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Abstract

In most tissues and organs, the lymphatic circulation is responsible for the removal of interstitial
protein and fluid but the parenchyma of the brain and spinal cord is devoid of lymphatic vessels. On
the other hand, the literature is filled with qualitative and quantitative evidence supporting a
lymphatic function in cerebrospinal fluid (CSF) absorption. The experimental data seems to warrant
a re-examination of CSF dynamics and consideration of a new conceptual foundation on which to
base our understanding of disorders of the CSF system. The objective of this paper is to review the
key studies pertaining to the role of the lymphatic system in CSF absorption.

Review

Evidence for cranial CSF-lymphatic connections

The classical textbook theory assumes that the projections
of the arachnoid membrane into the cranial venous
sinuses represent the primary sites for CSF clearance and
when absorption through these sites is blocked, this leads
to disorders of the CSF system. However, this view is
increasingly being contested [1-5].

Apart from one study in which Prineas [6] reported what
appeared to be lymphatic vessels within the brain paren-
chyma of individuals with neurological disorders, it is
now accepted that lymphatic vessels do not exist in the
brain and spinal cord [7]. However, the literature is filled
with reports of a physiological relationship between the
CSF and extracranial lymph compartments.

We first learn of an affiliation between CSF and lymph
through studies conducted over 100 years ago. Schwalbe
demonstrated a connection between the subarachnoid
space and the cervical lymphatic system in dogs and rab-

bits with the use of Berlin blue [8]. A similar experiment
performed in dogs revealed CSF tracer in the submaxillary
and cervical lymph nodes [9]. From these early studies,
numerous reports solidified a link between CSF and
lymph (Table 1). In general terms, these studies indicated
that various tracers injected into the CSF or brain paren-
chyma made their way into lymphatic vessels external to
the cranium and into a variety of lymph nodes in the head
and neck. The cribriform plate appeared to be central to
this clearance. The various tracers seemed to move from
the subarachnoid space through the cribriform foramina
associated with the olfactory nerves (fila olfactoria). The
tracer was then observed in the lymphatic vessels in the
submucosa of the olfactory and respiratory epithelium.
Based on unpublished data using 20% fluorescein isothi-
ocyanate-dextran, we found that these vessels become vis-
ible within 10 minutes after administration into the
cisterna magna in sheep. As can be seen in Table 1, the
association between CSF and lymph has been established
in mice, rats, rabbits, cats, guinea pigs, pigs, sheep, dogs,
monkeys and humans. It seems safe to assume that CSF-
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Table I: Summary of important experiments illustrating a link between CSF and the lymphatic system

Site of Recovery

First Date Species Tracer Site of Retropharyngeal Olfactory Nasal Nasal Spinal
Author Injection Cervical Nerves Lymphatics Interstitium  Nerves
lymph nodes
Schwalbe [8] 1869 dog, rabbit Berlin blue CSF +
Quincke [9] 1872  dog mercuric sulfide CSF +
I[<8e6)i & Retzius 1875 human Richardson's blue CSF + + + +
Goldmann [87] 1913  dog, rabbit trypan blue CSF + +
Weed [88] 1914 cat ferrocyanide-iron CSF + + + +
solution
Mortensen & 1933  dog brominized oil or CSF +
Sullivan [23] thorotrast
Faber [89] 1937  rabbit X-ray medium CSF + + + +
Yoffey & Drinker 1939  rabbit, India ink CSF + + + +
[90] monkey
B3r‘i)er|ey & Field 1948  rabbit India ink CSF + + +
[39]
Brierley [91] 1950 rabbit India ink CSF +
Courtice & 1951  rabbit blue dye plasma CSF + + +
Simmonds [31]
Simmonds [92] 1952 rabbit, cat blood CSF +
Schurr [24] 1953  dog pantopaque CSF + + + +
Woollam [93] 1953 neonatal rat  colloidal carbon CSF +
Bowsher [94] 1957 cat S35 labeled protein CSF +
?;;?e-Knudsen 1958 guinea pig iron solution CSF + +
Di Chiro [96] 1972 dog RISAb CSF + +
Potts [26] 1972  dog radiopaque mixture CSF +
Bradbury [53] 1980 sheep RISAE CSF +
I[?:Sr:iibury & Cole 1980 cat, rabbit RISAb CSF +
Hasuo [33] 1981  dog, cat India ink; 99 mTc- CSF +
DTPA
McComb [62] 1982  rabbit RISAb with dextran or CSF + +
dye
Bradbury & 1983  rabbit RISAb CSF + +
Westrop [55]
Pile-Spellman [97] 1984 cat, rabbit radiolabelled colloid CSF + +
Love & Leslie [63] 1984 cat artificial CSF & CSF +
dextran
McComb [27] 1984 cat RISAP & Elliott's B CSF + +
Szentistvanyi [98] 1984 rat HP< & or Evan's blue PAR® + +
albumin
Gomez [99] 1985  rabbit HP< & Evan's blue CSF + + +
Erlich [100] 1986 rabbit ferritin CSF + +
Leeds [101] 1989 dog Ringer's lactate or CSF +
blue dye
Harling-Berg [81] 1989 rat human serum albumin CSF +
Wang & Casley- 1989 rat India ink PAR2 +
Smith [50]
McComb & 1990 monkey RISAb CSF + +
Hyman [56]
Yamada [102] 1991  rabbit RISAL PARa +
Tsay [103] 1992 rabbit saline CSF +
Zhang [12] 1992 rat India ink CSF/ + +
PARa
Kida [11] 1993 rat India ink CSF + +/- + +/-
Kida [14] 1994 rat India ink PARa2 + +/- + +/-
Botel [69] 1994 cat, rat, dog, X-ray medium CSF + + +
monkey
Brinker [30] 1994 cat, dog, dye, dextran, X-ray CSF + + + +
monkey medium
Hunter [104] 1995  rabbit nanoparticulate CSF/ +
contrast PAR2
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Table I: Summary of important experiments illustrating a link between CSF and the lymphatic system (Continued)

Slusarczyk [105] 1996 rat India ink CSF
Boulton [106] 1996 sheep RISAb CSF
Miura [40] 1998 monkey carbon particles CSF
Boulton [58] 1999 rat RISAb CSF
Silver [65] 1999  sheep artificial CSF CSF
Bozanovic-Sosic 2001  sheep RISAb CSF
[41]
Zakharov [16] 2003 neonatal Microfil CSF
sheep
Vega & Jonakait 2004 rat India ink CSF
[107]
Zakharov [17] 2004 neonatal Microfil CSF
sheep
Johnston [15] 2004 sheep, pig, Microfil CSF
rabbit, rat
mouse,
monkey,
human
Johnston [108] 2005 monkey Microfil CSF

¥
+ +
+ +
+
+

+
+ + + +/- +
+
+ + + +/-
+ + + +/-
+ + + +/-

2 parenchyma
b radioisotope iodinated serum albumin
¢ horseradish peroxidase

nasal lymphatic absorption is a characteristic feature of
mammalian systems.

Nature of anatomical connections between CSF and
lymphatic system

The cellular parameters associated with the physiological
'coupling' of the CSF and extracranial lymph compart-
ments will no doubt have an influential role in determin-
ing how CSF is absorbed and by inference, also create
potential pathological targets for obstruction and interfer-
ence with CSF absorption. The most basic issue is whether
CSF convects first into an intervening interstitial compart-
ment (the submucosal interstitium associated with the
olfactory and respiratory epithelium) or whether there is
some form of direct connection between the CSF and
nasal lymphatics. Table 1 highlights support for both of
these propositions.

Jackson and colleagues have postulated two possible
mechanisms for CSF uptake into lymphatics [10]. The first
is the "open cuff model" in which the perineural sheath
cells disappear distal to the cribriform plate, allowing CSF
to dissipate into the interstitial space where it is absorbed
by the initial lymphatics in the olfactory and respiratory
submucosa. The "closed cuff model" depicts the
perineural space as a cul de sac. In this case, lymphatic ves-
sels may fuse with the perineural cells and in some way get
direct access to CSF that has convected along the olfactory
nerve. However, more recent data suggests a third
possibility.

In rats, CSF may move directly from the subarachnoid
space into submucosal lymphatics that emerge at the level

of the cribriform plate [11-14]. This concept is supported
by recent studies with Microfil, a silicon rubber injection
compound. When Microfil was infused into the subarach-
noid compartment of mice, rats, rabbits, sheep, pigs,
monkeys and humans, it entered an extensive lymphatic
network adjacent to the extracranial surface of the cribri-
form plate [4,15-17]. Lymphatics filled with Microfil were
especially conspicuous around the olfactory nerves close
to the point of exit from the cribriform plate (Figs. 1A-C).
Microfil was also observed in the afferent lymphatic ves-
sels entering into the retropharyngeal nodes (Fig. 1D).
While some Microfil was scattered throughout the nasal
submucosal tissues in some preparations, this pattern was
the exception rather than the rule. It is possible that the
high pressures required to infuse the Microfil in the post-
mortem state could have ruptured the lymphatic vessels
occasionally. Additionally, it was clear that the longer the
period between death and infusion of the contrast agent,
the greater the chance of Microfil being observed within
the nasal interstitial space due to tissue deterioration.

It is of interest to note that some contrast agents can be
taken up into lymphatic vessels readily after injection into
the interstitial space post-mortem. Evans blue dye is an
example. However, this does not seem to be true of Micro-
fil. This silastic material was developed to outline vascular
networks after injection into a vessel lumen. It is relatively
viscous and is unlikely to be taken up readily from an
interstitial compartment. In the Microfil studies [17], the
authors failed to visualize lymphatic vessels following
subcutaneous injection of Microfil. The material
accumulated at the depot site but did not enter the initial
lymphatics post-mortem. This implied that a direct connec-
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Figure |

Anatomical relationships between cerebrospinal fluid and
lymphatic vessels. A — lllustration of cribriform plate and lym-
phatic vessels in the rat. In this example, yellow Microfil has
been injected into the cisterna magna. An extensive network
of lymphatics filled with yellow Microfil can be observed in
the olfactory submucosa. Black arrows-cribriform plate; OB
— olfactory bulb. B — Lymphatics filled with yellow Microfil
(injected into the cisterna magna) in the ethmoid turbinates
of the pig. C — Lymphatics filled with yellow Microfil (injected
into the cisterna magna) in the ethmoid turbinates of the
sheep. Blood vessels (red) can be seen interspersed between
the lymphatic networks. D — Lymphatics filled with yellow
Microfil (injected into the cisterna magna) converge on sev-
eral lymph nodes. In this example, prenodal lymphatic vessels
can be observed converging onto one of the retropharyngeal
nodes in sheep. E — When Evans blue dye is injected into the
spinal subarachnoid space in sheep, it enters the epidural tis-
sues around the spinal cord. F — Lymphatic vessels filled with
Evans blue dye (injected into the spinal subarachnoid space)
can be observed draining to the intercostal lymph nodes in
sheep.

tion had to exist between the CSF and lymph compart-
ments to facilitate uptake into lymphatic vessels.

Histological investigation in the sheep Microfil studies
showed that the lymphatic vessels fused to the sheaths of
the olfactory nerves within the submucosa proximal to the
cribriform plate [17]. Upon closer examination, lymphat-
ics filled with Microfil appeared to form a collar around

http://www.cerebrospinalfluidresearch.com/content/2/1/6

olfactory nerves close to the extracranial portion of the cri-
briform plate (Fig. 2).

Some studies have reported the existence of a perineural
sheath around the olfactory nerves composed of flattened
cells [18]. Whether this layer is oriented sparsely around
the nerve [19] or represents a more substantial connective
tissue sheath [20] is open to debate. More recently, the
olfactory ensheathing cells have been identified. In mam-
mals, these cells appear to be responsible for the regener-
ation of unmyelinated olfactory axons throughout life
[21] and have been observed along the nerves from the
olfactory mucosa to the olfactory bulbs [22]. Whatever the
nature of the outer cell layer, it is evident that the lym-
phatic endothelial cells fuse to this tissue [17].

Direct connections between CSF and lymph would appear
to make sense from a theoretical perspective. One might
imagine that CSF leaks would be very common if CSF con-
vected routinely into the nasal submucosal interstitium
since the fluid would be separated from the air spaces only
by a layer of olfactory or respiratory epithelium. The need
for effective CSF clearance under a wide variety of intrac-
ranial pressures and the requirement to protect the brain
from air-borne infection would seem to be best met by a
CSF absorption system that limits CSF access to well-
defined lymphatic drainage pathways rather than permit
random CSF dispersion throughout the extracellular
spaces of the olfactory and respiratory submucosa.

Other CSF-lymphatic connections

The most important lymphatic CSF absorption pathway is
no doubt the olfactory route leading to cervical lymphatic
vessels but there are other nerves that may conduct CSF
extracranially. Even though the bulk of evidence favors
the olfactory nerves as facilitating CSF-lymph connec-
tions, tracers injected into the CSF system appear to exit
the cranium along almost all of the cranial nerves includ-
ing the trigeminal, acoustic [7], hypoglossal and vagus
nerves [16].

Injection of tracer into the subarachnoid space resulted in
the appearance of tracer in the optic nerve [16,23-31].
Although the eye does not appear to contain lymphatics,
one report noted edema of the eye in cats following resec-
tion of the cervical lymph nodes and vessels [32]. Hasuo
and colleagues proposed CSF drainage from the subarach-
noid space of the optic nerve through arachnoid granula-
tions into the orbital connective tissue from which
lymphatics were believed to transfer the fluid to the cervi-
cal lymph nodes [33].

One possible location for lymphatic CSF absorption that
has been ignored generally is the dura itself. In rats,
lymphatics exist around the wall of the sagittal sinus, in
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Lymphatics

Perineural
space ?

Figure 2

Anatomical connections between the olfactory nerve and extracranial lymphatic vessels. In schematic (A) the lymphatics are
connected directly with the CSF space. In Al, the lymphatic vessels form a collar around the emerging olfactory nerve root
with the lymphatic endothelium fusing to the perineural sheath of the nerve and the periosteum or dura associated with the
cribriform plate. In effect this lymphatic collar provides a 'seal' that ensures that little or no CSF enters the submucosal intersti-
tium. In A2, the lymphatics join with the cribriform plate and nerve as above but in this scenario, a collar of CSF follows the
nerve some distance into the submucosa. This CSF collar is delimited by the lymphatic vessel. As in the scenario outlined in Al,
no CSF is permitted to enter the interstitium. In (B), the lymphatics are not connected directly with the olfactory nerves or cri-
briform plate but are interspersed throughout the olfactory submucosa. In this proposal, CSF must convect first into the inter-
stitium of the submucosa from which it is absorbed into blind ending lymphatic vessels. (C) Uptake of Microfil by lymphatic
vessels adjacent to cribriform plate. This histological section was stained with hematoxylin and eosin. In this example, yellow
Microfil was infused into the CSF space (appears dark brown in section) and blue Microfil was injected into the arterial circula-
tion. Distended lymphatic vessels containing Microfil are especially prominent in the area surrounding the olfactory nerve roots
as they emerge from the cribriform plate (red arrows). Lymphatics are also observed fused to the olfactory nerves at discrete
locations away from the cribriform plate (yellow arrows). Microfil is not observed free within the interstitium of the submu-
cosa. Regarding the relationship between cranial CSF and lymph, examples such as this would appear to support the schema
illustrated in A. BV — blood vessels.
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the areas of the confluence of sinuses in proximity to the
mesothelial cells of the subdural spaces and close to the
vasculature of the dural tissues [34]. Lymphatic vessels
have also been observed in the dura of the base of the
skull of dogs [35]. 125I-albumin injected into the subdural
space in rabbits was observed to enter plasma [36] and it
seems likely that dural lymphatics contributed to this
clearance. In the studies by Killer et al, India ink injected
into the subarachnoid space of the optic nerve penetrated
the arachnoid and entered the interstitial compartment
and lymphatics in the dura of the nerve [37]. There is
however, at least one theoretical objection to a possible
role for dural lymphatics in CSF drainage. The cellular
architecture and the presence of tight junctions between
arachnoid cells are believed to contribute to the blood-
brain/CSF barrier [38]. Without this barrier function, the
extravasated fluid and solutes from the permeable dural
capillaries would enter the dural interstitium and possibly
gain access to CSF. However, for any dural CSF absorption
to occur, presumably CSF would have to pass through the
supposed barrier provided by the arachnoid membrane to
enter dural tissues.

Lymphatics also appear to play a role in spinal CSF
absorption. India ink infused into the ventricles or cis-
terna magna of rabbits has been found around emerging
spinal nerve roots. The tracer passed from the subarach-
noid space cul de sac into lymphatic vessels and nodes of
the cervical and lumbosacral region [39]. Similarly, an
accumulation of carbon particles was found in the lumbar
para-aortic lymph nodes in rats following infusion of
India ink into the cisterna magna [11]. In monkeys, lym-
phatic vessels have been observed in spinal epidural tis-
sues [40]. Unlike the situation with olfactory nerves, there
is no evidence for direct spinal CSF-lymph connections. It
is clear that CSF from the spinal subarachnoid compart-
ment must first pass into the epidural tissues from which
absorption takes place into blind ending lymphatic ves-
sels (Figs. 1E, F).

From a quantitative perspective, the drainage of CSF from
the spinal cord subarachnoid space plays a role in total
volumetric CSF absorption. Studies performed in sheep
showed that the relative proportion of CSF absorption by
the spinal compartment represents approximately 25% of
total CSF clearance [41].

Relationship between parenchymal interstitial fluid and
the lymphatic circulation

The CNS has a complex extracellular space that connects
with the internal (ventricular) and external (subarachnoi-
dal) CSF through the ependymal layer and pia-mater and
the Virchow-Robin spaces [42]. The Virchow-Robin
spaces are extensions of the subarachnoid space (also
termed perivascular spaces) that penetrate with blood ves-
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sels into the brain. Fluid within this space appears to be
continuous with CSF and the parenchymal interstitial liq-
uid [43]. Other studies have also shown a direct anatomi-
cal connection between the perivascular space of
intracerebral arteries and the perivascular space of arteries
in the subarachnoid space in humans and rats [43,44].
The studies of Cserr et al [45-47] support the concept of
bulk drainage of interstitial fluid from its formation at the
capillary-glial complex and its movement through the
perivascular and subependymal regions into the ventricu-
lar system and subarachnoid space. Following injection of
radioactive albumin into the caudate nucleus of rabbits,
about 50% of the tracer cleared from the brain was
accounted for by passage to lymph [48]. Additionally,
Kida performed a series of studies in rats demonstrating a
direct drainage of interstitial fluid and CSF into the deep
cervical lymph nodes [14]. Therefore, at least a portion of
parenchymal interstitial fluid drains ultimately into lym-
phatic vessels.

Foldi developed the concept of parenchymal interstitial
fluid draining into extracranial lymphatics located in the
adventitia of the internal carotid artery [49]. Wang and
colleagues observed that a carbon tracer injected into the
cerebral hemispheres drained extracranially along the
adventitia of internal carotid arteries and vertebral arteries
of rats [50]. These adventitial spaces were considered to be
prelymphatic, as subsequent tracer was found in the deep
cervical lymph nodes.

Quantitative evidence for volumetric CSF absorption into

cervical lymphatics

It is difficult to quantify volumetric CSF absorption by
lymphatics due to the complexity of the anatomical path-
ways involved. Some investigators have simply taken CSF
tracer recovery in lymph nodes as a reflection of lymphatic
function. For example, Marmarou's group measured a
very low recovery in the cervical, retropharyngeal, parotid,
and mandibular lymph nodes in cats 8 h after infusion of
radioactive albumin into the brain [51]. However, at a
given point in time, the amount of lymph within a node
is very small and represents only a miniscule fraction of
the mass of tracer that would have traversed the node over
a given period. A more appropriate approach is to collect
lymph from the cervical lymphatic vessels. For example,
Boulton et al collected lymph from sheep cervical lym-
phatic vessels overtime after administration of a radioac-
tive tracer into the cisterna magna, and found that there
were measurable amounts of tracer in the lymph 1 h after
injection (the rate of lymphatic CSF absorption peaked at
1.86 ml/hr, 3 h after injection) [52].

Courtice and Simmonds were among the first to quantify
the absorption of a CSF dye into plasma and cervical
lymph [31]. They found that on average, 4.7% of the total
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amount of dye injected into the CSF space was recovered
in cervical lymph of cats during the 3.5-4.5 h duration of
the experiment. In sheep, Bradbury and colleagues moni-
tored cervical lymph flow for over 24 h after a single injec-
tion or continuous intraventricular infusion of I125-
albumin. Approximately 32% of CSF was recovered in the
cervical lymphatics of sheep [53]. Similar experiments
were performed in the cat and rabbit (6-8 h duration),
and tracer recoveries were 13% and 39%, respectively
[54]. When the cribriform plate was sealed intracranially
in the rabbit (with kaolin injection or with removal of the
olfactory bulbs followed by application of cyanoacrylate
glue to the plate), recoveries in cervical lymph dropped by
approximately 90% [55]. In primates, a recovery of
between 30-50% of 1!25-albumin was observed in extrac-
ranial tissue spaces and lymphatics after continuous infu-
sion into the lateral ventricles [56].

While these studies hinted at an important role of lym-
phatics in CSF absorption, it was difficult to envision how
protein recoveries translated into volumetric data. Addi-
tionally, a crucial element in designing an approach to
quantify the lymphatic contribution to CSF absorption is
the ability to correct the recovery data for errors intro-
duced by filtration of the CSF tracer. In other words, pre-
suming that arachnoid villi and granulations transport
CSF into the plasma, the CSF in the plasma will eventually
filter into the lymphatic compartment. Without correc-
tion, the cannulated lymphatic vessels might receive CSF
tracer not only from the CSF compartment directly but
also from re-circulated plasma tracer. This would result in
an overestimation of the lymphatic contribution to CSF
drainage. Similarly, the non-lymphatic contribution to
CSF clearance would be underestimated if the loss of CSF
tracer due to the normal filtration of proteins from the
vasculature were not taken into consideration. Indeed,
one study showed that the loss of tracer from sheep
plasma was over 5%/h [52].

To correct the tracer recovery data for filtration errors and
to permit the estimation of volumetric data from protein
tracer approaches, a three-compartment mathematical
model was developed and applied to sheep data. The data
suggested that 40-48% of all CSF removed from the cra-
nial compartment in adult sheep was cleared by lymphat-
ics [52]. Additionally, plasma recoveries of a CSF tracer
dropped by approximately 50% in sheep [57] and rats
[58] when the cervical lymphatics were diverted or oblit-
erated, further supporting the view that the cervical lym-
phatic vessels are responsible for about one-half of total
CSF clearance.

While protein tracer studies have played an important role
in focusing attention on lymphatic CSF absorption, per-
haps the most striking data have been obtained from stud-
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ies in which the cribriform plate has been sealed in sheep.
In this procedure the nasal mucosa, olfactory nerves and
all soft tissue on the extracranial surface of the cribriform
plate were scraped away with a curette and the bone sur-
face sealed with either bone wax or tissue glue. Sheep were
challenged with constant flow or constant pressure infu-
sions of artificial CSF into the CSF compartment before
and after the extracranial side of the cribriform plate was
sealed. The rate of CSF absorption was reduced signifi-
cantly by this blockage and remarkably, the data sug-
gested that the majority (> 80%) of cranial CSF
absorption occurred through the cribriform plate at open-
ing CSF pressures in adult [59] and in newborn animals
[60]. When radioactive CSF protein tracers were injected
into the CSF compartment of fetal sheep, the highest con-
centrations were measured in lymph collected from the
cervical lymphatics compared with samples obtained
from the thoracic duct or plasma [61]. These data suggest
that lymphatics have an important role in CSF absorption
before birth as well.

Relationship between intracranial pressure and lymphatic
CSF absorption

McComb and colleagues noted that an increase in intrac-
ranial pressure (ICP) in rabbits and cats resulted in greater
levels of a CSF radioactive tracer in the optic nerve, olfac-
tory bulbs, episcleral tissue, and deep cervical lymph
nodes [27,62]. Hasuo observed that cervical lymph flow
in dogs and cats increased 2-5 fold when ICP was raised
to 30-70 cm H,O [33]. A temporary increase in cervical
lymph flow has been observed in cats during cisternal
infusions [63]. Protein concentrations declined during the
experimental period due presumably to the increased
amount of CSF draining via the lymph vessels.

In sheep, cervical lymphatic pressures and flow rates were
closely related to ICP [64]. Silver and colleagues measured
the cervical lymphatic pressure and lymph flow rates
under incremental changes in ICP (10-70 cm H,O). At
baseline CSF pressures, about 10% of the lymph in sheep
cervical lymphatic vessels had its origins as CSF. As ICP
was elevated, the proportion increased. At 70 cm H,O
ICP, cervical lymph flow rates were 4 fold higher com-
pared to baseline conditions and nearly 80% of the lymph
in these ducts was estimated to originate in the CSF com-
partment [65].

Implications of blockage of lymphatic CSF absorption

Edema of the brain, elevation of ICP, EEG anomalies and
behavioural alterations have been demonstrated after
chronic ligation of the cervical lymphatic vessels of dogs
[49,66]. Similarly, removal of cervical nodes and ligation
of cervical lymphatic vessels in rabbits led to cellular
changes in the brain including necrotic neurons, and a
dense infiltration of phagocytes [67]. Ligation of the cer-
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vical lymphatics result in edema of the brain and
increased concentration of protein in cats and rabbits
[32,68]. Botel and colleagues obstructed the retropharyn-
geal lymph nodes and vessels in cats by coagulation [69].
This group observed that CSF outflow resistance doubled,
but ICP remained the same compared to control animals.

In recent studies, baseline ICP was elevated after the cribri-
form plate was obstructed on the nasal side [70]. Mean,
diastolic, and systolic ICPs doubled when CSF absorption
through the cribriform plate was prevented. An important
element of the experimental design was the separation of
the cranial and spinal subarachnoid compartments. With
this approach, cranial CSF absorption could be assessed
without the added complexities of compensatory CSF
drainage mechanisms associated with the spinal cord.
Therefore, with a major absorption site negated, the abil-
ity of the host to balance CSF production was impaired. In
order to establish a new equilibrium condition, much
higher ICPs were required.

Following bolus infusions of saline into the CSF compart-
ment of adult sheep, obstruction of CSF absorption
through the cribriform plate increased the peak ICP after
infusion and augmented the time required for ICP to
return to baseline [71]. Moreover, analysis of the data
indicated that CSF outflow resistance was elevated signif-
icantly. Cribriform plate obstruction reduced cranial CSF
absorption in adult [59] and neonatal sheep [60]. For a
given ICP, CSF clearance was reduced substantially after
sealing the cribriform plate. It was evident that much
higher CSF pressures were required to maintain a given
CSF absorption rate when CSF access to lymphatic vessels
in the nasal submucosa was prevented. Additionally,
obstruction of the cribriform plate also increased the con-
centration of the radioactive tracer in the superior sagittal
sinus [3].

Are disorders of the CSF system associated with impaired
lymphatic CSF absorption?

Very little information is available on this subject but
there are some interesting observations that may impact
on this issue. Surgical procedures in humans that ablate
the olfactory nerves do not seem to be associated regularly
with any discernible problems with CSF circulation. It is
plausible that CSF might be diverted to the spinal sub-
arachnoid space (and thence, into lymphatics associated
with the spinal epidural tissues) to compensate for the
obstruction to absorption at the cribriform plate. None-
theless, it is noteworthy that a study showed that 8% of
patients developed hydrocephalus in the immediate post-
operative period of cranial base surgery, with half of these
patients also exhibiting CSF leaks [72].

http://www.cerebrospinalfluidresearch.com/content/2/1/6

Lack of development of the olfactory bulbs in humans
[73] and mice [74] has also been associated with hydro-
cephalus. It is not clear whether the olfactory neurons are
absent or defective in these examples but, if this is the
case, the important lymphatic connections in the vicinity
of the cribriform plate may not exist. In this regard, cranial
skeletal anomalies have been associated with CSF disor-
ders. The forkhead transcription factor Foxcl mouse
mutant demonstrates hydrocephalus and other defects
[75]. The skeletal defects in the head are extensive with
many bones being distorted or absent including those
associated with the base of the skull [76]. Additionally,
the nasal septum (within which a repository of lymphatics
exists with known connections to the CSF compartment)
is reduced in size. These alterations might affect the archi-
tecture of the cribriform plate and reduce the number of
lymphatics that have access to CSF. These animals also
exhibit extensive edema [76]. While no reason for the
edema has yet been proposed it is of interest to note that
targeted disruptions of the related Foxc2 gene are associ-
ated with abnormal development of lymphatic vessels
[77].

The time taken for India ink to move from the CSF into
the cervical lymph nodes was increased relative to con-
trols in a model of TGFB1 induced hydrocephalus in the
mouse [78]. This suggests that the cribriform-lymphatic
connection is disrupted in these animals. When bismuth
(Bi) subnitrate was injected into the peritoneal cavity of
mice the animals developed hydrocephalus [79]. High
concentrations of Bi were present in the olfactory bulb
and hypothalamus. Additionally, high Bi-levels were asso-
ciated with diffusion from fenestrated blood vessels of the
circumventricular organs and olfactory epithelium.
Whether bismuth toxicity elicits some pathological proc-
ess at the level of the olfactory-lymph connections has
never been determined but seems worth investigating.
Further study in these animal models may help to eluci-
date whether impaired lymphatic CSF absorption is
linked to disorders of the CSF system.

A lymphatic-CSF relationship would also seem to have
immunological implications. For example, a humoral
immune response in mice was generated mainly by the
deep cervical lymph nodes after injection of sheep red
blood cells into various intracerebral sites [80]. In rats,
infusion of human serum albumin into the cranial CSF
[81] or administration of ovalbumin into the spinal sub-
arachnoid space [82] led to antibody production by the
cervical lymph nodes. Antibody titers in the peripheral cir-
culation were reduced when cervical lymphatics were
obliterated [81].

After the induction of experimental autoimmune enceph-

alomyelitis in rats, a severe immune response was
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generated, resulting in cerebral lesions [83]. Removal of
the deep and superficial cervical lymph nodes following
induction of autoimmune encephalomyelitis reduced the
severity of the pathology significantly. Therefore, the cer-
vical lymph nodes may act to prime immune cells to tar-
get the brain. Some investigators have speculated that
lymphatic drainage of brain antigens could conceivably
contribute to the pathogenesis of Alzheimer's disease and
multiple sclerosis [84].

Conclusion

The tenets that form the basis of our understanding of CSF
absorption do not appear to have received critical
appraisal in recent years. The arachnoid projections into
the cranial venous sinuses are believed to represent the
primary sites for CSF absorption and current views on the
pathophysiology of the CSF system have often focused on
impaired CSF clearance through these elements [85].
However, this concept may be in need of revision. The
possibility that CSF may drain into extracranial lymphatic
vessels in significant volumes has been generally ignored
even though an association between CSF and lymph has
been known for over 100 years. CSF mainly flows along
the extensions of the subarachnoid compartment associ-
ated primarily with olfactory nerves, convects through the
cribriform plate and is absorbed ultimately by lymphatics
in the nasal submucosa. It seems to be an appropriate
time to create a new conceptual foundation on which to
base our understanding of CSF parameters. Attention
directed to lymphatic CSF absorption may reveal new
insights into the cause of CSF disorders and provide novel
targets for therapeutic intervention.
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