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ABSTRACT

Cell cycle (CC) and TP53 regulatory networks are

frequently deregulated in cancer. While numerous

genome-wide studies of TP53 and CC-regulated

genes have been performed, significant variation be-

tween studies has made it difficult to assess reg-

ulation of any given gene of interest. To overcome

the limitation of individual studies, we developed a

meta-analysis approach to identify high confidence

target genes that reflect their frequency of identifi-

cation in independent datasets. Gene regulatory net-

works were generated by comparing differential ex-

pression of TP53 and CC-regulated genes with chro-

matin immunoprecipitation studies for TP53, RB1,

E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq

data from p21-null cells revealed that gene down-

regulation by TP53 generally requires p21 (CDKN1A).

Genes downregulated by TP53 were also identified as

CC genes bound by the DREAM complex. The tran-

scription factors RB, E2F1 and E2F7 bind to a sub-

set of DREAM target genes that function in G1/S of

the CC while B-MYB, FOXM1 and MuvB control G2/M

gene expression. Our approach yields high confi-

dence ranked target gene maps for TP53, DREAM,

MMB-FOXM1 and RB-E2F and enables prediction and

distinction of CC regulation. A web-based atlas at

www.targetgenereg.org enables assessing the regu-

lation of any human gene of interest.

INTRODUCTION

The tumor suppressors RB and TP53 serve central roles in
regulation of cell cycle (CC) gene expression. TP53mediates

its tumor suppressor function as a transcription factor to
activate a plethora of target genes (1,2). In recent years, sev-
eral genome-wide analyses have been used to identify TP53
target genes and each has identi�ed many shared as well as
unique candidates (3–9). However, the increased number of
available datasets has not led to a more complete picture of
TP53 target genes since the overlap between any two expres-
sion pro�le studies is often quite small. The apparent dis-
crepancies between studies have made it dif�cult to be con-
�dent in the regulation of a speci�c gene of interest across
multiple studies. Furthermore, recent genome-wide analy-
ses suggest that TP53 itself may function exclusively as a
transcription activator and not as a direct repressor (10).
Similarly, starting with the study by Whit�eld et al., CC-

regulated genes have been identi�ed in several expression
pro�ling analyses of synchronized cells (11–15). However,
there is limited overlap between studies. Furthermore, it has
become apparent that there are several distinct transcrip-
tion factors that regulate CC genes but it is not clear how
they interact with each other. The repressive retinoblastoma
protein (RB, encoded by the RB1 gene) and the activating
E2F transcription factors E2F1, E2F2 andE2F3 are central
to regulation of the CC genes (16). However, it is not clear
howRB and the activating E2Fs contribute to regulation of
CC-regulated genes late in the CC during G2 and mitosis.
Instead, theDREAM (DP, RB-like, E2F4 andMuvB) com-
plex that does not contain either RB or E2F1 functions as a
master coordinator of CC transcription (17–19). DREAM
consists of the RB-like pocket proteins p130 (RBL2) or
p107 (RBL1), the repressor E2F transcription factor E2F4
or E2F5 together with DP1 and the MuvB core complex
that contains LIN9, LIN37, LIN52, LIN53 (RBBP4) and
LIN54. Similar to RB, the DREAM complex is important
for repression of CC gene expression during quiescence and
early G1. When cells exit quiescence and enter into the CC,
the repressive components p130/p107, E2F4/5 andDP1be-
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come inactivated and the MuvB core forms a new complex
with B-MYB (MYBL2) and FOXM1 that drives expression
of a distinct subset of CC genes (13,20–21). The activat-
ing MMB (B-MYB-MuvB)-FOXM1 complex binds to the
promoters of G2/M CC genes via the CC genes homology
region (CHR) motif in their promoters (21–23). Although
RB-E2F, DREAM and MMB-FOXM1 form distinct CC
regulatory complexes, their target genes are often grouped
together and termed ‘RB-E2F targets’ or ‘E2F-responsive
genes’. In this case, ‘RB’ refers to all three pocket proteins,
RB, p107 and p130, and ‘E2F’ refers to all E2F transcrip-
tion factors E2F1-8 making it challenging to evaluate the
speci�c regulation of any given CC gene.
Crosstalk between the TP53 and CC gene regulatory net-

works is well-known. CC genes are often found to be reg-
ulated in a TP53-dependent manner (24) and this regula-
tion is mediated at least in part by the TP53 target gene
p21 (CDKN1A) (25,26) in concert with RB (27–29) and
DREAM (30–32). However, it is not fully understood how
TP53, RB and DREAM coordinate their efforts to regulate
the CC and how they cooperate with additional CC regula-
tors such as E2F7, B-MYB and FOXM1.
To take advantage of many large genome-wide datasets

focused on TP53 and the CC, we developed a meta-analysis
approach that integrates expression pro�ling datasets and
chromatin binding sites to identify gene regulatory mecha-
nisms. We show that integration of data from a variety of
cell types and perturbations can provide high con�dence
maps of TP53 regulated genes ranked by the number of
datasets that agree on their regulation. A similar approach
was used to interrogateDREAM,MMB-FOXM1,RB-E2F
studies and identify 1408 high con�dence CC-regulated
genes to provide an overview of how these factors function
to regulate CC gene expression. This resource is made avail-
able as a web-based atlas on www.targetgenereg.org provid-
ing a useful tool to identify the TP53- and CC-dependent
transcriptional regulation of any gene of interest.

MATERIALS AND METHODS

Meta-analysis approach

In an effort to generate a more complete picture of the
gene regulatory networks governed by TP53 and the CC,
we combined expression pro�ling and transcription factor
binding datasets and ranked individual genes by the number
of datasets that found them to be differentially expressed or
bound by a transcription factor.
Publicly available datasets involving TP53 and CC gene

regulation were curated. In many cases microarray data was
available at a pre-processed stage that included normaliza-
tion. In these cases GEO2R (33,34) was used to obtain fold
expression changes and P-values, which were adjusted for
multiple testing using Benjamini-Hochberg correction. For
the remaining microarray datasets and for the RNA-seq
datasets fully pre-analyzed data presenting genes with their
fold expression changes and adjusted P-values were made
available by the respective authors. Common thresholds for
absolute log2 (fold-change expression) ≥ 0.5 and adj. P-
value ≤ 0.05 were employed to identify signi�cantly differ-
entially expressed genes. In some cases, deviating thresholds
were used to conform to settings used in the original study.

For CC expression pro�ling studies, the datasets were avail-
able pre-analyzed providing signi�cantly differentially ex-
pressed genes with the CC phase that displays peak expres-
sion.
Genes were ranked by p53 Expression Scores re�ecting

the number of datasets �nding the gene to be signi�cantly
upregulatedminus the number of datasets that �nd the gene
to be downregulated upon TP53 activation. Genes were
ranked by the number of CC datasets that identify the gene
as CC regulated. In addition, genes were ranked by a CC
Expression Score re�ecting the number of datasets �nding
the gene to display peak expression during ‘G2’ or ‘G2/M’
minus the number of datasets �nding the gene to be a ‘G1/S’
or ‘S-phase’ expressed gene.
Chromatin immunoprecipitation (ChIP) peak datasets

were publicly available and intersections of binding peaks
and promoter regions were calculated using BETA-minus
in Cistrome (35,36). Protein binding was required to occur
within 1000 bp around the transcriptional start site (TSS)
except for TP53, where bindingwas required to occurwithin
25 000 or 2500 bp of the TSS. Similar to expression pro�ling
datasets, genes were ranked by the number of ChIP datasets
that identify a binding peak near the gene’s TSS.
Additional information is provided in the Supplementary

Methods.

RESULTS

Meta-analysis of TP53-regulated genes across cell types and
treatments

Identi�cation of TP53 responsive genes has been a research
focus for decades with many genome-wide gene expression
datasets becoming available recently. We aimed to combine
multiple such datasets to generate a more complete picture
of the TP53 gene regulatory network. Because it is gener-
ally agreed that gene expression data from different exper-
imental platforms are not directly comparable, we instead
used a unique meta-analysis approach that ranks genes by
the number of datasets that �nd them signi�cantly differ-
entially regulated. For this meta-analysis, we assessed 18
845 protein-coding genes and asked how many individual
datasets found them to be signi�cantly differentially regu-
lated upon TP53 activation (see ‘Materials and Methods’
section).
Initially, we compared four different datasets using

Nutlin-3a treatedMCF-7 cells (5,37–39). Even though these
experiments were performed in a similar manner, the over-
lap between any two datasets was small. For example, 10.4–
39.5% of responsive genes were identi�ed between any two
datasets and 60.5–89.6% of genes were unique to one study
(Figure 1Aand SupplementaryFigure S1A–D).While there
were minor differences in the protocols to isolate mRNA,
different platforms and software were used to quantify gene
expression. We reasoned that differential gene expression
that was not reproducible across platforms was more likely
to represent noise. We asked whether integration of these
four datasets would result in a more robust joint dataset
comprising genes that were repeatedly identi�ed to be reg-
ulated. In each dataset, a gene was classi�ed as upregulated
‘+1’, downregulated ‘−1’ or not regulated ‘0’. We plotted
the subset of genes that were considered signi�cantly up-
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Figure 1. Meta-analysis of TP53-dependent gene expression. (A) Venn diagram displaying the overlap of genes that were detected as upregulated or
downregulated by TP53 activation in datasets from Nikulenkov etal., Zaccara etal., Loayza-Puch etal. and Janky etal. (B) In each dataset on TP53-
dependent gene regulation, a gene can be found as upregulated ‘+1’, downregulated ‘−1’ or not regulated ‘0’. The number of genes identi�ed in a Nutlin-3a
MCF-7 dataset as either upregulated or downregulated is compared to the sum of the remaining three datasets from Nutlin-3a treated MCF-7 cells (see
Supplementary Figure S1A–D for more). (C) The number of genes identi�ed in datasets from other cell types treated with Nutlin-3a compared to the
sum of the four Nutlin-3a MCF-7 datasets (see Supplementary Figure S1E–I for more) (D) Boxplot displaying the sum of the �ve doxorubicin datasets
compared to the sum of the nine Nutlin-3a datasets. Correlation coef�cient and two-tailed P-value was calculated using GraphPad Prism version 6.00. (E)
Integration of 20 datasets on TP53-dependent gene regulation from multiple cell types and treatments. The number of genes identi�ed in each dataset as
either upregulated or downregulated is compared to the sum of the remaining 19 datasets (see Supplementary Figures S3 and 4). (B, C and E) A two-sided
Fisher’s exact test was employed to test for signi�cant over- and under-representation of gene sets and P-values were adjusted for multiple testing using
Bonferroni correction. Colored and black data points are signi�cantly over- and under-represented, respectively (adj. P-value ≤ 0.05). White data points
are not signi�cantly different. (F) Hierarchical clustering of the 10 000 most variant genes across the 20 TP53 datasets. (G) The number of genes is displayed
that is found in each of the 41 p53 Expression Score groups.
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or downregulated in one dataset against the sum of the re-
maining three datasets (Figure 1B). We observed that when
several datasets agreed on a gene being signi�cantly regu-
lated the more likely that it was also identi�ed by the re-
maining dataset. Thus, the number of datasets that agree
on a gene’s regulation re�ects a con�dence score. We refer
to this as ‘step-wise meta-analysis’.
Next, we asked whether datasets using other cell types

treated with Nutlin-3a could be integrated with the MCF-
7 datasets. We compared the genes affected by Nutlin-3a
treatment in HepG2 (40), U2OS (6), IMR90 (41), BJ (39)
and HCT116 (8) cells against the sum of the four MCF-7
datasets (Figure 1C and Supplementary Figure S1E–I). We
found that when more Nutlin-3a MCF-7 datasets agreed a
gene was regulated by TP53, the more likely it was regulated
in other cell lines.
In a similar manner, we integrated �ve datasets assess-

ing TP53-dependent genes responsive to doxorubicin treat-
ment (6,37,42–43) (Supplementary Figure S2). Compar-
ing the sum of the �ve doxorubicin and nine Nutlin-3a
datasets revealed a strong correlation (Figure 1D) with a
common set of genes up- or downregulated by TP53 across
multiple cell types and treatments. Consequently, we inte-
grated datasets using alternative methods to induce TP53:
etoposide or actinomycin D treatment (4), overexpression
of TP53 cDNA (7,44–45) and inactivation of TP53 with hu-
man papilloma virus (HPV) E6 (46). Each of these datasets
detected genes that were also identi�ed by many of the re-
maining 19 datasets (Figure 1E; Supplementary Figures S3
and 4).We based ourmeta-analysis on these 20 datasets that
displayed the least amount of data heterogeneity. In con-
trast, a dataset from RITA treated HCT116 cells (47) and
a meta-analysis of IR treated cells (48) failed to �nd a sub-
stantial number of genes that was identi�ed by most of the
other 20 datasets (Supplementary Figure S5) and were ex-
cluded from this analysis (see below).
We performed unsupervised hierarchical clustering of the

regulation pro�le for the 10 000 most variant genes to test
whether cell types and treatments could be distinguished.
We found that all Nutlin-3a studies formed a cluster with
cells expressingHPVE6 or treatedwith etoposide or actino-
mycin D (Figure 1F). Smaller clusters of Nutlin-3a treated
�broblasts (IMR90 and BJ) and etoposide or actinomycin
D treatedU2OS cells were also identi�ed. Studies using cells
overexpressing TP53 clustered separately, while studies us-
ing doxorubicin treated cells shared the least similarity with
other studies. Although data heterogeneity could account
for substantial differences between any two datasets derived
from the same cell type and treatment, the clustering anal-
ysis indicates that gene expression pro�les of similar TP53
activation mechanism are similar; this also holds for similar
cell type, however to a smaller extent.
Integration of the 20 datasets on TP53-dependent gene

regulation resulted in 41 gene groups ranging from −20 to
+20 in ‘p53 Expression Score’ (Supplementary Table S1). In
general, the number of genes declines substantially with the
number of datasets that agree on a gene’s regulation (Fig-
ure 1G). P-values were dependent in part on group size, ac-
counting for the smallest P-values found in the p53 Expres-
sion Score group ‘0’. Together, integration of the 20 datasets

revealed that many genes were commonly regulated across
cell types and treatments.

Proximal TP53 binding is associated with activation of 311
target genes

TP53 itself is the central transcription factor mediating
TP53-dependent gene regulation (1,2). To assess the role of
TP53 in regulating gene expression, we used the step-wise
meta-analysis to integrate 15 genome-wide ChIP datasets
of TP53 binding derived from several cell lines with the 20
expression pro�ling datasets (4–6,41–43,49–50). Using the
stepwise meta-analysis approach, we ranked genes by the
number of datasets that detected a TP53 binding peak near
their TSS. Initially, we used TP53 binding within ±25 kb of
the TSS for our analysis (Supplementary Table S2). We ob-
served that genes upregulated were enriched for TP53 bind-
ing (Figure 2A; Supplementary Figures S6 and 7). A similar
pattern was also observed using the conservative threshold
of ±2.5 kb from the TSS (Figure 2B). In contrast, genes
downregulated upon TP53 activation were not enriched for
TP53 binding (Figure 2A and B).
A genome-wide analysis of gene regulation by TP53 in

mouse embryonic stem cells suggested that distal binding of
TP53 to the TSSwasmore likely to control TP53-dependent
downregulation compared to upregulation by more proxi-
mal TP53 binding (51). We tested this hypothesis by exam-
ining genes that were distally bound by TP53 at ±25 kb but
not within±2.5 kb of the TSS.We observed that distal bind-
ing of TP53 was weakly correlated with gene upregulation,
but not with downregulation (Figure 2C). Our �nding is in
agreement with reported distal TP53 binding in enhancer
regions that may convey long-distance upregulation (52).
The previous �nding of gene downregulation through distal
TP53 binding might stem from the use of mouse stem cells
(51). Thus, we conclude that proximal TP53 binding to a
gene promoter contributes to transcriptional activation but
not repression, while distal TP53 binding appears to have a
relatively minor but positive in�uence on transcription.
By integrating the TP53 binding and TP53-dependent ex-

pression pro�ling datasets, we generated a list of TP53 tar-
get genes with a threshold for p53 Expression Score of ≥ 5
and TP53 binding within +/− 2.5 kb of the TSS in at least
four ChIP datasets. These thresholds ensure that TP53 reg-
ulation and binding was observed in at least two different
cell lines or treatments. These criteria were passed by 311
genes includingmanywell-knownTP53 target genes such as
CDKN1A (p21; p53 Expression Score = 20), BTG2 (= 20),
TIGAR (also known as C12orf5; = 19), MDM2 (= 19),
SUSD6 (KIAA0247; = 19), PLK3 (= 17), FAS (= 16),
GADD45A (= 16) and BBC3 (PUMA; = 14) (Supplemen-
tary Table S3).We found that 223 of these 311 genes (71.7%)
were identi�ed in previous genome-wide TP53 target maps
(3–9). Another �ve geneswere captured by the literature col-
lection fromRiley et al. includingKRT8,PTEN,RNF144B,
TNFRSF10A andTP53 (1). Our approach complements in-
formation that dropped below the thresholds of individual
studies and dismisses information that was unique to a com-
parably small number of studies. Based on our analysis, we
identify 83 potential direct TP53 target genes that to our
knowledge have not been previously described as TP53 tar-
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Figure 2. Proximal TP53 binding correlates with transcriptional activation. Boxplot displaying the number of ChIP datasets that �nd a gene to be bound
by TP53 within (A) ±25 kb, (B) ±2.5 kb and (C) ±25 kb but not within ±2.5 kb of their TSS across the 41 p53 Expression Score groups. Correlation
coef�cient and two-tailed P-value was calculated using GraphPad Prism version 6.00. (D) Top 15 BP GO terms with their FDR value as identi�ed using
the DAVID Functional Annotation Tool (53) enriched at genes that are found down- (left) or upregulated (right) in at least half of the 20 datasets. The
number of (E) DREAM (17) bound genes across the 41 p53 Expression Score groups. A two-sided Fisher’s exact test was employed to test for signi�cant
over- and under-representation of gene sets and P-values were adjusted for multiple testing using Bonferroni correction. Colored and black data points are
signi�cantly over- and under-represented, respectively (adj. P-value ≤ 0.05). White data points are not signi�cantly different. (F) A heatmap displaying the
regulation of 20 well-established TP53 or DREAM target genes across the 20 datasets on TP53-dependent gene regulation. GAPDH and GAPDHS serve
as negative controls.
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Figure 3. Downregulation upon TP53 induction requires p21. The number of genes identi�ed in HCT116 p21−/− cells treated with (A) Nutlin-3a or (B)
doxorubicin as either upregulated or downregulated is compared to the 41 p53 Expression Score groups. (C) The number of genes identi�ed as regulated in
Nutlin-3a treated HCT116 p21−/− cells is compared to the nine Nutlin-3a datasets. (D) The number of genes identi�ed as regulated in doxorubicin treated
HCT116 p21−/− cells is compared to the �ve doxorubicin datasets. A two-sided Fisher’s exact test was employed to test for signi�cant over- and under-
representation of gene sets and P-values were adjusted for multiple testing using Bonferroni correction. Colored and black data points are signi�cantly
over- and under-represented, respectively (adj. P-value ≤ 0.05). White data points are not signi�cantly different.

gets. Examples include several highly-studied genes such as
IER3, POU2F2, POU3F1, RPS19, SMAD3 and STAT3.

To identify biological processes for TP53-regulated genes,
we performed an enrichment analysis for gene ontology
(GO) terms (53) among genes up- or downregulated upon
TP53 activation in at least half of the datasets (Figure 2D).
As expected, the genes upregulated by TP53 were enriched
for regulation of cell proliferation, induction of apoptosis
and DNA damage response. In contrast, the genes down-
regulated by TP53 were signi�cantly enriched for CC, mito-
sis and DNA replication.
CC genes have often been found to be downregulated

upon TP53 activation (24). The DREAM complex was
shown to regulate many CC genes in response to TP53 ac-
tivation (30–32). To address the potential connection be-
tween DREAM target genes and TP53 mediated downreg-
ulation, we integrated binding data on DREAM (17) with
TP53 expression. We found that genes downregulated by
TP53 are highly enriched for binding by DREAM (Figure
2E).

To illustrate the utility of the meta-analysis approach, we
selected 20 direct TP53 target genes (Supplementary Table
S3) and 20 previously published DREAM targets (17,22–
23,32,54–56) and examined their regulation across the 20
TP53 expression pro�ling datasets (Figure 2F and Supple-
mentary Figure S8). The meta-analysis approach identi�es

target genes that were missed in some datasets but identi�ed
in several others.

Downregulation by TP53 requires p21

The CDKN1A gene, encoding the cyclin dependent kinase
(CDK) inhibitor p21, was identi�ed as a TP53 target by all
20 expression datasets as well as all 15 TP53 ChIP datasets.
Inhibition of CDK activity by p21 was shown to be im-
portant for TP53-mediated downregulation of genes tar-
geted by DREAM (30,31), the DREAM component E2F4
(57,58) and RB (27–29). To evaluate the global requirement
for p21 in TP53-dependent downregulation, we performed
RNA-seq using HCT116 p21-/- cells treated with Nutlin-3a
or doxorubicin compared to control DMSO (Supplemen-
tary Table S4). We plotted the number of genes that were
signi�cantly up- or downregulated by Nutlin-3a or doxoru-
bicin treatment against the p53 Expression Score. For the
most part, genes upregulated by TP53 in cells containing
p21 were also upregulated by Nutlin-3a and doxorubicin
in HCT116 p21-/- cells. In contrast, the vast majority of
genes downregulated by TP53 in ourmeta-analysis were not
downregulated in HCT116 p21-/- cells (Figure 3A and B;
Supplementary Figure S9). These results indicate that p21 is
required for downregulation of gene expression upon TP53
activation.
We compared the p21-/- gene sets with the nine Nutlin-

3a and �ve doxorubicin datasets to identify potential
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Figure 4. Cell cycle (CC) genes are downregulated by TP53 and bind the DREAM complex. (A) Venn diagram displaying the overlap between the �ve CC
datasets. (B) The number of genes identi�ed in each of the �ve CC datasets is compared to the number of the remaining datasets that identify these genes.
(C)The number ofDREAMbound genes (Litovchick etal., (17)) is compared to the number of datasets that identify a gene as CC gene. A two-sided Fisher’s
exact test was employed to test for signi�cant over- and under-representation of gene sets and P-values were adjusted for multiple testing using Bonferroni
correction. (D) Boxplot displaying the number of datasets that �nd a gene to be a CC gene across the 41 p53 Expression Score groups. Correlation coef�cient
and two-tailed P-value was calculated using GraphPad Prism version 6.00. (E) Top 15 BP GO terms with their FDR value as identi�ed using the DAVID
Functional Annotation Tool (53) enriched at genes that display a p53 Expression Score ≤ −12 (left) or −9 to −11 (right) that were not identi�ed as CC
gene. (F) Signi�cant CC regulation was tested for 21 TP53 repressed genes and the negative controls U6 and GAPDH using an unpaired Student’s t-test
for data from time points 0 to 10 h and 16 to 30 h and P-values were adjusted for multiple testing using Bonferroni correction (see Supplemental Figure
S10).

treatment-speci�c effects. Few genes that were downregu-
lated in the nine Nutlin-3a datasets were also downreg-
ulated by Nutlin-3a in HCT116 p21-/- cells (Figure 3C).
However, we observed that a signi�cant number of genes
were downregulated by doxorubicin treatment in the ab-
sence of p21 (Figure 3D). This subset was not downreg-
ulated by Nutlin-3a treatment in p21-/- cells (Supplemen-

tary Figure S10A and B). A direct involvement of TP53 is
unlikely since TP53 ChIP binding was not enriched among
genes downregulated by doxorubicin (Supplementary Fig-
ure S10C). This indicates that a subset of genes was signif-
icantly downregulated by doxorubicin treatment in a p21
and TP53 independent manner.
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A major distinction between doxorubicin and Nutlin-
3a treatment is induction of TP53 activity through DNA
damage response (59) and MDM2 inhibition (60), respec-
tively. Recently, it was reported that DNA damage response
also contributes to the cellular response to RITA relative to
Nutlin-3a (61). Furthermore, RITA may impair p21 func-
tion (47), which could account for the low number of genes
downregulated by RITA treatment in our meta-analysis
(Supplementary Figure S5A). Interestingly, we found that
genes downregulated in doxorubicin treated HCT116 p21-
/- cells were also downregulated by RITA treatment of
HCT116 cells including ATF2, GSK3B, NRF1, WRN and
ZEB1 (Supplementary Figure S10D–F). This indicates that
DNA damaging agents such as doxorubicin and RITA
downregulate a speci�c subset of genes independent of p21
and TP53 activity.

Genes commonly downregulated by TP53 are cell cycle genes

Genes downregulated by TP53 were enriched for GO terms
associatedwithCC (Figure 2D) andDREAMbinding (Fig-
ure 2E). To examine the effect of TP53 on CC genes in
more detail, we analyzed �ve genome-wide expression pro-
�les of CC-dependent gene regulation (11–15) (Supplemen-
tary Table S5). Similar to what was observed with the TP53
analysis, the overlap of CC-regulated genes between any
two datasets was small ranging from 11.7 to 22.7% (Figure
4A and Supplementary Figure S11), whereas grouping of
the �ve datasets using the step-wise meta-analysis approach
led to a robust joint dataset where the number of datasets
in agreement led to a measure of con�dence that a given
gene had differential expression during the CC (Figure 4B).
Strikingly, when an increasing number of expression pro�le
datasets agreed on a gene being regulated by the CC, it was
more likely to also be bound by DREAM (Figure 4C). Af-
ter performing this step-wise meta-analysis of CC genes, we
plotted the number of CC datasets against the p53 Expres-
sion Score. We observed that genes downregulated by TP53
were also CC-regulated (Figure 4D). Genes in the p53 Ex-
pression Score groups of ‘−20’ and ‘−19’ were each found
to be a CC-regulated gene in at least one dataset.
Given these results, we asked whether any other gene sets

were commonly downregulated by TP53. To this end, we
performed a GO term enrichment analysis of the genes in
p53Expression Score groups−18 to−12 and−11 to−9 that
were not found in the �ve CC datasets. CC terms were pri-
marily enriched among these genes although they were not
previously identi�ed in the �ve CC studies (Figure 4E). Sev-
eral highly-validated CC genes such as B-MYB (MYBL2)
andPOLD1 (23) were found in this group, revealing that the
�ve genome-wide CC datasets together had failed to iden-
tify a substantial number of CC genes and that identifying
genes consistently downregulated by p53 could be an alter-
native approach to identifying CC-regulated genes.
Consequently, we asked whether a negative p53 Expres-

sion Score could accurately predict CC genes that were
not previously detected in the �ve CC datasets. We tested
21 genes for CC-dependent regulation with a p53 Expres-
sion Score ≤ −10 that were not previously identi�ed as
CC-regulated gene in any of the �ve CC datasets. We ob-
served that 19 of the 21 genes tested display signi�cant

CC-dependent gene expression, while negative controls U6
and GAPDH did not (Figure 4F and Supplementary Fig-
ure S10). These results indicate that the majority of genes
downregulated by TP53 are CC genes and that a low p53
Expression Score≤ −10 can predict previously unidenti�ed
CC genes.

A comprehensive map of 971 candidate DREAM target genes

The step-wise meta-analysis approach was able to generate
a more complete assessment of TP53 target genes by inte-
grating a large number of expression pro�ling and ChIP-
seq datasets. In a similar manner, we wanted to identify a
more complete assessment of DREAM target genes. Sev-
eral DREAM target genes such as E2F1 (17), GAS2L3 (62)
and MYBL2 (32) were not identi�ed as DREAM targets
in the original ChIP-chip dataset by Litovchick et al. (17).
Notably, 284 of 486 (58.4%) genes that have a p53 Expres-
sion Score ≤ −10 and 209 of 698 (29.9%) genes that were
reported as CC genes in at least two datasets were identi-
�ed as DREAM targets based on the dataset by Litovchick
et al. (17). Considering that downregulation by TP53 and
CC-dependent regulation are features of DREAM targets,
we searched for genes with p53 Expression Scores ≤ −7 or
identi�ed asCC regulated in at least three of the �ve datasets
that were not previously described as DREAM targets. In
addition, we required the genes to harbor a phylogeneti-
cally conserved CHR or E2F element to support speci�c
DREAMbinding (17,22–23). From this group of 374 genes,
we selected a total of 27 to test for binding of DREAM
components E2F4 and LIN9 and the MMB component
B-MYB in serum-starved (G0) and re-stimulated (22 h;
G2/M) T98G cells (Figure 5A and B). E2F1 and MYBL2
were selected to serve as positive controls for DREAM
binding as they have been validated earlier (17,32) while
GAPDHS served as negative control. We found 26 of 27
(96.3%) genes bound to DREAM and MMB components
above background. The only gene that tested negative was
HN1 and it displayed the weakest p53 Expression Score (
= −4). These results indicate CC-dependent expression of
mRNA combined with a low p53 Expression Score is pre-
dictive for DREAM target genes.
The 26 newly identi�ed DREAM target genes form two

groups of genes expressed early (G1/S) or late (G2/M)
in the CC. The early CC genes, including E2F1, MYBL2,
MSH6, PRIM1, MCM6, POLD3, CHAF1A, GINS2,
MSH2, SKP2, POLE, EZH2, POLA1 and FANCL, pos-
sess E2F elements in their promoters and bind DREAM
but not MMB (Figure 5A). In contrast, the late CC genes,
TACC3,GPSM2, PSRC1,KNSTRN,G2E3, SKA1, ECT2,
PHF19, KPNA2, STK17B, KIF18B, FAM72D and SM-
CHD1, possess CHR elements in their promoters and bind
MMB in addition to DREAM (Figure 5B). These results
are in concordance with an earlier genome-wide classi�ca-
tion showing that DREAM targets encompass both early
and late CC genes, while MMB-FOXM1 targets late CC
genes (23).
To generate a comprehensive genome-widemap of strong

candidate DREAM target genes, we combined additional
genome-wide ChIP datasets for the DREAM components
E2F4 and p130 (Figure 5C and F). We examined the E2F4
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Figure 5. Prediction and validation of candidate DREAM target genes. (A and B) Protein binding to promoters of the indicated genes was tested by ChIP
in serum starved (G0) and 22 h re-stimulated (G2/M) T98G cells. The E2F1 and MYBL2 promoters served as a positive control for DREAM binding;
the GAPDHS promoter was used as a negative control. One representative experiment with three technical replicates (n = 3) is displayed. Venn diagram
of overlaps between genes identi�ed as bound in the (C) E2F4 or (F) p130 ChIP-seq datasets. The number of common (D) E2F4 or (G) p130 bound genes
is compared to the number of datasets that identify a gene as being a CC gene. The number of common (E) E2F4 or (H) p130 bound genes in the 41 p53
Expression Score groups. A two-sided Fisher’s exact test was employed to test for signi�cant over- and under-representation of gene sets and P-values were
adjusted for multiple testing using Bonferroni correction. Colored and black data points are signi�cantly over- and under-represented, respectively (adj.
P-value ≤ 0.05). White data points are not signi�cantly different. (I) Boxplot displaying the number of datasets that �nd a gene to be targeted by DREAM
compared to the number of datasets that identify a gene as CC regulated. (J) Boxplot displaying the number of datasets that �nd a gene to be targeted by
DREAM in the 41 p53 Expression Score groups. Correlation coef�cient and two-tailed P-value was calculated using GraphPad Prism version 6.00.
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and p130 binding data by comparing the 2157 common
E2F4 bound genes and 3106 common p130 bound genes
to the number of CC datasets a gene was identi�ed in (Fig-
ure 5D and G) and the p53 Expression Score (Figure 5E
and H). We found that both E2F4 and p130 were increas-
ingly enriched for gene binding and re�ected the con�dence
a gene was found to be either a CC gene or downregulated
by TP53. These results are similar to �ndings we observed
with the DREAM binding data based in part on E2F4 and
p130 binding (Figures 2E and 4C).

We combined all three E2F4 ChIP-seq datasets, two
p130 ChIP-seq datasets and the original four DREAM
(E2F4, p130, LIN9 and LIN54) ChIP-chip datasets from
Litovchick et al. The sum of these nine datasets was en-
riched for genes regulatedwithin theCCand downregulated
by TP53 (Figure 5I and J). To be considered a strong candi-
dateDREAM target gene, we required a gene to be detected
in at least four of the nine datasets to ensure binding of at
least two DREAM components. Additionally, a gene was
required to either be reported as being a CC gene in at least
two of the �ve CC datasets or have a p53 Expression Score
≤ −5. These criteria were met by 968 genes (Supplemen-
tary Table S7). The �nding that all 20 DREAM target genes
displayed in Figure 2F were identi�ed in this list demon-
strates the ability of this approach to identify bona �de can-
didates. The list of strong candidate DREAM targets in-
cludes E2F1, GAS2L3,MYBL2 as well as 23 (88.5%) of 26
novel DREAM target genes we identi�ed above (Figure 5A
and B). We manually included the three false negative tar-
gets EZH2, FAM72D and STK17B that did not meet the
stringent thresholds to be considered DREAM targets in
our analysis but were instead validated experimentally (Fig-
ure 5A and B). Together, our screening approach identi�es
several hundred novel potential targets expanding the num-
ber of DREAM target genes to 971 strong candidates.

Identi�cation of specialized subgroups of DREAMand TP53
target genes

The stepwise meta-analysis approach used to identify
DREAM target genes combining CC expression, DREAM
component binding and TP53 repression studies also un-
covered several exceptions. For example, the gene encoding
the apoptosis enhancing nuclease, AEN, was identi�ed in
the meta-analysis data as a CC gene but was also found to
be upregulated by TP53 (p53 Expression Score 11). AEN
was upregulated upon TP53 activation in HCT116 p21−/−
cells as well (Supplementary Figure S13A and B). TP53
and DREAM were both recruited to the AEN promoter
upon doxorubicin treatment. However, binding of TP53 but
not DREAM was present in doxorubicin treated HCT116
p21−/− cells (Supplementary Figure S13C and D). TP53
binding toAENwas identi�ed in all 15 ChIP datasets (Sup-
plementary Table S2) and AEN has been con�rmed in the
literature to be a TP53 regulated gene (63). Additional ex-
amples of DREAM-bound but TP53 activated genes in-
cludeE2F7 andPCNA, both previously reported to be E2F-
regulated CC genes (64,65) and upregulated by TP53 bind-
ing (66,67). While AEN, E2F7 and PCNA represent early
CC genes, lateDREAMboundCC genes such asBTG1 and
RAD51C were also bound and upregulated by TP53 (Sup-

plementary Table S6). These results indicate that a small
number of DREAM target genes are also direct TP53 tar-
get genes. Moreover, it suggests that TP53 activation can
oppose the repressive DREAM complex upon DNA dam-
age.
A different type of exception is represented by thePDS5B

gene, which is a direct target of DREAM and not TP53.
According to the meta-analysis data, PDS5B was down-
regulated by TP53 (p53 Expression Score −11) across mul-
tiple cell types and treatments (Supplementary Table S1).
We con�rmed this in HCT116 cells and found that the
down-regulation was dependent on p21, as expected for a
DREAM target gene (Supplementary Figure S13A and B).
However, we also found that the levels of PDS5B mRNA
were not CC regulated (Supplementary Figure S12). Thus,
a small subgroup of DREAM target genes appears not to
be regulated within the CC although it is downregulated by
the TP53-p21-DREAM pathway. Taken together, the step-
wise meta-analysis approach enabled identi�cation of spe-
cialized subgroups of DREAM target genes.

DREAMtarget genes comprise two distinct subgroups: G1/S
and G2/M cell cycle genes

Temporal separation of gene transcription likely in�uences
interactions of the encoded proteins. To address whether
CC genes diverged into distinct subgroups, we analyzed
the network of protein–protein interactions between 259
high con�dence CC genes identi�ed in at least three out of
the �ve CC datasets. The protein–protein interaction links
were extracted from the STRING database (68). We used
a message-passing approach to detect signi�cant communi-
ties in the network of CC genes. A community is a group of
nodes that has more connections amongst themselves than
expected by random chance (see ‘Materials and Methods’
section). We detected two robust communities in the net-
work (Figure 6A). The magenta subgroup contained pro-
teins with known functions during the G1 and S phases
of the CC, such as E2F transcription factors, members of
the minichromosome maintenance complex and histones.
In contrast, the orange subgroup contained proteins with
well-known functions during mitosis, such as kinesins and
centromere proteins.
To explore the characteristics of the two major CC gene

subgroups in more detail, we took advantage of informa-
tion on peak expression provided in the �ve CC datasets.
We introduced the CC Expression Score based on the same
logic as the p53 Expression Score. We calculated how many
datasets agree on a gene displaying peak expression in ‘G2’
or ‘G2/M’ phase of the CC minus the number of datasets
that �nd a gene expressed in ‘G1/S’ or ‘S phase’. To verify
this approach, we examined the most con�dent G2/M and
G1/S groups,CCExpression Score +5 and−5, respectively.
The +5 group contained several well-known and validated
late CC genes including CENPA, CENPE, KIF11, KIF23
and UBE2C (Supplementary Table S6). In contrast, the −5
group contained known early CC genes, such as CCNE2,
CDC6, E2F1, MCM5 and PCNA. The group of G1/S CC
geneswas enriched, as expected, for functions inDNArepli-
cation, DNA metabolic process, DNA repair and DNA re-
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Figure 6. DREAM target genes comprise distinct subgroups regulated by RB-E2F and MMB-FOXM1. (A) Message passing clustering of 259 high con�-
dence CC genes based on their protein–protein interaction network obtained from string-db. (B) Top 10 BP GO terms with their FDR value as identi�ed
using the DAVID Functional Annotation Tool (53) enriched at genes that are found to be G1/S (left) or G2/M (right) CC genes in at least three of the
�ve CC datasets. The number of (C) DREAM targets, (D) RB-E2F target genes and (E) MMB-FOXM1 targets in the 11 CC Expression Score groups.
A two-sided Fisher’s exact test was employed to test for signi�cant over- and under-representation of gene sets and P-values were adjusted for multiple
testing using Bonferroni correction. Colored and black data points are signi�cantly over- and under-represented, respectively (adj. P-value ≤ 0.05). Venn
diagram of predicted CC genes and (F) genes downregulated by TP53 (p53 Expression Score ≤ −5) or (G) DREAM,MMB-FOXM1 and RB-E2F targets.
(H) The TP53 target p21 (CDKN1A) is required for downregulation by TP53. CC genes are downregulated by TP53 and bound by the DREAM complex.
RB-E2F and MMB-FOXM1 bind discrete subsets of DREAM targets re�ecting G1/S and G2/MCC genes.
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combination (Figure 6B). In contrast, the group of G2/M
CC genes was strongly enriched for mitotic functions.
The distribution of the 971 strong candidate DREAM

target genes (Supplementary Table S7) across the CC Ex-
pression Score demonstrated the presence of both G1/S
and G2/M CC genes (Figure 6C). This is consistent with
DREAM binding to G1/S and G2/MCC genes harboring
E2F and CHR elements, respectively (Figure 5A and B).

Identi�cation of 282 MMB-FOXM1 targets reveals G2/M
gene signature

Considering that DREAM binds G1/S and G2/M CC
genes, we asked if speci�c transcription factors could also
distinguish these subgroups. MMB and FOXM1 have been
reported to bind speci�cally to G2/M genes (13,21,23). To
test whether MMB-FOXM1 is a signature of G2/M genes,
we integrated ChIP-seq datasets on B-MYB and LIN9, ma-
jor components of the MMB complex (13) and FOXM1,
a known MMB binding partner (13,20–21). MMB bind-
ing was signi�cantly enriched for G2/M but not G1/S CC
genes (Supplementary Figure S14A and B). The MMB in-
teraction partner FOXM1 displays a similar binding pat-
tern (Supplementary Figure S14C andD). In addition, phy-
logenetically conservedCHRelements thatmediate binding
of MMB and FOXM1 (21,22) were also signi�cantly more
abundant among G2/M but not G1/S CC genes (Supple-
mentary Figure S14E).
Using the meta-analysis approach, we established a

genome-wide map ofMMB-FOXM1 target genes. If a gene
was found in at least four of the seven MMB-FOXM1
datasets (Supplementary Figure S14F) and was either de-
tected as a CC gene in at least two out of �ve CC datasets
or had a p53 Expression Score ≤ −5, we considered it to
be a potential MMB-FOXM1 target. A negative p53 Ex-
pression Score was included because a switch from MMB
to DREAM complex binding was reported to be critical
for TP53-dependent downregulation of several CC genes
(30,31). These criteria were met by 276 genes (Supplemen-
tary Table S8) including known MMB and FOXM1 tar-
gets CCNB1, CCNB2 and PLK1 (13,21). This approach
identi�ed several novel MMB target genes including ECT2,
EZH2, GPSM2, KIF18B, KPNA2, PHF19, PSRC1 and
STK17B (Figure 5A and B). Identi�cation of these MMB
and FOXM1 target genes illustrates the utility of this ap-
proach to identify bona �de candidate genes. While the
list of MMB-FOXM1 targets is not exhaustive due to the
stringent criteria, loosening these criteria would result in
an unfavorable increase in false positives. Genes such as
FAM72D, G2E3, PDS5B, POLE, SKA1 and SMCHD1 are
false negatives that did not meet the stringent thresholds to
be considered MMB-FOXM1 targets in our analysis and
were added manually as they were validated experimentally
(Figure 5A and B). Together, these 282 strong candidate
MMB-FOXM1 target genes identifymanyG2/MCCgenes
(Figure 6E).

A genome-wide map of 506 candidate RB-E2F targets in-
cludes G1/S cell cycle genes

Given that most, if not all, G2/M CC genes are bound
by MMB-FOXM1 as well as the DREAM complex, we

asked whether we also could establish a distinct signature
for G1/S CC genes. In contrast to G2/M CC genes, G1/S
CC genes are directly regulated by RB, the activating E2F1,
E2F2 and E2F3 and repressive E2F6, E2F7 and E2F8 tran-
scription factors, in addition to the repressive E2F4 and
p130/p107-containing DREAM complex (16,19). We in-
tegrated ChIP-seq datasets for these transcription factors
(Supplementary Figure S15). Similar to a previous analysis
of the E2f1, E2f2, E2f4 and E2f6 genome-wide binding data
frommouse (69), we found only a small overlap between the
human E2F1, E2F4, E2F6 and E2F7 binding data.
We examined the distribution of genes bindingRB, E2F1,

E2F6 and E2F7 across the CC Expression Score. We found
that binding of RB and E2F7 was enriched at G1/S but
not at G2/M CC genes (Supplementary Figure S15A, B
and F). Similarly, E2F1 was more signi�cantly enriched at
G1/S than G2/M CC genes (Figure 14C). Although E2F6
was reported to be speci�c for G1/S genes (70), we found
that it was bound to both CC groups (Supplementary Fig-
ure S15D and E).
The E2F DNA element recruits RB and E2F transcrip-

tion factors to gene promoters and is enriched among RB
and E2F7 bound genes (65,71). We found that phylogenet-
ically conserved E2F elements were signi�cantly overrepre-
sented in the promoters of G1/S but not G2/M CC genes
(Supplementary Figure S15G). Together, the �ve datasets
consisting of RB, E2F1 and E2F7 binding and E2F pro-
moter elements function as a signature for G1/S CC genes
(Supplementary Figure S15H). We classify this group as
RB-E2F target genes. Genes found in at least three of these
�ve datasets were included in a genome-wide map of RB-
E2F targets if they had either a p53 Expression Score ≤ −5
or were present as a CC gene in at least two out of �ve CC
datasets. The 506 potentialRB-E2F targets (Supplementary
Table S9) were signi�cantly enriched for G1/S CC genes
and contrast with the distribution of MMB-FOXM1 tar-
gets (Figure 6D and E).

Given that transcription factor binding pro�les can pre-
dict CC-regulated genes (72), we combined all candidate
target genes of DREAM, MMB-FOXM1 and RB-E2F
with genes that were found in at least two of the �ve CC
datasets to establish a genome-wide map of CC genes. This
expanded dataset identi�es 1406 potential CC genes includ-
ing 24 (92.3%) of the 26 cell experimentally validated cycle-
regulated genes that were missed in all �ve CC datasets
(Supplementary Figure S12). We manually added the two
false negative genes CENPI and CCDC138 that did not
meet the stringent thresholds to be considered CC regulated
in our analysis but were instead identi�ed experimentally
(Supplementary Figure S12). Together, this approach iden-
ti�es a total of 1408 CC-regulated genes (Supplementary
Table S10).
Many of the potential CC genes overlapwith genes down-

regulated by TP53 (Figure 6F). DREAM, RB-E2F and
MMB-FOXM1 targets account for 983 (57.6%) of 1707
genes having a p53 Expression Score ≤ −5 (Supplementary
Figure S16A), indicating that these are the primary genes
downregulated by TP53. Consistent with an earlier study
reporting rRNA processing genes downregulated by TP53
in addition to CC genes (39), we found the remaining 724
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genes were enriched for GO terms representing RNA pro-
cessing and metabolism (Supplementary Figure S16B).
Most of the 1408 potential CC genes bind DREAM,

RB-E2F or MMB-FOXM1 (Figure 6G). Overall, RB-E2F
andMMB-FOXM1 targets appear to be distinct subgroups
of DREAM target genes re�ecting the G1/S and G2/M
groups of CC genes (Figures 6H and 7).

DISCUSSION

Genome-wide approaches have increasingly shaped our un-
derstanding of TP53 and CC gene regulatory networks.
However, due to the nature of these genome-wide datasets,
the overlap between any two can be small even when the
underlying data were derived from the same cell line under-
going identical treatments. We have developed an approach
that captures the information from many of the recently re-
ported datasets to gain a more complete overview of the
TP53 and CC regulatory landscape.
To avoid including highly heterogenic datasets, we tested

eachTP53 expression dataset against the sumof the remain-
ing datasets and consequently included 20 out of 22 datasets
tested (Figure 1E; Supplementary Figures S3 and 4). Since
most studies included stringent thresholds to identify genes
that are signi�cantly differentially expressed, only a few
genes were identi�ed in all datasets. Despite the stringent
thresholds, many genes were found differentially expressed
in only one or two datasets displaying little reproducibil-
ity across datasets. These genes may represent either false
negatives or, alternatively, genes that are regulated uniquely
through certain treatment-cell type combinations.
Considering that the �ndings of our meta-analysis ap-

proach are based on the data provided by the underlying
datasets, there is a bias toward genes regulated by Nutlin-
3a or doxorubicin treatment as these were applied in most
studies. Treatment-cell type combinations that are present
solely once have little in�uence on the whole meta-analysis.
Although we �nd that many TP53 responsive genes are reg-
ulated by TP53 robustly across multiple cell types and treat-
ments, our �ndings also support that there is cell type and
treatment speci�c gene regulation by TP53. Thus, when in-
vestigating treatment-cell type combinations that are not
represented, insights from our meta-analysis may be lim-
ited.
Integration of these various gene expression pro�ling

datasets results in a robust joint dataset comprised of genes
that were repeatedly identi�ed to be regulated. By integrat-
ing publically available datasets, high con�dence lists of
TP53 and CC regulated genes were generated. This meta-
analysis approach complemented incomplete information
in individual studies with data from other studies with noise
lowered using stringent thresholds. For example, the ChIP–
chip dataset by Litovchick et al. identi�ed 865 genes bound
by DREAM based on the stringent criteria that a binding
peak for p130, E2F4 and LIN9 had to be present within
1000 bp from the TSS (Supplementary Table S5) (17). Only
473 of these genes passed our stringent criteria to also be
considered regulated by DREAM. In contrast, by includ-
ing �ve additional binding studies of DREAM compo-
nents, ourmeta-analysis approach identi�ed 2,897 potential
DREAMbound genes that display a binding peak in at least

four out of the nine binding pro�les. Out of these 2897 genes
971 also met the criteria of being regulated across multiple
conditions and were consequently predicted to be high con-
�dence targets (Supplementary Table S5). Our scoring sys-
tem is based on the number of datasets that agree on tran-
scription factor binding sites or on a gene’s regulation. The
scoring system can be used as a measure of con�dence and
enables visual evaluation of the impact of additional studies
in the meta-analysis. Furthermore, our approach visualizes
thresholds and provides ranked maps of regulated genes.
The stepwise meta-analysis approach re�nes our under-

standing of the TP53 and CC gene regulatory networks. It
enabled us to integrate a variety of genome-wide gene ex-
pression datasets with transcription factor binding pro�les
from multiple treatments and cell types. Combining vari-
ous types of studies revealed a more comprehensive insight
into how gene expression is regulated by TP53 and the CC.
We used this method to build high con�dence ranked target
gene maps for TP53, DREAM, MMB-FOXM1 and RB-
E2F that predicted potential CC regulation. This integrated
view of CC regulation highlights the distinct role for RB-
E2F and MMB-FOXM1 binding in DREAM target genes
re�ecting the G1/S andG2/Mgroups of CC genes (Figures
6H and 7).

Our meta-analysis approach also provided clear insight
into the role of TP53 as an activator through proximal pro-
moter binding (Figure 2A–C). In agreement with the latest
model on TP53-dependent transcriptional regulation (10),
a direct repressor function of TP53 appears to be absent.
The most striking �nding was that the TP53 target gene
and CDK inhibitor p21 is critical to TP53-mediated tran-
scriptional downregulation in general (Figure 3). These re-
sults challenge gene regulatory models that do not incor-
porate p21 in mediating TP53-dependent transcriptional
downregulation, such as E2F7 (7), multiple microRNAs
(73) and long non-coding RNAs (74). Our results suggest
that the group of CC genes is primarily and generally regu-
lated through the TP53-p21-DREAM (32) and TP53-p21-
RB/E2F (28,29) pathways across cell types and treatments
(Figure 6H).
The meta-analysis approach also enabled identi�cation

of several interesting exceptions. One group of genes ap-
pears to be downregulated independent of both p21 and
TP53 by theDNAdamaging agents doxorubicin andRITA.
Another outlier group contains a small subset of DREAM
bound CC genes that are also bound by TP53. Genes in this
group are transcriptionally activated by TP53 and include
AEN, BTG1, E2F7, PCNA and RAD51C (Figure 7).

Signi�cantly, our target gene resource can help to iden-
tify co-expression signatures identi�ed in other cell types
and treatments. For example, high levels of EZH2, a mem-
ber of the PRC2 complex, and its co-expression signature
comprising 116 genes enabled identi�cation of high risk
non-small-cell lung cancer patients (75). Here, we identi�ed
EZH2 as novel DREAM target gene (Figure 5B). Exam-
ining the 116 gene EZH2 co-expression signature revealed
that 99 genes were also CC-regulated and DREAM targets
(Supplementary Table S5). CC gene expression signatures
help to stratify cancer patients into risk groups (76). Our
meta-analysis approach provides an extensive resource of

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
4
/1

3
/6

0
7
0
/2

4
5
7
6
2
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Nucleic Acids Research, 2016, Vol. 44, No. 13 6083

Figure 7. Predicted direct target gene network governed by TP53, DREAM, MMB-FOXM1 and RB-E2F. Octagons represent the transcriptional regu-
lators. All other nodes represent target genes. Edges represent predicted direct regulation. The size of the nodes re�ects the number of CC datasets that
identify the gene as CC regulated. The node color re�ects the gene’s p53 Expression Score.

CC genes and their regulatory networks that can help to
identify co-expression signatures.
Taken together, our results showcase the power of inte-

grating gene expression and transcription factor binding
pro�les across cell types and treatments to gain insight into
the gene regulatory networks and to establish high con-
�dence ranked maps of transcription factor target genes.
Our work provides an extensive and integrated resource on
TP53 and CC-regulated genes available in the Supplemen-
tary Data and as a web-based atlas on www.targetgenereg.
org. Our meta-analysis provides an opportunity to discover
unique features and novel mechanisms when compared to
genome-wide datasets fromnew treatments or cell lines. The
information provided on many genes of interests may help
guiding research resources to the most promising targets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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