularity of the exact solution, giving α=4/3. The
tolerance applied to the residue for the convergence of the linear system is 1×10−6.

Error results in L∞ and euclidean norms are presented in table 5.1 for V -cycle
and in table 5.2 for W -cycle. The number of iterations to achieve the convergence,
the number of grid levels used and a measure of the elapsed computational time
are shown in each table. In the MGCM case, the number of mix levels utilized is
also included in the tables. These tables show how the error decreases with the grid
composition in both, infinity and euclidean norms. The increasing computational time
of the MGCM method is due to the fact that the matrix of the system is less sparse
than in the ‘standard’ MG case. Regarding the behavior of the proposed strategy in
section 4 for solving the CM problem with MG, we conclude that the MGCM method
preserves the features of the original Multigrid method. This assertion is based on
that the number of iterations needed to reach the convergence in the cases with and
without ‘mixture’ seems to remain constant. Figure 5.1 presents the norm of the
residue as a function of the iteration number in the case of five grid levels for the
V and W -cycles. As could be observed the curves for the MG and MGCM methods
seem to be superimposed, with a slightly difference for the W -cycle.

For the V -cycle with six grid levels, two levels of mesh composition are used in
order to achieve the full error reduction that the CM technique should give. Nev-
ertheless, for the W -cycle only one mix level was sufficient in all the cases solved.
In figures 5.2 and 5.3 the nodal error as a function of the discretization size (h) for
both norms is presented. In this figures, we refer with FEM and CM as the MG and
MGCM solutions, respectively. A noticeable feature is the error reduction rate of the
CM technique.
Remark 5.1. Suppose we want to compute a solution by MG (FEM) with a nodal er-
ror such that its euclidean norm is 2.827×10-6. Extrapolating the data from figure 5.2
it is concluded that it would be necessary to use a mesh with a discretization size h≈
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MG
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 7 3.3960×10−3 5.1424×10−2 1.42×10−1 -
4 7 9.5195×10−4 2.5609×10−2 3.42×10−1 -
5 7 2.8171×10−4 1.2796×10−2 1.38 -
6 7 8.1310×10−5 6.4094×10−3 5.13 -

MGCM
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 7 1.1824×10−3 4.9490×10−3 9.26×10−2 1
4 7 1.6160×10−4 8.7621×10−4 2.88×10−1 1
5 7 2.1730×10−5 1.5758×10−4 1.83 1
6 7 2.7157×10−6 5.1402×10−5 5.09 1
6 8 2.8270×10−6 2.8249×10−5 5.73 2

Table 5.1. Results of the V -cycle for the Poisson problem with constant coefficients.

MG
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 6 3.3959×10−3 5.1423×10−2 1.26×10−1 -
4 5 9.5185×10−4 2.5605×10−2 3.06×10−1 -
5 5 2.8159×10−4 1.2787×10−2 1.29 -
6 5 8.1190×10−5 6.3915×10−3 6.08 -

MGCM
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 6 1.1824×10−3 4.9485×10−3 1.26×10−1 1
4 6 1.6181×10−4 8.7539×10−4 3.47×10−1 1
5 5 2.1912×10−5 1.5506×10−4 1.52 1
6 5 2.8553×10−6 2.7476×10−5 5.23 1

Table 5.2. Results of the W -cycle for the Poisson problem with constant coefficients.

2.17×10-4. Assuming that the computational time tC of the MG method is O(h2),
which could be obtained from data in tables 5.1 or 5.2, we obtain tC ≈ 4.26×103

sec. for h≈ 2.17×10-4 in the V -cycle case. The same error level is reached with the
MGCM strategy in 5.73 sec (742 times faster). Of course, if another norm is used
the FEM solution could present an error less than that of CM solution. For example,
in L2(Ω) the error for both, FEM and CM solutions, is O(h2).

5.2. Poisson problem with variable coefficients

In the second test, we consider the following elliptic problem with variable coef-
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ficients in the unit square:

−∇ ·(µ(x,y)∇u)=f(x,y), in (0,1)×(0,1)

u(0,y)=0, 0≤ y≤1

u(x,0)=sin(5πx), 0≤x≤1 (5.2)

u(x,1)=−sin(5πx), 0≤x≤1

u(1,y)=0, 0≤ y≤1

where µ(x,y)=1+xy2 and u(x,y)= sin(5πx)cos(3πy). The mesh and the whole set
of parameters are the same as the previous test.

In tables 5.3 and 5.4 we present the results obtained for the V -cycle and W -cycle,
respectively. These tables show how the nodal error decreases with the ‘mixture’ in
the infinity and euclidean norms. In this case the convergence rates of the proposed
MGCM strategy and the standard MG method are similar, in particular when only
one mix level is applied (see also figure 5.4).

Figures 5.5 and 5.6 show the euclidean and infinity norms of the nodal error as
a function of the discretization size. In this case, is mandatory the use of two mix
levels for the V -cycle with six grid levels in order to achieve the error reduction rate.
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MG
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 7 9.5902×10−3 1.3441×10−1 7.52×10−2 -
4 6 2.4065×10−3 6.6750×10−2 2.03×10−1 -
5 6 6.0359×10−4 3.3383×10−2 9.09×10−1 -
6 6 1.5232×10−4 1.6833×10−2 3.93 -

MGCM
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 7 1.6852×10−3 1.1015×10−2 7.66×10−2 1
4 6 1.9785×10−4 1.7776×10−3 2.09×10−1 1
5 6 2.4413×10−5 3.3890×10−4 9.66×10−1 1
6 6 4.9948×10−6 3.5801×10−4 4.06 1
6 8 3.0296×10−6 5.2584×10−5 5.96 2

Table 5.3. Results of the V -cycle for the Poisson problem with variable coefficients.

MG
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 6 9.5901×10−3 1.3441×10−3 9.47×10−2 -
4 5 2.4048×10−3 6.6705×10−2 2.68×10−1 -
5 5 6.0180×10−4 3.3285×10−2 1.13 -
6 5 1.5048×10−4 1.6634×10−2 4.67 -

MGCM
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 6 1.6852×10−3 1.1015×10−2 9.54×10−2 1
4 6 1.9806×10−4 1.7835×10−3 3.23×10−1 1
5 5 2.4445×10−5 3.0136×10−4 1.14 1
6 5 3.0380×10−6 5.4106×10−5 4.28 1

Table 5.4. Results of the W -cycle for the Poisson problem with variable coefficients.

5.3. Laplace problem in a L-shaped domain

Let the Laplace problem in the L-shaped domain Ω=(−1,0)×(−1,1)∪(0,1)×
(0,1) where the exact solution is given in polar coordinates by u(r,φ)= r2/3 sin

(

2

3
φ
)

.

The mesh of the first level is an unstructured grid with 82 triangular elements and
52 nodes. Again, we use three steps of pre and post smoothing of damped Jacobi with
factor 0.7, and a tolerance of 1×10−6 for the residual convergence. The participation
factor for the mesh composition is obtained taking into account the regularity of the
exact solution2 as explained in [16], resulting α=25/3/(25/3−1).

The standard L∞ and euclidean norms of the error are presented in tables 5.5
and 5.6 for the V -cycle and W -cycle, respectively. Again, a reduction of the error norm
can be reached when the MGCM technique is applied. However, there is a decrease
in the convergence rate of the MGCM method compared to MG since, except in
the V -cycle case with six grid levels, the former one needs one additional iteration

2u(r,φ)∈H
5

3
−ǫ [6, 8].
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than the last one to reach the convergence. The relative reduction between MG and
MGCM errors is smaller than in the previous examples due to the lower regularity in
the exact solution. Because that the singularity of the analytical solution governs the
error, the solutions of the MG and MGCM methods share the same error reduction
rate in both, euclidean and infinity norms as could be noted from figures 5.7 and 5.8.
Although the reduction in the error between the FEM and CM solutions seems to be
small, consider for instance the value of h required to achieve a nodal error with a
euclidean norm of 8.476×10−4 using MG (FEM). According to figure 5.7, we would
need a mesh with h≈2.0688×10−3. But the computational time would amount to
109 sec.3, i.e. 8.5 times more than the time required by the MGCM method.

6. Conclusions

In this work we present a scheme for solving a Composite Mesh problem using
the Geometric Multigrid method. The matrix system and the right hand side vector
of some levels in the MG algorithm are redefined introducing the proper definitions
given by the CM technique. The proposed strategy was tested in two-dimensional
elliptic problems with analytical solution. These test problems shown that the new
strategy preserves the main features of both methods. First, using the correct number

3Here we assume that computational time behaves as tC ≈Ch2, where C is a constant.
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MG
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 7 4.8705×10−3 2.8198×10−2 1.79×10−1 -
4 7 3.0792×10−3 2.2843×10−2 7.93×10−1 -
5 7 1.9430×10−3 1.8408×10−2 2.87 -
6 7 1.2253×10−3 1.4858×10−2 1.20×101 -

MGCM
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 8 3.3756×10−3 8.9248×10−3 2.16×10−1 1
4 8 2.1293×10−3 6.6774×10−3 9.39×10−1 1
5 8 1.3423×10−3 5.0972×10−3 3.43 1
6 7 8.4760×10−4 4.1603×10−3 1.28×101 1

Table 5.5. Results of the V -cycle for the Laplace problem in a L-shaped domain.

MG
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 7 4.8699×10−3 2.8189×10−2 2.58×10−1 -
4 6 3.0783×10−3 2.2813×10−2 1.00 -
5 6 1.9418×10−3 1.8324×10−2 3.53 -
6 6 1.2239×10−3 1.4652×10−2 1.46×101 -

MGCM
grid levels iterations ‖e‖∞ ‖e‖2 time [s] mix levels

3 8 3.3754×10−3 8.9220×10−3 2.99×10−1 1
4 7 2.1290×10−3 6.6688×10−3 1.17 1
5 7 1.3418×10−3 5.0748×10−3 4.29 1
6 7 8.4546×10−4 3.9145×10−3 1.78×101 1

Table 5.6. Results of the V -cycle for the Laplace problem in a L-shaped domain.

of mix levels, it is possible to achieve error reductions similar to those obtained when
the linear system arising from the application of the CM strategy is solved by a direct
method. On the other hand, the convergence rates reached by the MGCM technique
were close to those presented by the MG method, particularly when exact solution of
the problem is smooth enough.

Acknowledgment.

This work has received financial support from Consejo Nacional de Investigaciones
Cient́ıficas y Técnicas (CONICET, Argentina, grants PIP-02552/00, PIP 5271/05),
Universidad Nacional del Litoral (Argentina, grant CAI+D 2005-10-64) and Agencia
Nacional de Promoción Cient́ıfica y Tecnológica (ANPCyT, Argentina, grants PICT
12-14573/2003 (Lambda), PME 209/2003 (Cluster)).

REFERENCES

[1] D.N. Arnold, A Concise Introduction to Numerical Analysis, University of Minnesota, 195–206,
2001.



12 Integration of Composite Mesh and Multigrid methods

 0.001

 0.01

 0.1

 0.01  0.1

eu
cl

id
ea

n 
no

rm
 o

f t
he

 n
od

al
 e

rr
or

h

1
0.33

MGCM

MG (FEM)

V−cycle − 1 mix level

Fig. 5.7. Euclidean norm of the nodal error
as a function of the discretization size h for the
Laplace problem in a L-shaped domain.

 0.001

 0.01

 0.01  0.1

in
fin

ity
 n

or
m

 o
f t

he
 n

od
al

 e
rr

or

h

1

0.66

V−cycle − 1 mix level

MGCM

MG (FEM)

Fig. 5.8. Infinity norm of the nodal error
as a function of the discretization size h for the
Laplace problem in a L-shaped domain.

[2] M.B. Bergallo, C.E. Neuman, V.E. Sonzogni, Composite mesh concept based FEM error estima-
tion and solution improvement, Computer Methods in Applied Mechanics and Engineering,
188, 755–774, 2000.

[3] M. Brezina, A.J. Cleary, R:D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F. Mc-
Cormick, J.W. Ruge, Algebraic Multigrid Based on Element Interpolation (AMGe), Soci-
ety for Industrial and Applied Mathematics, 22, 1570–1592, 2000.

[4] W.L. Briggs, V.E. Hemson, S.F. McCormick, A Multigrid Tutorial, SIAM, 2000.
[5] T.F. Chan, S. Go, L. Zikatanov, Lecture Notes on Multilevel Methods for Elliptic Problems on

Unstructured Grids, VKI 28th Computational Fluid Dynamics, 1–76, 1997.
[6] P. Grisvard, Boundary value problems in plane polygons. Instructions for use, E.D.F. Bulletin

de la Direction des Etudes et Recherches, Serie C Mathematiques, Informatique 1, 21–59,
1986.

[7] B.R. Hutchinson, G.D. Raithby, A Multigrid Method Based on the Additive Correction Strategy,
Numerical Heat Transfer, 9, 511–537, 1986.

[8] C. Johnson, Numerical solution of partial differential equations by the finite element method,
Cambridge University Press, 1994.

[9] J.E. Jones, P.S. Vassilevski, AMGe Based on Element Agglomeration, CASC Lawrence Liver-
more National Laboratory Report, 1999.

[10] J. Kim, K. Kang, J. Lowengrub, Conservative multigrid methods for ternary Cahn-Hilliard
systems, Communications in Mathematical Sciences, 2, 53–77, 2004.

[11] B. Koobus, M.H. Lallemand, A. Dervieux, Unstructured volume agglomeration MG: solution
of the Poisson equation, International Journal of Numerical Methods in Fluids, 18, 27–42,
1994.

[12] M.H. Lallemand, H. Steve, A. Dervieux, Unstructured multigridding by volume agglomeration:
current status, Computational Fluids, 21, 397–433, 1992.

[13] D.J. Mavriplis, Multigrid techniques for unstructured meshes, Institute for Computer Applica-
tions in Science and Engineering Report, 95–27, 1995.

[14] T. Okusanya, Algebraic Multigrid for Stabilized Finite Element Discretizations of the Navier
Stokes Equations, Massachusetts Institute of Technology, 2002.

[15] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art
of Scientific Computing, Cambridge University Press, 1988-1992.

[16] S.S. Sarraf, M.B. Bergallo, V.E. Sonzogni, Problemas eĺıpticos resueltos mediante mallas com-
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