
ORIGINAL RESEARCH
published: 17 March 2020

doi: 10.3389/fcomp.2020.00008

Frontiers in Computer Science | www.frontiersin.org 1 March 2020 | Volume 2 | Article 8

Edited by:

Uygar Sümbül,

Allen Institute for Brain Science,

United States

Reviewed by:

Christoph Steinbeck,

Friedrich-Schiller-Universität

Jena, Germany

Perrine Paul-Gilloteaux,

INSERM US16 Santé François

Bonamy, France

Fabrice Cordelières,

INSERM US04 Bordeaux Imaging

Center (BIC), France

*Correspondence:

Kevin W. Eliceiri

eliceiri@wisc.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Computer Vision and Image Analysis,

a section of the journal

Frontiers in Computer Science

Received: 05 October 2019

Accepted: 07 February 2020

Published: 17 March 2020

Citation:

Dietz C, Rueden CT, Helfrich S,

Dobson ETA, Horn M, Eglinger J,

Evans EL III, McLean DT, Novitskaya T,

Ricke WA, Sherer NM, Zijlstra A,

Berthold MR and Eliceiri KW (2020)

Integration of the ImageJ Ecosystem

in KNIME Analytics Platform.

Front. Comput. Sci. 2:8.

doi: 10.3389/fcomp.2020.00008

Integration of the ImageJ Ecosystem
in KNIME Analytics Platform
Christian Dietz 1†, Curtis T. Rueden 2†, Stefan Helfrich 1, Ellen T. A. Dobson 2, Martin Horn 3,

Jan Eglinger 4, Edward L. Evans III 5, Dalton T. McLean 6, Tatiana Novitskaya 7,

William A. Ricke 6, Nathan M. Sherer 5, Andries Zijlstra 7, Michael R. Berthold 1,3 and

Kevin W. Eliceiri 2,8*

1 KNIME GmbH, Konstanz, Germany, 2 Laboratory for Optical and Computational Instrumentation (LOCI), Laboratory of Cell

and Molecular Biology, University of Wisconsin–Madison, Madison, WI, United States, 3University of Konstanz, Konstanz,

Germany, 4 Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland, 5McArdle Laboratory for Cancer

Research, Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI,

United States, 6George M. O’Brien Center of Research Excellence, University of Wisconsin–Madison, Madison, WI,

United States, 7Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN,

United States, 8Morgridge Institute for Research, Madison, WI, United States

Open-source software tools are often used for the analysis of scientific image data due

to their flexibility and transparency in dealing with rapidly evolving imaging technologies.

The complex nature of image analysis problems frequently requires many tools to

be used in conjunction, including image processing and analysis, data processing,

machine learning and deep learning, statistical analysis of the results, visualization,

correlation to heterogeneous but related data, and more. However, the development,

and therefore application, of these computational tools is impeded by a lack of integration

across platforms. Integration of tools goes beyond convenience, as it is impractical for

one tool to anticipate and accommodate the current and future needs of every user.

This problem is emphasized in the field of bioimage analysis, where various rapidly

emerging methods are quickly being adopted by researchers. ImageJ is a popular

open-source image analysis platform, with contributions from a worldwide community

resulting in hundreds of specialized routines for a wide array of scientific tasks. ImageJ’s

strength lies in its accessibility and extensibility, allowing researchers to easily improve

the software to solve their image analysis tasks. However, ImageJ is not designed

for the development of complex end-to-end image analysis workflows. Scientists are

often forced to create highly specialized and hard-to-reproduce scripts to orchestrate

individual software fragments and cover the entire life cycle of an analysis of an

image dataset. KNIME Analytics Platform, a user-friendly data integration, analysis, and

exploration workflow system, was designed to handle huge amounts of heterogeneous

data in a platform-agnostic, computing environment and has been successful in meeting

complex end-to-end demands in several communities, such as cheminformatics and

mass spectrometry. Similar needs within the bioimage analysis community led to the

creation of the KNIME Image Processing extension, which integrates ImageJ into KNIME

Analytics Platform, enabling researchers to develop reproducible and scalable workflows,

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2020.00008
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2020.00008&domain=pdf&date_stamp=2020-03-17
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eliceiri@wisc.edu
https://doi.org/10.3389/fcomp.2020.00008
https://www.frontiersin.org/articles/10.3389/fcomp.2020.00008/full
http://loop.frontiersin.org/people/882474/overview
http://loop.frontiersin.org/people/369374/overview
http://loop.frontiersin.org/people/920371/overview
http://loop.frontiersin.org/people/520835/overview
http://loop.frontiersin.org/people/117276/overview
http://loop.frontiersin.org/people/626780/overview

Dietz et al. Integration of ImageJ in KNIME

integrating a diverse range of analysis tools. Here, we present how users and developers

alike can leverage the ImageJ ecosystem via the KNIME Image Processing extension to

provide robust and extensible image analysis within KNIME workflows. We illustrate the

benefits of this integration with examples, as well as representative scientific use cases.

Keywords: bioimaging, interoperability, computational workflows, open source, image analysis, ImageJ, Fiji,

KNIME

INTRODUCTION

In the field of bioimage analysis, a wide range of software
tools have been published that tackle a wide range of bioimage
processing and analysis tasks. While these tools vary widely in
their target audiences and implementations, many of them are
open-source software (Eliceiri et al., 2012) due to the many
advantages it brings to science (Cardona and Tomancak, 2012).

ImageJ is among the most popular open-source image analysis
platforms in the community (Schindelin et al., 2015). The
platform is divided into multiple parts, including an end-
user application (“the ImageJ application”) commonly used by
scientists and a suite of software libraries (“the ImageJ libraries”)
that perform the underlying image analysis operations. The
ImageJ application is a standalone image processing program in
development since 1997 (Schneider et al., 2012) and is designed
for scientific images. It is highly extensible, with thousands of
plugins and scripts for performing a wide variety of image
processing tasks contributed by community developers. The
Fiji distribution of ImageJ (Schindelin et al., 2012) bundles
ImageJ in a combined application together with useful plugins
focused on the life sciences. In recent years, ImageJ and Fiji
developers have invested much effort in improving the software’s
internals, redesigning the ImageJ libraries to improve robustness,
scalability, and reproducibility across a broader range of n-
dimensional scientific image data (Rueden et al., 2017, p. 2).

The paradigm of the ImageJ application fundamentally
centers around images as the primary data upon which all
commands operate. ImageJ excels at exploratory single-image
processing: the user opens an image file and then applies various
processing and analysis actions, receiving rapid feedback on the
consequences of those operations. To solidify a sequence of
actions that achieves an effective analysis and apply that sequence
across many images, a writing code is essential. Typically, the
user invokes ImageJ’s Macro Recorder feature (https://imagej.
net/Recorder) to generate a series of code snippets corresponding
to manually performed operations and then assembles and
generalizes these snippets into a script that can then repeat those
same operations on evenmore images (https://imagej.net/Batch).
These scripts can be reused in a variety of contexts—e.g., from the
command line or within the ImageJ application via the Process ›
Batch submenu—but they are linear in execution and limited in
scale, requiring more complex programming techniques to fully
utilize computational resources across multiple cores, graphics
processing units (GPUs), or machines on a cluster—especially for
images exceeding ImageJ’s historical size limits (i.e., maximum 2
gigapixels per image plane).

Even with a script to perform analyses at scale across many
images, ImageJ application users must take care to avoid pitfalls

relating to reproducibility of algorithm execution. Numerical
results may differ based on ImageJ’s settings—e.g., should 0
values be treated as background or foreground?—as well as across
versions of ImageJ and its myriad of extensions. A script written
in ImageJ’s macro language can declare a minimum version of
the core ImageJ software it needs to execute, but it must be
specified manually, as the exact versions of ImageJ plus installed
extensions are not recorded anywhere. Savvy users could do so
manually and then take care to publish the configurations used
for their analyses, but ImageJ does not provide convenient means
of reconstructing such environments.

Versioning becomes even more difficult when considering
extensions, which are distributed via ImageJ update sites (https://
imagej.net/Update_Sites). Currently, with multiple update sites
enabled in an ImageJ installation, there is no mechanism in place
to ensure compatibility between the sites. As such, workflows
requiring complex combinations of update sites—which are then
themselves often shared via update sites also—are in danger
of being irreproducible across installations, especially as the
required extensions evolve over time.

Some of these issues can be overcome in time with
technical efforts to improve the ImageJ platform—e.g., a
future version of ImageJ could offer parallel execution as an
option within the relevant batch commands—but the ImageJ
interface’s treatment of individual images as primary datasets will
always impose certain challenges when attempting to produce
investigation-focused scientific workflows. Investigators often
combine classical image processing techniques with leading-edge
algorithms from the field of deep learning, machine learning,
and data mining, as well as established statistical analysis and
visualization methods, to solve a great variety of image analysis
problems. Unfortunately, ImageJ’s selection of tools outside
image processing—e.g., machine learning or statistical analysis
of results—is substantially less complete than its suite of image
processing commands.

An effective strategy for overcoming limitations of a particular
software tool is the integration with other complementary tools
(Carpenter et al., 2012). Integratingmultiple tools enables a broad
range of functionality and algorithms, not only to analyze images
but also for the subsequent statistical evaluation and visualization
of the numbers extracted from them. In recent years, ImageJ
has been adapting to the community’s need for interoperability
by changing from a monolithic software application into a
highly modular software framework, fostering its integration and
reusability from other open-source platforms (Rueden et al.,
2017, p. 2).

The KNIME Image Processing extension (Dietz and Berthold,
2016) leverages these efforts and integrates ImageJ’s extensive
functionality into the KNIME open-source product known as

Frontiers in Computer Science | www.frontiersin.org 2 March 2020 | Volume 2 | Article 8

https://imagej.net/Recorder
https://imagej.net/Recorder
https://imagej.net/Batch
https://imagej.net/Update_Sites
https://imagej.net/Update_Sites
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

KNIME Analytics Platform (Berthold et al., 2008). The open-
source KNIMEAnalytics Platform has been created and extended
by academic and industrial researchers across several disciplines
such as cheminformatics (Mazanetz et al., 2012; Beisken et al.,
2013) and mass spectrometry (Aiche et al., 2015) to provide
a framework for seamlessly integrating a diverse and powerful
collection of software tools and libraries. It is now a widely
used, user-friendly data integration, processing, analysis, and
exploration platform, designed to handle huge amounts of
heterogeneous data and making state-of-the-art computational
methods accessible to non-experts. Therefore, utilizing the
ImageJ libraries from within KNIMEAnalytics Platform not only
enables researchers to build scalable, reproducible, image analysis
workflows, but it also allows them to combine ImageJ with a
variety of extensions from various domains readily available in
KNIME Analytics Platform, including machine learning, deep
learning, statistical analysis, data visualization, and more.

In contrast to more loosely coupled scientific workflow
management systems such as Galaxy (Afgan et al., 2018), KNIME
Analytics Platform uses a more tightly coupled approach,
with shared strongly typed data structures (Wollmann et al.,
2017). The KNIME Image Processing extension uses ImageJ’s
foundational libraries as the core of its Image Processing
extension, reusing the exact same algorithm implementations,
avoiding reinventing the wheel. At the heart of this effort is
ImageJ Ops (henceforth referred to as “Ops”), an extensible
library of image processing operations. Ops includes many
common image processing algorithms, including arithmetic,
morphology, projection and scaling, statistics, thresholding,
convolution, Fourier transforms, and many more. Both ImageJ
and the nodes of the KNIME Image Processing extension make
use of Ops, enabling users to take advantage of both worlds
seamlessly. Image processing algorithms implemented in Ops
are usable directly from any SciJava-compatible software project
(https://imagej.net/SciJava), such as ImageJ, KNIME Analytics
Platform, and the OMERO image server (Allan et al., 2012).

In this paper, we demonstrate several ways of utilizing ImageJ
functionalities within KNIME workflows. We will also highlight
real-world biological examples that take advantage of commonly
used ImageJ tools and plugins, such as TrackMate (Tinevez et al.,
2017) and Trainable Weka Segmentation (Arganda-Carreras
et al., 2017), as applied within the KNIME workflows. The
goal of this paper is to demonstrate how ImageJ users and
developers can use KNIME Analytics Platform to create scalable
and reproducible scientific workflows combining ImageJ with a
broader ecosystem of analysis tools.

RESULTS

A Brief Introduction to the KNIME Image
Processing Extension
Visual Programming
The KNIME Analytics Platform implements a graphical
programming paradigm, allowing users to compose data analysis
workflows with no programming expertise. Users model the
data flow between individual operations, known as nodes, by

connecting their respective inputs and outputs. In contrast to
a script-based approach, this paradigm leads to a drastically
reduced entrance barrier for scientists without formal computer
science training.

KNIME workflows also visually document the data
transformation and analysis steps in their entirety, i.e., from
a defined input (e.g., microscopic images) to one or multiple
outputs. These workflow annotations greatly diminish the need
for conventional documentation of syntax and scripts, thereby
making the workflow comprehensible, intuitively documenting
the entire process, and allowing others to use that same workflow
as a foundation for their own analyses.

Data Representation
The KNIME Image Processing extension extends the KNIME
Analytics Platform with specialized data types and nodes for
the analysis of images. The most common data format passed
between nodes in a KNIME workflow is a table. As such, most
KNIME Image Processing nodes perform computations on tables
and provide tables as output. Loading an imaging dataset that
comprises multiple images into KNIME therefore means creating
a table with one column and multiple rows, where each entry
to the table represents one, potentially multidimensional, image.
Image processing nodes then mostly apply operations image by
image (i.e., row by row) on the incoming tables. This is in contrast
to the approach of the ImageJ application, in which a selected
operation is immediately applied to the currently active image.
The KNIME Image Processing extension, however, also contains
nodes beyond pure image processing operations; for example, the
Segment Features node (https://kni.me/n/OZ-74WyecFLOEiuK)
can extract numerical features from segmented images, resulting
in an output table with one row per segmented object across all
the images of the input table.

Tool Blending
KNIME Analytics Platform is an open data and tool integration
platform for data analytics. Hence, KNIME Image Processing
is only one extension among a variety of extensions and
integrations, adding new data types and algorithms to KNIME
Analytics Platform. These extensions can be blended easily, even
across domains. For instance, algorithms offered by the KNIME
Analytics Platform for data mining, machine learning, deep
learning, and visualization can be combined with extensions for R
and Python scripting, text processing or network analysis, or with
tools from other fields in life sciences, such as OpenMS (Aiche
et al., 2015), SeqAn (Döring et al., 2008), and RDKit (Landrum,
2013).

In the case of image processing, researchers especially benefit
from integrations of classical machine learning frameworks (e.g.,
WEKA, SciKit Learn, or H2O) and modern deep learning tools
(Keras, Tensorflow, or ONNX). For example, deep networks
published as part of the CARE framework (Weigert et al., 2018)
are implemented as end-to-end KNIME workflows, providing
access to machine-learning implementations without the need
for command-line expertise. Another prime example, published
previously (Fillbrunn et al., 2017), is a screening study in which

Frontiers in Computer Science | www.frontiersin.org 3 March 2020 | Volume 2 | Article 8

https://imagej.net/SciJava
https://kni.me/n/OZ-74WyecFLOEiuK
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

images are not only joined with textual representations of drug
treatments but are also actual molecular representations.

Prototyping, Automation, and Scaling
While developing KNIME workflows, researchers can inspect
and save intermediate results of computations, enabling
fast prototyping and quick comparison of various analysis
approaches. However, once a workflow is ready, the respective
task can be automated easily and executed repeatedly. For
instance, workflows can be used to provide analysis feedback
during image acquisition (Gunkel et al., 2014) or to process
hundreds of thousands of images in parallel in a high-throughput
fashion (Gudla et al., 2017; Gunkel et al., 2017).

Reproducibility
KNIME and community developers work hard to ensure
reproducibility even with newer versions of the software. A
comprehensive collection of regression and integration tests are
executed on all extensions maintained by KNIME, as well as
all trusted Community Extensions, calling immediate attention
to any bugs that might have been introduced. In case the
implementation of an existing node has to be changed—meaning
that it will produce a different output in the future—existing
workflows using the old version of the node are left unaltered,
ensuring that once a workflow has been created, it still produces
the same result even years later. Hence, a user who downloads
a workflow from the, e.g., KNIME Hub (https://hub.knime.com)
can execute this workflow with a more recent version of KNIME
that, if required, falls back to the older implementation.

Despite KNIME’s focus on reproducibility, there are limits
to what can be achieved with a desktop application alone.
Users for whom total long-term reproducibility is a stringent
requirement are advised to create a container or virtual
machine with complete configured installation of the KNIME
Analytics Platform, needed extensions, workflows in question,
and corresponding data. Containerization reduces the risks
presented by evolving technology platforms—e.g., incompatible
updates to operating systems.

Accessing ImageJ Functionality From
KNIME Analytics Platform
KNIME ImageJ integration includes several useful ways to access
ImageJ’s functionality. Here, we present four different integration
mechanisms made possible by KNIME ImageJ integration,
ranging from the very technical, requiring Java programming,
to purely graphical workflow based, with no coding experience
required: Execution of ImageJ Macro Code and Embedding
Custom Java Code are developer and scripter focused; Nodes
of the KNIME Image Processing Extension is user focused and
described more fully in A Blueprint for Image Segmentation Using
ImageJ and KNIME Analytics Platform; and Wrapping ImageJ
Commands as KNIME Nodes is useful for users if a developer
provides them with a SciJava command for use within KNIME.
Finally, Noteworthy ImageJ Pitfalls presents some specific points
of concern to keep in mind when migrating ImageJ workflows to
the KNIME Analytics Platform.

For users seeking additional support with ImageJ and image
analysis software, in general, there is the Image.sc Forum
(Rueden et al., 2019), a public discussion and support channel
dedicated to fostering independent learning within the scientific
image analysis community (https://forum.image.sc). For users
seeking additional support with the KNIME Analytics Platform
and related KNIME technologies, they can visit the KNIME
Forum (https://forum.knime.com), the central online gathering
place for the KNIME community. Either or both of these support
channels are appropriate for seeking help with the KNIME
ImageJ integration.

Execution of ImageJ Macro Code
Existing scripts written in ImageJ’s macro language can be
directly executed within a workflow using the ImageJMacro node
(https://kni.me/n/10cc5QJ5thLDG_cc). In some scenarios, this
node makes it possible to “drop in” existing ImageJ macro code
wholesale to a larger KNIME workflow. Users can either select
from preconfigured macro snippets in the configuration dialog
of this node or add a “Pure Code” snippet and paste an existing
macro. Multiple snippets can be chained to execute in succession.
The “Pure Code” snippet supports a subset of ImageJ macro
commands that are optimized for headless execution (https://
imagej.net/Headless).

After a “Pure Code” snippet executes, the last active image
(in accordance with the ImageJ application’s paradigm) will be
made available as a row in the table of the node’s first output
port. The second output port will contain data from ImageJ’s
Results table—with all rows concatenated in case of multiple
images in the node’s input table. This scheme enables use of
the macro directly for image processing and feature extraction,
while leveraging the data mining capabilities of the KNIME
Analytics Platform.

KNIME ImageJ integration includes a dedicated, standalone
ImageJ environment that is used by default for the execution
of ImageJ macros. Hence, it is possible to share a KNIME
workflow that contains ImageJ Macro nodes and execute it in
the same environment in which it was developed. If more control
is needed, the user can instead point the integration to a local
ImageJ installation to be used; while doing so hampers the
reproducibility of the workflow, it enables access to the full set of
installed plugins, such as those included with the Fiji distribution
of ImageJ.

It is recommended to use the built-in ImageJ environment
as a starting point KNIME Image Processing nodes for better
modularity, performance, and scalability—see Nodes of the
KNIME Image Processing Extension and A Blueprint for Image
Segmentation Using ImageJ and KNIME Analytics Platform below
for details.

Figure 1 illustrates a minimal workflow using the ImageJ
Macro node with a simple macro for image segmentation (the
same one used in A Blueprint for Image Segmentation Using
ImageJ and KNIME Analytics Platform; see that section for
details). The existing macro is unadjusted from its ImageJ-ready
counterpart, except that images are fed in from a previous
node, and values from ImageJ’s Results table are then fed to a
subsequent node.

Frontiers in Computer Science | www.frontiersin.org 4 March 2020 | Volume 2 | Article 8

https://hub.knime.com
https://forum.image.sc
https://forum.knime.com
https://kni.me/n/10cc5QJ5thLDG_cc
https://imagej.net/Headless
https://imagej.net/Headless
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

FIGURE 1 | An ImageJ Macro node performing image segmentation and feature extraction.

Nodes of the KNIME Image Processing Extension
The KNIME Image Processing extension includes many nodes
for image processing tasks that can be used to invoke image
processing functionality driven by ImageJ. From a user’s
perspective, this means that they are using ImageJ libraries
“under the hood” without requiring explicit knowledge of
technical details.

For guidance on building image analysis pipelines using
the KNIME Image Processing extension, we refer the reader
to the previously published KNIME Image Processing tutorial
(Dietz and Berthold, 2016), as well as in A Blueprint for Image
SegmentationUsing ImageJ and KNIMEAnalytics Platform below,
which presents a blueprint for converting an ImageJ macro into
a full-fledged KNIME workflow.

Wrapping ImageJ Commands as KNIME Nodes
By installing the “KNIME Image Processing—ImageJ
Integration” extension (installation instructions at https://www.
knime.com/community/imagej), users of the KNIME Analytics
Platform gain the ability to use additional ImageJ commands
directly as KNIME nodes. Users can install commands in
their local KNIME Analytics Platform installations using the

KNIME › Image Processing Plugin › ImageJ2 Plugin tab of the
File › Preferences dialog, dropping in JAR files containing the
commands. Alternately, software developers can make ImageJ
commands available via KNIME update sites so that users can
instead install them by KNIME’s standard mechanism, accessible
via File › Install KNIME Extensions. . . (see https://docs.knime.
com/2019-12/analytics_platform_quickstart_guide/#extend-
knime-analytics-platform for complete details). An advantage of
the latter approach, similar to ImageJ update sites, is that new
versions of ImageJ commands can be shipped by developers,
freeing individual users of the burden of repeatedly downloading
and installing JAR files.

In this way, many ImageJ commands provided and

maintained by community members can therefore be treated as
fully functional KNIME nodes with no additional work from
the maintainers (although to make installation as convenient as
possible for KNIME users, it is recommended for developers
to publish the commands to a KNIME update site). The
autogenerated KNIME nodes automatically support important
KNIME node interfaces, particularly streaming and column
selection. Any needed configuration of the command is provided
through the standard KNIME node configuration dialog. The

Frontiers in Computer Science | www.frontiersin.org 5 March 2020 | Volume 2 | Article 8

https://www.knime.com/community/imagej
https://www.knime.com/community/imagej
https://docs.knime.com/2019-12/analytics_platform_quickstart_guide/#extend-knime-analytics-platform
https://docs.knime.com/2019-12/analytics_platform_quickstart_guide/#extend-knime-analytics-platform
https://docs.knime.com/2019-12/analytics_platform_quickstart_guide/#extend-knime-analytics-platform
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

FIGURE 2 | An ImageJ command for low-pass filtering used as a KNIME node.

resulting node can directly be used in conjunction with all other
nodes of the KNIME Image Processing extension: input ports
are connected to an image source, output ports provide the
processed results, and no scripting or programming experience
is required.

In addition, developers can code algorithms that run in
both KNIME Analytics Platform and ImageJ without requiring
a deeper knowledge of the KNIME application programming
interface (API); only a basic knowledge of how to write an ImageJ
command is required (https://imagej.net/Writing_plugins).

Figure 2 shows an example workflow (https://kni.me/w/
DU4eH3TjYhcxfWXD) utilizing a low-pass filter from the
ImageJ tutorials (https://github.com/imagej/tutorials) exposed
as a KNIME node and executed on one of ImageJ’s sample
images (https://imagej.net/images/lymp.tif). To reproduce this
workflow, follow the instructions in the workflow description
on KNIME Hub. The command’s ImageJ menu path (Tutorials
› Low-Pass Filter) defines the node’s placement within the Node
Repository. The filter utilizes forward and backward fast Fourier
transforms, available as part of the ImageJ Ops library, but not yet
wrapped as built-in KNIME Image Processing nodes.

Embedding Custom Java Code
Advanced users can apply the Java Snippet node (https://kni.
me/n/QNB4FsAPnEAgOMVh) to run custom Java code directly
without needing to package it as an ImageJ command. Such
code snippets have many more applications than only image
processing, offering direct access to KNIME data structures,
with great flexibility in the input and output types they can be
configured to use, as well as the ability to depend on additional
libraries present in the environment. Because the KNIME Image
Processing extension includes ImageJ’s underlying libraries, Java
Snippet nodes can, in combination, readily exploit these libraries
to perform custom image processing routines.

Figure 3 illustrates usage of a Java Snippet node to clear the
image area outside a defined spherical region of interest (ROI).
The workflow (available on the KNIME Hub at https://kni.me/
w/ThmsDDG4kj-_Ecml) first generates random image data for

demonstration purposes. The Java snippet code then makes a
copy of the input image and iterates over its samples, checking
whether each sample lies within the sphere and, if not, setting its
value to zero.

For more information on how to implement image
processing algorithms with ImgLib2, see the ImageJ developer
documentation (https://imagej.net/Development).

Noteworthy ImageJ Pitfalls
ImageJ has some historical idiosyncrasies worthmentioning here,
whichmight surprise or confuse users seeking to emulate classical
ImageJ operations within the KNIME Analytics Platform.

The behavior of ImageJ’s binary operations varies depending
on several factors: (1) color lookup tables (LUTs) used for
visualization can be inverted (Image › Lookup Tables › Invert
LUT); (2) the Image › Adjust › Threshold dialog has a “Dark
background” checkbox inverting the thresholded range; and (3)
the Process › Binary › Options. . . menu has a “Black background”
toggle that inverts how binary operations perform on masks and
how masks are created from thresholded images. The interaction
between these three factors can be confusing:

• For an image with a normal LUT, “Dark background” selects
higher-intensity values as foreground. But if the LUT is
inverted, “Dark background” selects lower-intensity values
as foreground.

• When creating a mask (Edit › Selection › Create Mask) from a
thresholded image, the mask will be 8-bit type with 255 values
for foreground and 0 values for background. But if the “Black
background” option is off, an inverted LUT will be used such
that foreground values appear black while background values
appear white.

• Furthermore, binary morphological operations such as
erosion (Process › Binary › Erode) operate on the appearance
rather than the intensity value of the mask. For example, a
mask with inverted LUT has 255 values that appear black; but
when the “Black background” option is set, these 255 values
are considered to be background, and the Erode command

Frontiers in Computer Science | www.frontiersin.org 6 March 2020 | Volume 2 | Article 8

https://imagej.net/Writing_plugins
https://kni.me/w/DU4eH3TjYhcxfWXD
https://kni.me/w/DU4eH3TjYhcxfWXD
https://github.com/imagej/tutorials
https://imagej.net/images/lymp.tif
https://kni.me/n/QNB4FsAPnEAgOMVh
https://kni.me/n/QNB4FsAPnEAgOMVh
https://kni.me/w/ThmsDDG4kj-_Ecml
https://kni.me/w/ThmsDDG4kj-_Ecml
https://imagej.net/Development
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

FIGURE 3 | An example Java Snippet node operating on an image region of interest using ImgLib2 libraries.

grows the 255 values at the boundary, rather than reducing
them—whereas the same mask with non-inverted grayscale
LUT will have those same 255 values appearing white and thus
considered to be foreground, with Erode reducing them at
the boundary.

The redesigned version of ImageJ (Rueden et al., 2017, p. 2)
dispenses with the concept of inverted LUTs and includes a
dedicated 1-bit image type for masks, where 0 always means
background and 1 always means foreground. The KNIME
Image Processing nodes and ImageJ integration are built on the
new ImageJ and inherit these design choices. However, users
migrating ImageJ workflows that include binary morphological
operations are advised to be careful: if the ImageJ workflow
assumes the “Black background” option is off, or if inverted LUTs
are used, the behavior in the KNIME Analytics Platform will be
reversed compared to ImageJ.

Another notable idiosyncratic behavior of ImageJ is that of
ImageJ’s rank filters such as the median filter (Process › Filters
› Median. . .). The behavior of these filters in the new ImageJ—
and hence also the KNIME Image Processing nodes—has been
brought in line with other image processing routines. While
ImageJ’s built-in rank filters are limited to circular masks for
computing filter responses, KNIME Image Processing nodes
support rectangular masks as well. In addition, this choice of
mask is made explicit by exposing the setting in the configuration
dialog instead of implying a convention through the Process
› Filters › Show Circular Mask... command. Running this

command in ImageJ reveals that additional circular masks with
non-integer radii, e.g., 0.5, 1.5, etc., are available: those radii
change the discretization of the circularmask on the pixel grid. By
supporting integer radii only, KNIME Image Processing follows
the convention of other image processing libraries.

The above discussion does not comprise an exhaustive list
of differences between ImageJ and KNIME Analytics Platform,
but we hope the aforementioned examples raise the reader’s
awareness of implicit assumptions and the resulting need to
compare outputs of different tools for the same operation with
the same settings.

A Blueprint for Image Segmentation Using
ImageJ and KNIME Analytics Platform
Here, we describe a process for translating ImageJ scripts into
KNIME workflows. While bioimage analysis pipelines are, in
most cases, developed for specific use cases, they typically
share a common scaffold of preprocessing, segmentation, and
feature extraction. Hence, for demonstration purposes, we
highlight a minimal script in ImageJ’s macro language that
performs simple actions along these lines (Figure 4, left panel)
and corresponding KNIME workflow (Figure 4, right panel).
The KNIME workflow can also be found on the KNIME
Hub (https://kni.me/w/oZteZanXoWURLouy). Each step of
the script has equivalent functionality in KNIME node form
as follows:

Frontiers in Computer Science | www.frontiersin.org 7 March 2020 | Volume 2 | Article 8

https://kni.me/w/oZteZanXoWURLouy
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

FIGURE 4 | Side-by-side comparison of ImageJ macro with KNIME workflow using KNIME Image Processing nodes.

Open the Image
We are applying the script to ImageJ’s well-known “Blobs”
example image, accessible from within the ImageJ application
via File › Open Samples › Blobs (25K) and often used for
demonstration purposes. To open an image in KNIME, we
use the Image Reader node (https://kni.me/n/PQRHqpYEOx-
QXrbp), which supports reading many scientific image file
formats via the SCIFIO and Bio-Formats libraries.

Preprocess the Image
Next, we smooth the image using a median filter. Such
preprocessing often helps to achieve a better separation of
foreground and background, smoothing away outlying sample
values. Neighborhood operations, such as median, require
specifying the size and shape of the neighborhood as a
“structuring element.” ImageJ’s Process › Median. . . command,
called from the macro here, will implicitly use a rectangular
neighborhood with radius 1 (i.e., a 3 × 3 square). In the
corresponding Median Filter node (https://kni.me/n/OPevaIVf-
GfJ1NXJ), we specify the same neighborhood by setting a Span of
1 and Neighborhood Type of RECTANGULAR.

Threshold the Image
Subsequently, an automated global thresholding algorithm
(Huang and Wang, 1995) is applied to generate a binary
mask of foreground (i.e., areas with objects of interest) vs.
background (i.e., areas without such objects) pixels. In ImageJ,
the command is Image › Adjust › Threshold. . . ; in KNIME
Image Processing, the node is Global Thresholder (https://
kni.me/n/L0bv0drXtgAsdbFe). Both of these support the same
thresholding methods.

Adjust the Mask
In some scenarios, the thresholded mask may either over- or
underrepresent the foreground. For example, in cell biology, the

mask might include cell membranes when measuring only cell
interiors is desired. Morphological operations such as erosion—
shrinking the foreground along its border—or dilation—likewise
expanding the foreground—can be used to adjust the mask
to minimize this issue so that objects can be measured as
accurately as possible. In ImageJ, these morphological operations
are found in the Process › Binary submenu; the corresponding
KNIME Image Processing functionality is the Morphological
Image Operations node (https://kni.me/n/NriZ1-GeHMqitd1c),
with an assist from the Structuring Element Creator (https://kni.
me/n/AePOcxewSCvaUiZh) node. In this example, we reduce
the size of the objects by applying a 2-pixel erosion using a
rectangular (as opposed to spherical) structuring element.

Divide the Mask Into Objects
Now that the mask has been optimized, we can perform a
connected component analysis to split the mask foreground into
individual objects. In ImageJ, the Analyze › Analyze Particles. . .
command is often used to accomplish this, although it also can
bundle in other steps, such as object measurement. In our case,
we do not want to measure image features yet because it would
measure the image mask rather than the original image data.
Thus, we simply split up the foreground into ROIs and add each
ROI to ImageJ’s ROI Manager, with the intent of measuring them
in a later step. In KNIME terms, the Connected Component
Analysis node (https://kni.me/n/aFTAPO7mEW_Okby7) does
exactly what we want, which is to convert the binary mask into an
image labeling, with each label corresponding to a distinct object.

Measure Object Features on Original Image Data
With the image divided into objects, we can now measure each
object. We are interested in both spatial features—relating to the
shape of the object—and image features—related to the object’s
content (i.e., its sample values). From ImageJ’s ROI Manager,
clicking the Measure button generates a Results window with

Frontiers in Computer Science | www.frontiersin.org 8 March 2020 | Volume 2 | Article 8

https://kni.me/n/PQRHqpYEOx-QXrbp
https://kni.me/n/PQRHqpYEOx-QXrbp
https://kni.me/n/OPevaIVf-GfJ1NXJ
https://kni.me/n/OPevaIVf-GfJ1NXJ
https://kni.me/n/L0bv0drXtgAsdbFe
https://kni.me/n/L0bv0drXtgAsdbFe
https://kni.me/n/NriZ1-GeHMqitd1c
https://kni.me/n/AePOcxewSCvaUiZh
https://kni.me/n/AePOcxewSCvaUiZh
https://kni.me/n/aFTAPO7mEW_Okby7
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

a table of measurements, one row per object, one column
per measurement. Which features are computed is configurable
globally via the Analyze › Set Measurements. . . dialog. In our
example, we compute area, mean value, and standard deviation.
In the equivalent KNIME workflow, we use the Image Segment
Features node to compute the same features: on the Features
tab, under “First order statistics,” we select Mean and Std Dev,
and under “Segment geometry,” we select Num Pix. However,
this node requires as input a combined table including both the
original image data in one column and corresponding image
labeling in another column. The Joiner node enables us to create
this combined table, which we then feed into Image Segment
Features; a new table of measurements, analogous to ImageJ’s
Results table, is then produced.

Export Resulting Measurements
Finally, the Results table is exported to a CSV file on disk,
which can subsequently be imported into other programs—e.g.,
a spreadsheet application or R script—for further analysis, figure
generation, and so forth. In ImageJ, with the Results window
active, the File › Save As . . . command is used to create the CSV
file. The corresponding KNIME node is CSV Writer. However,
it is worth noting that with KNIME workflows, it is often not
necessary to export data for further analysis in an external tool
because there are KNIME nodes for manipulating and analyzing
tabular data (see, e.g., Analytics nodes in Node Repository view),
integrating with other powerful platforms such as R (https://
kni.me/e/6cbZ6X3DrLrH96WD) and Python (https://kni.me/e/
9Z2SYIHDiATP4xQK), and generating figures (see, e.g., Views
nodes in Node Repository view).

Biological Use Cases
The nature of individual KNIME nodes naturally lends
workflow development to compartmentalize functionality. This
is facilitated by creating components that enclose multiple,
discrete nodes. Not only does this facilitate development by
allowing the designer to optimize individual functionality and
test discrete functionalities, but it also enables portability
of discrete functions. The following use cases leverage this
compartmentalization to facilitate their deployment.

Biological Use Case No. 1: Quantitative Analysis of

Subcellular Structures
The goal of this analysis was to quantitatively assess the
ability of a cytoskeletal organizer to control adhesion to the
extracellular matrix. In this case, adhesion is visualized by
the formation of focal adhesion complexes. A quantitative
comparison was achieved by extrapolating the number of focal
adhesion complexes formed at the periphery of the cell vs.
within the center of the cell. The KNIME workflow (Figure 5)
was divided into five sequential steps with discrete objectives:
(1) reading of file in, (2) processing of the images into
labels that capture the individual focal adhesion complexes, (3)
arithmetic on the labels to obtain the characteristics (features)
for classification, (4) classification of the labels using extracted
features, and (5) visualization of the classified focal adhesion
complexes (periphery vs. center).

Image data for extrapolating the full cell body and the
individual focal adhesion complexes were remarkably similar.
Both aspects of the pipeline were extracted from the same
normalized images, which were thresholded manually (Global

FIGURE 5 | Quantitative analysis of subcellular structures. To analyze the consequences of disrupting the cytoskeleton on matrix adhesion focal adhesion complex

formation is visualized using total internal reflection fluorescence (TIRF) imaging. A KNIME workflow was leveraged to define the number of focal adhesion complexes

at the periphery of the cell vs. within the center of the cell using sequential steps with discrete objectives: (I) Read file in, (II) processing of the images into labels that

capture the individual focal adhesion complexes, (III) arithmetic on the labels to obtain the characteristics (features) for classification, (IV) classification of the labels

using extracted features, and (V) visualization of the classified focal adhesion complexes (periphery vs. center). Note that the output of this pipeline is a combination of

visualization and quantitation. Both of these can be leveraged for further analysis.

Frontiers in Computer Science | www.frontiersin.org 9 March 2020 | Volume 2 | Article 8

https://kni.me/e/6cbZ6X3DrLrH96WD
https://kni.me/e/6cbZ6X3DrLrH96WD
https://kni.me/e/9Z2SYIHDiATP4xQK
https://kni.me/e/9Z2SYIHDiATP4xQK
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

FIGURE 6 | Quantitative analysis of histological stain. The histological staining of a cell adhesion marker (CD166) related to tumor invasion and metastasis

demonstrates significant variation across patient samples. As in user case no. 1, the KNIME workflow was divided into sequential steps that complete discrete

objectives: (1) read in file, (2) preprocessing of the images and their annotation in preparation for analysis using ImageJ2 functionalities, (3) pixel classification using

Weka-bases machine learning functionality, (4) post-classification processing of image data to labels that correspond to “positive,” (5) compilation of labels, images,

and annotations, (6) visualization of the quantitation by overlaying the labels with the original image.

Thresholder node) and then processed by the Connected
Component Analysis node to generate image segments for either
the full cell body or individual focal adhesions. To select the
pixels for the full cell body, the threshold was set lower (10),
and the combination of Dilate and Fill Holes was used to ensure
a full inclusion of the cell body. For the selection of the focal
adhesions, the threshold was set higher (25), and image dilation
was omitted to enable a narrow selection of image segments
reflecting only the focal adhesions. The Label Arithmetic node
was subsequently used to define the periphery and the center
of the cell. After feature extraction, the peripheral and central
focal adhesion complexes were defined by their relative proximity
within the cell (Classification). These classified focal adhesion
were then mapped back to the original images.

Compartmentalization of the sequential functions facilitated
optimization of the image processing functions. Once discrete
focal adhesion complexes were defined, these objects were readily
transformed to labels that could be quantitatively interrogated,
both for their location as well as their intrinsic features (i.e., size,
shape, etc.). The output of these data types was readily joined and
visualized by overlaying the labels for peripheral and central focal
adhesion complexes back to the original image.

Biological Use Case No. 2: Quantitative Analysis of a

Histological Stain
The goal of this analysis was to generate an objective and
quantitative measure of the chromogenic tissue stain via the
histological staining of a cell adhesion marker related to tumor
invasion and metastasis, demonstrating significant variation
across patient samples. As in the previous use case, the
KNIME workflow (Figure 6) was divided into sequential steps
that complete discrete objectives: (1) reading of file in; (2)
preprocessing of the images and their annotation in preparation
for analysis using ImageJ functionalities; (3) pixel classification
using Weka-based machine learning functionality; (4) post-
classification processing of image data to labels that correspond
to positive; (5) compilation of labels, images, and annotations;
and (6) visualization of the quantitation by overlaying the labels
with the original image. Unlike the first use case, the objects of
interest could not be generated using conventional thresholding.
Instead, a trainable segmentation strategy was employed to
generate a pixel classificationmodel.While this approach is much
more resource intensive, it was effective in defining objects in
complex images. The label processing and visualization was very
similar to the first use case. While it was not deployed here, the

Frontiers in Computer Science | www.frontiersin.org 10 March 2020 | Volume 2 | Article 8

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

labels created in this workflow could easily be used to perform
quantitative analysis of the stain within the tissue.

ImageJ elements were implemented in multiple steps. After
splitting the channels with Splitter “Pre-classification,” a target
image (for pixel classification) was generated through sequential
processing with Invert, Gaussian Blur, and Image Calculator,
with the goal of eliminating background pixel values not
relevant to the tissue stain. Pixel classification was subsequently
achieved using the Fiji Trainable Segmentation Features 2D.
The selected pixels were transformed to labels using Connected
Component Analysis after eroding the pixel segments with
Erode to facilitate separation of individually stained areas.
Finally, the labels corresponding to the stain was joined

with original image data and visualized using the Interactive
Segmentation Viewer.

Note that this workflow could be significantly simplified if the
original data had been acquired as a multilayer TIFF or if the
project had been completed with a monocolor fluorescent stain
rather than a chromogenic stain. However, we often do not have
control over the original data acquisition, thus highlighting the
need for flexibility and creativity in our data analysis approach.

Biological Use Case No. 3: Channel-Shift Correction

and Particle Tracking
This KNIME workflow (Figure 7) corrects particle-tracking
data coming from a three-camera system that was used to

FIGURE 7 | A KNIME workflow for channel-shift correction and particle tracking. The positions of bead detections are shown in three-pane scatter plots, before (left)

and after (right) applying channel-shift correction. The density plots show absolute distances between apparent bead locations of two channels (red) and after (cyan)

correction.

Frontiers in Computer Science | www.frontiersin.org 11 March 2020 | Volume 2 | Article 8

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

acquire live-cell time-lapse series of genomic loci labeled with
three different fluorescent markers. The distance between two
differently labeled loci in a cell nucleus can be in the range
of a few hundred nanometers, and it is crucial to determine
these distances as accurately as possible, within the physical and
optical limits of the experimental system, to test hypotheses about
chromosome conformation and dynamics (Tiana et al., 2016).
This requires correcting for possible rotations andmisalignments
between cameras, as well as for chromatic aberrations specific to
each color channel.

To measure the channel shift and chromatic aberration,
autofluorescent beads were imaged with acquisition settings
corresponding to those used in live-cell imaging. In the acquired
image stacks, the bead locations were determined at subpixel
accuracy using a spot detection algorithm provided by the
ImageJ plugin, TrackMate (Tinevez et al., 2017), and the ImgLib2
(Pietzsch et al., 2012, 2) library in Fiji. Subsequently, the channels
were registered by aligning these bead locations, using the
ImageJ plugin, “Descriptor-based registration” (Preibisch et al.,
2010), and the library, “mpicbg;” both are included in Fiji
(Schindelin et al., 2012). We implemented all functionality as
ImageJ/SciJava command plugins (https://github.com/fmi-faim/
fmi-ij2-plugins/) that give rise to autogenerated KNIME nodes.
To assess the quality of the correction and aid in choosing a
suitable transformation model, we plotted the distances between
corresponding bead positions in the different channels before and
after correction, using the R scripting integration in KNIME. The
deviations between apparent bead locations in different channels
provide an estimate of the overall particle localization accuracy
in the experiment, which was below 50 nm after correction. The
measured transformation for each channel was then used to
correct point coordinates derived from tracking labeled genomic
loci in live-cell imaging data.

In this use case, according to the strengths of the respective
software packages, tracking was performed interactively with
TrackMate in ImageJ (i.e., outside KNIME), while the KNIME
workflow was used to automate correction of coordinates
in the TrackMate results files (in XML format). Instead of
correcting coordinates, it is also possible to apply the measured
transformation to images for downstream processing. However,
as this would involve significantly more computation, we chose
to work on the coordinates in this case.

Biological Use Case No. 4: Single-Cell Analysis in

Prostate Cancer
Androgen receptor (AR) is a critical protein in the progression of
prostate cancer and benign prostate diseases. The activity of AR
protein is defined by the activation of target genes such as PSA or
AR presence in the nucleus (Wang et al., 2002). Consequently,
treatments for prostate cancer are focused on targeting the
AR pathway and preventing AR translocation to the nucleus
(Higano and Crawford, 2011). Assessing AR localization and
activity in response to ligands or drugs normally requires manual
nucleus and cytoplasm segmentation. Achieving sufficient data
points to determine if an observed phenotype occurs with a
given confidence renders manual image segmentation difficult.
These limitations inspired us to develop an automated image

segmentation and analysis workflow via the KNIME platform in
conjunction with ImageJ plugins.

Briefly, our image processing workflow accepts multichannel
images (.TIF and .ND2) and requires a nuclear marker/stain
in the first channel, with the subsequent channels arranged as
desired. First, cells are identified via the nuclear channel by a
series of ImageJ plugins that perform image and illumination
correction. The data are then passed to the Global Thresholder
node (default: Otsu method) to threshold the nuclear signal,
Morphological Image Operations node to dilate nuclear signal
(i.e., dilate the threshold mask), the Fill Holes node to create
a smooth nuclear mask, and finally, the Waehlby Cell Clump
Splitter node to separate closely clustered nuclei. The nuclear
masks generated by our workflow are then dilated with the
Morphological Image Operations node to create a nuclear mask
larger than the original. To create the cytoplasmic measurement
mask—here referred to as the “cytoplasmic ring”—the larger,
dilated nuclear masks and the original smaller nuclear masks are
next processed by the Voronoi Segmentation node to produce
a ring-shaped mask located in the cytoplasm of a tracked
cell. Simultaneously, the other channels are processed through
ImageJ macro nodes to subtract the background before obtaining
measurements for the nuclear and cytoplasmic compartments.
In the final step, the nuclear and cytoplasmic masks are
applied to the non-nuclear channels (i.e., the measurement
channels) to measure the signal in the nuclear and cytoplasmic
compartments, respectively.

In this experiment, we tested AR-positive LNCaP cells with
the potent synthetic AR ligand R1881, which induces AR
translocation to the nucleus (Figure 8A). Using KNIME and the
image processing workflow that we developed, we were able to
measure this cytoplasmic-to-nuclear translocation over hundreds
of cells. Plotting these data in an xy scatter plot (Figures 8B,
C) reveals the nuclear translocation of AR in response to the
R1881 synthetic ligand. This software will allow us to test future
therapeutic agents targeting the AR pathway and AR activation
in benign prostate diseases and prostate cancer.

MATERIALS AND METHODS

KNIME ImageJ Integration
The KNIME Image Processing extension is built on the same
technologies that have driven the latest versions of ImageJ,
including ImgLib2, a general-purpose, multidimensional image
processing library (Pietzsch et al., 2012); SCIFIO, a framework for
reading and writing scientific image formats (Hiner et al., 2016);
Bio-Formats, a Java library for reading and writing life sciences
image file formats (Linkert et al., 2010); and BigDataViewer
(Pietzsch et al., 2015), a reslicing browser for terabyte-sized
multiview image sequences. This infrastructure enables code
reuse across tools beyond KNIME and ImageJ, facilitating
consistency across a broader range of software incorporating the
same underlying algorithms. This technology selection allows
KNIME and ImageJ to directly share data, avoiding costly data
serialization operations. ImageJ routines are called in-process,

Frontiers in Computer Science | www.frontiersin.org 12 March 2020 | Volume 2 | Article 8

https://github.com/fmi-faim/fmi-ij2-plugins/
https://github.com/fmi-faim/fmi-ij2-plugins/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

FIGURE 8 | R1881 treatment shows nuclear translocation of the androgen receptor in LNCaP cells. (A) LNCaP cells were either left non-treated or treated with 1 nM

R1881. Under R1881 treatment conditions, androgen receptor (AR) localization shifts from nuclear and cytoplasmic to primarily nuclear. (B) xy scatter plot of the mean

fluorescence intensity (MFI) of the cytoplasm (x) and the nucleus (y). The size of the point denotes sum of the cytoplasmic and nuclear signal (i.e., total cell signal).

Treating LNCaP cells with R1881 induces a shift into the nucleus and increase in signal inside the nucleus. (C) a linear regression plot depicting the clear separation of

the populations.

in contrast to many interprocess integrations, especially cross-
language ones, which require duplicating data at the expense of
additional computation time and disk space.

The KNIME Image Processing extension (https://
kni.me/e/Uq6QE1IQIqG4q_mp) can be found on the
“Community Extension (trusted)” update site. KNIME
Image Processing–ImageJ Integration extension (https://
kni.me/e/jwXXJ1i4i6fknco2) is part of Community Extension
(experimental). Detailed installation instructions can be found in
the Extension and Integration Guide (https://docs.knime.com/
2019-06/analytics_platform_extensions_and_integrations/). The
KNIME Image Processing extension source code can be found
on GitHub (https://github.com/knime-ip/knip, https://github.
com/knime-ip/knip-imagej2).

Depending on the needs of the developer, several possibilities
exist for extending the KNIME Analytics Platform with
additional functionality based on the KNIME Image Processing
ecosystem. The most flexible approach is to write a native
KNIME node (see https://www.knime.com/blog/the-five-steps-
to-writing-your-own-knime-extension). For ImageJ-related
extensions, the simpler mechanism of writing an ImageJ

command plugin and wrapping it as a KNIME node is a
powerful option—see A Blueprint for Image Segmentation Using
ImageJ and KNIME Analytics Platform; and Wrapping ImageJ
Commands. However, autogeneration of KNIME nodes from
ImageJ commands requires them to conform to certain input and
output parameter types: not all ImageJ plugins can currently be
executed with KNIME. Furthermore, the ImageJ command must
declare itself to support headless operation via the headless=true
parameter to ensure compatibility with KNIME’s “configure
once, execute often” paradigm. An example implementation
of an ImageJ2 command can be found at https://github.com/
knime-ip/knip-imagej2/tree/0.11.6/org.knime.knip.imagej2.
buddydemo/src/org/knime/knip/imagej2/buddydemo. For
further details, please see https://www.knime.com/community/
imagej.

Biological Use Cases
Biological Use Case No. 1: Detection of Subcellular

Structures
Focal adhesion complexes were visualized through total internal
reflection fluorescence (TIRF) confocal microscopy with a Nikon

Frontiers in Computer Science | www.frontiersin.org 13 March 2020 | Volume 2 | Article 8

https://kni.me/e/Uq6QE1IQIqG4q_mp
https://kni.me/e/Uq6QE1IQIqG4q_mp
https://kni.me/e/jwXXJ1i4i6fknco2
https://kni.me/e/jwXXJ1i4i6fknco2
https://docs.knime.com/2019-06/analytics_platform_extensions_and_integrations/
https://docs.knime.com/2019-06/analytics_platform_extensions_and_integrations/
https://github.com/knime-ip/knip
https://github.com/knime-ip/knip-imagej2
https://github.com/knime-ip/knip-imagej2
https://www.knime.com/blog/the-five-steps-to-writing-your-own-knime-extension
https://www.knime.com/blog/the-five-steps-to-writing-your-own-knime-extension
https://github.com/knime-ip/knip-imagej2/tree/0.11.6/org.knime.knip.imagej2.buddydemo/src/org/knime/knip/imagej2/buddydemo
https://github.com/knime-ip/knip-imagej2/tree/0.11.6/org.knime.knip.imagej2.buddydemo/src/org/knime/knip/imagej2/buddydemo
https://github.com/knime-ip/knip-imagej2/tree/0.11.6/org.knime.knip.imagej2.buddydemo/src/org/knime/knip/imagej2/buddydemo
https://www.knime.com/community/imagej
https://www.knime.com/community/imagej
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

Multi-Excitation TIRF using Apo TIRF 60× /1.49 objective using
0.7-s frame capture on a Andor Xyla sCMOS after 488 nm
diode laser excitation in single TIRF mode. Fluorescent-labeled
vinculin is localized to the contact point between the cell and the
surface below. Tiff files were exported from the Nikon Elements
software for further processing. After image normalization, two
parallel tracks were used to generate separate labels for the
focal adhesion complexes, the periphery of the cell, and the
center of the cell. Label arithmetic was subsequently used to
delineate which focal adhesion complexes were at the center and
which were in the periphery. The KNIME workflow is available
on KNIME Hub (https://kni.me/w/7yXlo4oq91qSBWeU); image
data is published on Figshare (https://doi.org/10.6084/m9.
figshare.9936281.v2).

Biological Use Case No. 2: Histological Detection of

CD166 in Tissue Sections
Formalin-fixed, paraffin-embedded bladder tumors were
sectioned (6µm) and processed for immunostaining as described
previously (Hansen et al., 2013; Arnold et al., 2017). Briefly,
the cell surface adhesion molecule was detected within the
tissue using conventional 3,3’ diaminobenzidine (DAB; brown)
staining. The tissue was counterstained using hematoxylin (blue
nuclear stain). Images were captured with the Leica SCN400
Slide Scanner using a HC PLAN APO 20× /0.7 (dry) objective
into.scn tiled file format. Image tiles (1,000 × 1,000 pixels) were
extracted using Aperio Imagescope and saved in JPEG2000
format. The areas of the tissue that contain DAB stain were
identified through a trainable pixel classification scheme. To
achieve this, the image is split into its three individual channels
and processed with a series of ImageJ functions to generate an
image that reflects the DAB pixel values after subtraction of
background signal from the other three channels. In the pixel
classification node, the data are split into a training and test
set. Using the interactive annotator, labels annotating the pixels
of interest are created, while pixel features are extracted in a
parallel. The selected pixel features are used to train a model,
which is subsequently applied to both training and test images.
Selected pixels are subsequently transformed to a label, which is
mapped back to the original images to visualize positive areas.
The KNIME workflow and datasets are available on KNIME
Hub (https://kni.me/w/QVjrs0Vj7xG48Pcr). Before opening this
workflow, you need to add the nightly software site to your
KNIME installation (see https://knime.com/wiki/knime-image-
processing-nightly-build for details). Once the site is enabled,
upon opening the workflow, KNIME will search for the required
extension and install it automatically.

This study was carried out in accordance with the
recommendations of the Vanderbilt Institutional Review
Board (IRB). The protocol was approved by the IRB under
protocol no. 150278 “Assessment of cell migration in cancer.”
Where necessary, all subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Biological Use Case No. 3: Channel-Shift Correction

and Particle Tracking
For chromatic shift correction, autofluorescent beads were
acquired using the VisiView software (Visitron) on a Nikon

Eclipse Ti-E inverted microscope equipped with a CFI APO
TIRF 100×/1.49 oil objective lens (Nikon) and three Evolve 512
Delta EMCCD cameras (Photometrics). For live-cell tracking
of genomic loci, cell lines were prepared as described earlier
(Masui et al., 2011; Tiana et al., 2016) and imaged at a frame
interval of 30 s.

The KNIME workflow is available on KNIME Hub (https://
kni.me/w/F3K1YgZKt_923UgH); image data are included with
the workflow. The ImageJ command plugins (see Wrapping
ImageJ Commands as KNIME Nodes) used in this analysis
are wrapped in the FMI KNIME Plugins extension, which
is provided by the FMI KNIME Plugins update site (https://
community.knime.org/download/ch.fmi.knime.plugins.update):
this extension must be installed via the File › Install KNIME
Extensions. . . dialog before executing the workflow. The
workflow consists of several steps (Figure 7): (1) configuration
(file input and output locations, metadata), (2) image reading
and channel splitting, (3) configurable spot detection, (4) spot
matching and transformation measurement, (5) quality control
(distance measurement and plotting), and (6) applying the
correction onto tracking data.

Biological Use Case No. 4: Single-Cell Analysis in

Prostate Cancer
Immunofluorescence (IF) was performed on LNCaP cells using
Cell Signaling Technology’s protocol (Abcam, Cambridge,
United Kingdom). Cells were fixed in 4% paraformaldehyde,
permeabilized, and washed. Cells were then incubated with
the primary antibody AR (1:600, Cell Signaling Technology;
Cat. No. 5365) at 4◦C overnight. The next day, this was
followed by antirabbit conjugated to AlexaFluor 488 (Thermo
Fisher Scientific, Cat. No. A-21206). DAPI was used as a
nuclear counterstain at 1:250. fluorescein isothiocyanate (FITC)
(500ms) and DAPI (125ms) channels were then acquired
using a Nikon Eclipse 80i microscope with a Retiga 2000R at
40× magnification. Subsequent data—available via Figshare
(https://doi.org/10.6084/m9.figshare.9934205.v1)—were then
analyzed using the KNIME workflow available on the KNIME
Hub (https://kni.me/w/QMky8ZEz3dzja42q). This study was
carried out in accordance with biosafety protocol B00000511
approved by the University of Wisconsin-Madison Institutional
Biosafety Committee.

DISCUSSION

The KNIME Image Processing extension with its ImageJ
integration offers many benefits in interoperability, efficiency,
and functionality when deployed to solve bioimage analysis
problems. Ideally, the decision to use the KNIME Analytics
Platform will not limit the user to just one software solution
but, quite the contrary, open up the possibility to combine a
wide array of other integrated tools and software to achieve the
best result. The goal of the KNIME Analytics Platform is to
provide a common foundation from which users and developers
alike can explore and utilize a wide ecosystem of analysis tools.
This approach leads to better image analysis outcomes while also
enabling new combinations of functionality that would not be
feasible otherwise.

Frontiers in Computer Science | www.frontiersin.org 14 March 2020 | Volume 2 | Article 8

https://kni.me/w/7yXlo4oq91qSBWeU
https://doi.org/10.6084/m9.figshare.9936281.v2
https://doi.org/10.6084/m9.figshare.9936281.v2
https://kni.me/w/QVjrs0Vj7xG48Pcr
https://knime.com/wiki/knime-image-processing-nightly-build
https://knime.com/wiki/knime-image-processing-nightly-build
https://kni.me/w/F3K1YgZKt_923UgH
https://kni.me/w/F3K1YgZKt_923UgH
https://community.knime.org/download/ch.fmi.knime.plugins.update
https://community.knime.org/download/ch.fmi.knime.plugins.update
https://doi.org/10.6084/m9.figshare.9934205.v1
https://kni.me/w/QMky8ZEz3dzja42q
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

Not only does an open, extensible, and integrated platform
enable users to benefit from readily available tools, it also
empowers developers to further enhance the platform with
their own reusable algorithms and tools. The ImageJ and
KNIME Image Processing teams together are continuing to
work on making it even easier for researchers to integrate
custom functionalities across an array of open-source platforms,
including ImageJ scripting and ImageJ Ops (Table 1). Future
directions include the following.

Facilitating Deployment
One of the most important factors of ImageJ’s success is
its easy extensibility and sharing of custom code with other

TABLE 1 | Representative integrated tools and libraries related to bioimage

data analysis.

Software Description Links

Fiji A “batteries-included”

distribution of ImageJ with

many plugins facilitating

scientific image analysis

fiji.sc

ImageJ Open-source image

processing platform designed

for scientific, multidimensional

images

imagej.net

ImageJ

Ops

Framework for reusable image

processing operations

imagej.net/Ops

ImgLib2 General-purpose,

multidimensional image

processing library

imglib2.net

SciJava Core shared library, with a

powerful plugin framework

and application container

scijava.org

SCIFIO Flexible framework for

SCientific Image Format Input

and Output

scif.io

Bio-

Formats

Standalone Java library for

reading and writing life

sciences image file formats

openmicroscopy.org/bio-

formats

CellProfiler Free, open-source, public

domain software designed to

enable biologists to measure

phenotypes

cellprofiler.org

ClearVolume Real-time live 3D visualization

library designed for high-end

volumetric microscopes

clearvolume.github.io

Ilastik User-friendly tool for

interactive image

classification, segmentation,

and analysis focusing on

machine learning

ilastik.org

TrackMate An open and extensible

platform for single-particle

tracking.

imagej.net/TrackMate

OMERO A central repository to handle

images and relevant

metadata.

openmicroscopy.org

BigDataViewer Slicing Viewer for

multidimensional images data

of arbitrary sizes.

imagej.net/BigDataViewer

researchers, leading to a great wealth of plugins for many
tasks. Most available plugins are distributed to users via so-
called update sites, either hosted individually or by ImageJ
itself. Although the KNIME Analytics Platform also includes
a robust update site mechanism, it imposes a higher technical
barrier than ImageJ does. Hence, in the future, we want to
make it easier to share and install ImageJ plugins as KNIME
nodes for developers with even less technical backgrounds
and training.

Large Image Support
The KNIME Image Processing extension’s core infrastructure will
also be improved to handle new types of image data. For instance,
advances in microscope technology in the last few years have not
only lead to an increase in the amount of image datasets but also
a substantial increase in the size of single images. Multiview light-
sheet microscopy (Huisken and Stainier, 2009), for example,
allows researchers to create (nearly) isotropic three-dimensional
volumes over time, which easily comprise hundreds of gigabytes.
This relatively new modality of images requires the development
of not only new tools to visualize and explore the data but also
architectures to efficiently process the data (Preibisch et al.,
2010, 2014; Schmid and Huisken, 2015). Therefore, our future
work includes the integration of tools for processing extremely
large images, for example through use of cacheable, block-
based ImgLib2 images (https://github.com/imglib/imglib2-
cache) as the KNIME Image Processing extension’s primary
data structure.

Scripting
One of the most critical features for users of ImageJ is the
capability to record and write scripts in various supported
scripting languages such as JavaScript, Groovy, Jython, and
ImageJ’s own macro language (https://imagej.net/Scripting).
Such scripts enable ImageJ users to define workflow-like behavior
via sequential execution of ImageJ functions. A future version
of KNIME ImageJ integration will add the ability to create
full-fledged KNIME nodes via ImageJ scripting. Similar to the
automatic node generation from ImageJ command plugins (see
Wrapping ImageJ Commands as KNIME Nodes), these scripts
will automatically become nodes seamlessly integrated into the
KNIME Analytics Platform.

Accessing ImageJ functionality via the KNIME Analytics
Platform not only enhances the interoperability of different
existing bioimaging applications but also directly inherits
further advantages, including improved reproducibility and
documentation of results, a common and user-friendly graphical
user interface, and the ability to process large amounts of
image data, potentially combining with data from entirely
different domains. These powerful integrations and the other
aforementioned advantages make the KNIME Analytics
Platform an effective gateway for ImageJ users to create
both simple and complex workflows for biological image
data analysis, empowering scientists of various backgrounds
with state-of-the-art methods and tools to propel science
forward together.

Frontiers in Computer Science | www.frontiersin.org 15 March 2020 | Volume 2 | Article 8

https://github.com/imglib/imglib2-cache
https://github.com/imglib/imglib2-cache
https://imagej.net/Scripting
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

DATA AVAILABILITY STATEMENT

KNIME Analytics Platform and the KNIME Image Processing
extension are free/libre open source software (FLOSS) licensed
under the GNU General Public License (GPL) (https://www.
knime.com/downloads/full-license), with source code available
on Bitbucket (https://bitbucket.org/KNIME/) and GitHub
(https://github.com/knime-ip/), respectively. ImageJ and its
supporting libraries are open-source software collections with
permissive licensing (https://imagej.net/Licensing). All KNIME
workflows presented in this paper are published to the KNIME
Hub (https://hub.knime.com/) with links inline in the body of
the article. Corresponding datasets for KNIME workflows for
biological use cases 1, 2, and 4 can be found via Figshare (https://
doi.org/10.6084/m9.figshare.c.4687004.v1). Corresponding
datasets for biological use case #3 are available via KNIME
Hub (https://kni.me/w/F3K1YgZKt_923UgH).

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the Vanderbilt Institutional Review
Board (IRB). The protocol was approved by the IRB under
protocol #150278 Assessment of cell migration in cancer.
Where necessary, all subjects gave written informed consent in
accordance with the Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

CD, CR, MB, and KE conceptualized and designed the study.
CD, CR, and MH did the primary code development presented
with support from SH and ED on KNIME and ImageJ use

cases, respectively. JE, EE, DM, WR, NS, and AZ contributed
to the experiments and to descriptions in the paper. All authors
contributed to the manuscript text.

FUNDING

We acknowledge funding from the Chair for Bioinformatics and
Information Mining (MB), German Network for Bioinformatics
(de.NBI) grant number no. 031A535C (MB), the Morgridge
Institute for Research (KE), Chan Zuckerberg Initiative (CR and
KE), NIH U54 DK104310 (WR), NIH R01 AI110221 (NS), NIH
R01 CA218526 (AZ), and NIH RC2 GM092519-0 (KE). We also
acknowledge NIH T32 CA009135 (EE) and a Science &Medicine
Graduate Research Scholars Fellowship through the University of
Wisconsin-Madison (EE).

ACKNOWLEDGMENTS

The authors are grateful for code contributions and design
discussions from many software developers including (in
alphabetical order): Tim-Oliver Buchholz, Barry DeZonia,
Gabriel Einsdorf, Andreas Graumann, Jonathan Hale, Florian
Jug, Adrian Nembach, Tobias Pietzsch, Johannes Schindelin,
Simon Schmid, Daniel Seebacher, Marcel Wiedenmann,
Benjamin Wilhelm, and Michael Zinsmaier. We furthermore
acknowledge the strong support of the software communities
covered in this manuscript, in particular the developers and users
of the KNIME Analytics Platform, ImgLib2, ImageJ, and Fiji. For
biological use case no. 1, we thank Katie Hebron for providing
the images. For biological use case no. 3, we thank Tania Distler,
Marco Michalski, and Luca Giorgetti for providing image and
tracking data.

REFERENCES

Afgan, E., Baker, D., van den Beek, M., Bouvier, D., Cech, M., Chilton,

J., et al. (2018). The galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2018 update. Nucleic. Acids. Res. 44, W3–

W10. doi: 10.1093/nar/gkw343

Aiche, S., Sachsenberg, T., Kenar, E., Walzer, M., Wiswedel, B., Kristl, T., et al.

(2015). Workflows for automated downstream data analysis and visualization

in large-scale computational mass spectrometry. Proteomics 15, 1443–1447.

doi: 10.1002/pmic.201400391

Allan, C., Burel, J. M., Moore, J., Blackburn, C., Linkert, M., Loynton, S., et al.

(2012). OMERO: flexible, model-driven data management for experimental

biology. Nat. Methods 9, 245–253. doi: 10.1038/nmeth.1896

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin,

J., Cardona, A., et al. (2017). Trainable weka segmentation: a machine

learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426.

doi: 10.1093/bioinformatics/btx180

Arnold, E., Shanna, A., Du, L., Loomans, H. A., Starchenko, A., Su, P. F., et al.

(2017). Shed urinary ALCAM is an independent prognostic biomarker of

three-year overall survival after cystectomy in patients with bladder cancer.

Oncotarget 8, 722–741. doi: 10.18632/oncotarget.13546

Beisken, S., Meinl, T., Wiswedel, B., de Figueiredo, L. F., Berthold, M., and

Steinbeck, C. (2013). KNIME-CDK: workflow-driven cheminformatics. BMC

Bioinformatics 14:257. doi: 10.1186/1471-2105-14-257

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T.,

et al. (2008). “KNIME: the konstanz information miner,” in Data Analysis,

Machine Learning and Applications. Studies in Classification, Data Analysis, and

Knowledge Organization, eds C. Preisach, H. Burkhardt, L. Schmidt-Thieme,

and R. Decker (Berlin; Heidelberg: Springer), 319–326.

Cardona, A., and Tomancak, P. (2012). Current challenges in open-source

bioimage informatics. Nat. Methods 9, 661–665. doi: 10.1038/nmeth.2082

Carpenter, A. E., Kamentsky, L., and Eliceiri, K. W. (2012). A call for bioimaging

software usability. Nat. Methods 9, 666–670. doi: 10.1038/nmeth.2073

Dietz, C., and Berthold, M. R. (2016). KNIME for open-source bioimage

analysis: a tutorial. Adv. Anat. Embryol. Cell Biol. 219, 179–197.

doi: 10.1007/978-3-319-28549-8_7

Döring, A., Weese, D., Rausch, T., and Reinert, K. (2008). SeqAn an efficient,

generic C++ library for sequence analysis. BMC Bioinformatics 9:11.

doi: 10.1186/1471-2105-9-11

Eliceiri, K. W., Berthold, M. R., Goldberg, I. G., Ibáñez, L., Manjunath, B. S.,

Martone, M. E., et al. (2012). Biological imaging software tools. Nat. Methods

9, 697–710. doi: 10.1038/nmeth.2084

Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum, G. A., and

Berthold, M. R. (2017). KNIME for reproducible cross-domain analysis of

life science data. J. Biotechnol. 261, 149–156. doi: 10.1016/j.jbiotec.2017.

07.028

Gudla, P. R., Nakayama, K., Pegoraro, G., and Misteli, T. (2017). SpotLearn:

convolutional neural network for detection of fluorescence in situ hybridization

(FISH) signals in high-throughput imaging approaches. Cold Spring Har. Symp.

Quant. Biol. 82, 57–70. doi: 10.1101/sqb.2017.82.033761

Gunkel, M., Eberle, J. P., and Erfle, H. (2017). “Fluorescence-based high-

throughput and targeted image acquisition and analysis for phenotypic

Frontiers in Computer Science | www.frontiersin.org 16 March 2020 | Volume 2 | Article 8

https://www.knime.com/downloads/full-license
https://www.knime.com/downloads/full-license
https://bitbucket.org/KNIME/
https://github.com/knime-ip/
https://imagej.net/Licensing
https://hub.knime.com/
https://doi.org/10.6084/m9.figshare.c.4687004.v1
https://doi.org/10.6084/m9.figshare.c.4687004.v1
https://kni.me/w/F3K1YgZKt_923UgH
https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1002/pmic.201400391
https://doi.org/10.1038/nmeth.1896
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.18632/oncotarget.13546
https://doi.org/10.1186/1471-2105-14-257
https://doi.org/10.1038/nmeth.2082
https://doi.org/10.1038/nmeth.2073
https://doi.org/10.1007/978-3-319-28549-8_7
https://doi.org/10.1186/1471-2105-9-11
https://doi.org/10.1038/nmeth.2084
https://doi.org/10.1016/j.jbiotec.2017.07.028
https://doi.org/10.1101/sqb.2017.82.033761
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Dietz et al. Integration of ImageJ in KNIME

screening,” in Light Microscopy: Methods and Protocols, eds Y. Markaki and H.

Harz (New York, NY: Springer New York), 269–280.

Gunkel, M., Flottmann, B., Heilemann, M., Reymann, J., and Erfle, H. (2014).

Integrated and correlative high-throughput and super-resolution microscopy.

Histochem. Cell Biol. 141, 597–603. doi: 10.1007/s00418-014-1209-y

Hansen, A. G., Freeman, T. J., Arnold, S. A., Starchenko, A., Jones-Paris, C.

R., Gilger, M. A., et al. (2013). Elevated ALCAM shedding in colorectal

cancer correlates with poor patient outcome. Cancer Res. 73, 2955–2964.

doi: 10.1158/0008-5472.CAN-12-2052

Higano, C. S., and Crawford, E. D. (2011). New and emerging agents for

the treatment of castration-resistant prostate cancer. Urol. Oncol. 29, S1–S8.

doi: 10.1016/j.urolonc.2011.08.013

Hiner, M. C., Rueden, C. T., and Eliceiri, K. W. (2016). SCIFIO: an extensible

framework to support scientific image formats. BMC Bioinformatics 17:521.

doi: 10.1186/s12859-016-1383-0

Huang, L.-K., and Wang, M.-J. J. (1995). Image thresholding by

minimizing the measures of fuzziness. Pattern Recognit. 28, 41–51.

doi: 10.1016/0031-3203(94)E0043-K

Huisken, J., and Stainier, D. Y. (2009). Selective plane illumination microscopy

techniques in developmental biology. Development 136, 1963–1975.

doi: 10.1242/dev.022426

Landrum, G. (2013). Rdkit: Open-Source Cheminformatics Software. Available

online at: http://www.rdkit.org

Linkert, M., Rueden, C. T., Allan, C., Burel, J.-M., Moore, W., Patterson, A., et al.

(2010). Metadata matters: access to image data in the real world. J. Cell Biol.

189, 777–782. doi: 10.1083/jcb.201004104

Masui, O., Bonnet, I., Le Baccon, P., Brito, I., Pollex, T., Murphy, N., et al. (2011).

Live-cell chromosome dynamics and outcome of X chromosome pairing events

during ES cell differentiation. Cell 145, 447–458. doi: 10.1016/j.cell.2011.03.032

Mazanetz,M. P.,Marmon, R. J., Reisser, C. B., andMorao, I. (2012). Drug discovery

applications for knime: an open source data mining platform. Curr. Top. Med.

Chem. 12, 1965–1979. doi: 10.2174/156802612804910331

Pietzsch, T., Preibisch, S., Tomancák, P., and Saalfeld, S. (2012). ImgLib2–

generic image processing in Java. Bioinformatics 28, 3009–3011.

doi: 10.1093/bioinformatics/bts543

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). BigDataViewer:

visualization and processing for large image data sets. Nat. Methods 12,

481–483. doi: 10.1038/nmeth.3392

Preibisch, S., Amat, F., Stamataki, E., Sarov, M., Singer, R. H., Myers, E., et al.

(2014). Efficient bayesian-based multiview deconvolution. Nat. Methods 11,

645–648. doi: 10.1038/nmeth.2929

Preibisch, S., Saalfeld, S., Schindelin, J., and Tomancak, P. (2010). Software for

bead-based registration of selective plane illumination microscopy data. Nat.

Methods 7, 418–419. doi: 10.1038/nmeth0610-418

Rueden, C. T., Ackerman, J., Arena, E. T., Eglinger, J., Cimini, B. A.,

Goodman, A., et al. (2019). Scientific community image forum: a

discussion forum for scientific image software. PLoS Biol. 17:e3000340.

doi: 10.1371/journal.pbio.3000340

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E.

T., et al. (2017). ImageJ2: imagej for the next generation of scientific image data.

BMC Bioinformatics 18:529. doi: 10.1186/s12859-017-1934-z.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682. doi: 10.1186/s12859-017-1934-z

Schindelin, J., Rueden, C. T., Hiner, M. C., and Eliceiri, K. W. (2015). The imagej

ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev.

82, 518–529. doi: 10.1002/mrd.22489

Schmid, B., and Huisken, J. (2015). Real-time multi-view deconvolution.

Bioinformatics 31, 3398–3400. doi: 10.1093/bioinformatics/btv387

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH image to imagej:

25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089

Tiana, G., Amitai, A., Pollex, T., Piolot, T., Holcman, D., Heard, E., et al. (2016).

Structural fluctuations of the chromatin fiber within topologically associating

domains. Biophys. J. 110, 1234–1245. doi: 10.1016/j.bpj.2016.02.003

Tinevez, J. Y., Perry, N., Schindelin, J., Genevieve, M. H., Reynolds, G. D.,

Laplantine, E., et al. (2017). TrackMate: an open and extensible platform for

single-particle tracking.Methods 115, 80–90. doi: 10.1016/j.ymeth.2016.09.016

Wang, M. C., Valenzuela, L. A., Murphy, G. P., and Chu, T. M. (2002).

Purification of a human prostate specific antigen. J. Urol. 167, 960–964.

doi: 10.1016/S0022-5347(02)80311-1

Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., et al.

(2018). Content-aware image restoration: pushing the limits of fluorescence

microscopy. Nat. Methods 15, 1090–1097. doi: 10.1038/s41592-018-0216-7

Wollmann, T., Erfle, H., Eils, R., Rohr, K., and Manuel, G. (2017). Workflows for

microscopy image analysis and cellular phenotyping. J. Boitechnol. 261, 70–75.

doi: 10.1016/j.jbiotec.2017.07.019

Conflict of Interest: CD, SH, and MB have a financial interest in KNIME GmbH,

the company developing and supporting KNIME Analytics Platform.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Dietz, Rueden, Helfrich, Dobson, Horn, Eglinger, Evans, McLean,

Novitskaya, Ricke, Sherer, Zijlstra, Berthold and Eliceiri. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computer Science | www.frontiersin.org 17 March 2020 | Volume 2 | Article 8

https://doi.org/10.1007/s00418-014-1209-y
https://doi.org/10.1158/0008-5472.CAN-12-2052
https://doi.org/10.1016/j.urolonc.2011.08.013
https://doi.org/10.1186/s12859-016-1383-0
https://doi.org/10.1016/0031-3203(94)E0043-K
https://doi.org/10.1242/dev.022426
http://www.rdkit.org
https://doi.org/10.1083/jcb.201004104
https://doi.org/10.1016/j.cell.2011.03.032
https://doi.org/10.2174/156802612804910331
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.2929
https://doi.org/10.1038/nmeth0610-418
https://doi.org/10.1371/journal.pbio.3000340
https://doi.org/10.1186/s12859-017-1934-z.
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1002/mrd.22489
https://doi.org/10.1093/bioinformatics/btv387
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1016/j.bpj.2016.02.003
https://doi.org/10.1016/j.ymeth.2016.09.016
https://doi.org/10.1016/S0022-5347(02)80311-1
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1016/j.jbiotec.2017.07.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	Integration of the ImageJ Ecosystem in KNIME Analytics Platform
	Introduction
	Results
	A Brief Introduction to the KNIME Image Processing Extension
	Visual Programming
	Data Representation
	Tool Blending
	Prototyping, Automation, and Scaling
	Reproducibility

	Accessing ImageJ Functionality From KNIME Analytics Platform
	Execution of ImageJ Macro Code
	Nodes of the KNIME Image Processing Extension
	Wrapping ImageJ Commands as KNIME Nodes
	Embedding Custom Java Code
	Noteworthy ImageJ Pitfalls

	A Blueprint for Image Segmentation Using ImageJ and KNIME Analytics Platform
	Open the Image
	Preprocess the Image
	Threshold the Image
	Adjust the Mask
	Divide the Mask Into Objects
	Measure Object Features on Original Image Data
	Export Resulting Measurements

	Biological Use Cases
	Biological Use Case No. 1: Quantitative Analysis of Subcellular Structures
	Biological Use Case No. 2: Quantitative Analysis of a Histological Stain
	Biological Use Case No. 3: Channel-Shift Correction and Particle Tracking
	Biological Use Case No. 4: Single-Cell Analysis in Prostate Cancer

	Materials and Methods
	KNIME ImageJ Integration
	Biological Use Cases
	Biological Use Case No. 1: Detection of Subcellular Structures
	Biological Use Case No. 2: Histological Detection of CD166 in Tissue Sections
	Biological Use Case No. 3: Channel-Shift Correction and Particle Tracking
	Biological Use Case No. 4: Single-Cell Analysis in Prostate Cancer

	Discussion
	Facilitating Deployment
	Large Image Support
	Scripting

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

