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Abstract—A large number of potential applications for Wire-
less Sensor and Actuator Networks (WSAN) have yet to be
embraced by industry despite high interest amongst academic
researchers. This is due to various factors such as unpredictable
costs related to development, deployment and maintenance of
WSAN, especially when integration with existing IT infrastruc-
ture and legacy systems is needed. Service-Oriented Architecture
(SOA) is seen as a promising technique to bridge the gap
between sensor nodes and enterprise applications such as factory
monitoring, control and tracking systems where sensor data
is used. To date, research efforts have focused on middleware
software systems located in gateway devices that implement
standard service technology, such as Devices Profile for Web
Services (DPWS), for interacting with the sensor network. This
paper takes a different approach - deploying interoperable Simple
Object Access Protocol (SOAP)-based web services directly on the
nodes and not using gateways. This strategy provides for easy
integration with legacy IT systems and supports heterogeneity at
the lowest level. Two-fold analysis of the related overhead, which
is the main challenge of this solution, is performed; Quantification
of resource consumption as well as techniques to mitigate it
are presented, along with latency measurements showing the
impact of different parts of the system on system performance. A
proof-of-concept application using Mulle - a resource-constrained
sensor platform - is also presented.

Index Terms—Sensor networks, WSN, SOA, Web services,
SOAP

I. INTRODUCTION

THE ability of networked, embedded devices to monitor

and control various physical parameters of the envi-

ronment as well as communicate the data over the Internet

makes them a foreseeable source of innovation in many

fields: from factory automation to use in smart homes and

healthcare. While the benefits of integrating these devices

with enterprise systems and services are evident from the

perspective of business process synergy, many challenges still

prevent widespread integration of sensor nodes into Man-

ufacturing Execution Systems (MES), Enterprise Resource

Planning (ERP), accounting and distribution systems. More

details regarding the opportunities and challenges of applying
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Fig. 1. Sensor nodes are integrated with enterprise systems using standard
SOAP-based web services

WSANs in industrial environment are presented in [1] as

well as in the work of Andreas Willig on wireless industrial

communications [2].

Dealing with the heterogeneity of devices and software

systems requires a flexible solution that can lower com-

plexity and decrease development, deployment and system

maintenance costs. Service-Oriented Architecture (SOA) has

proven successful in leveraging these costs and it is seen as

enabling technology for the development of enterprise systems

in industrial domain [3]. Moreover, research analysis has

shown its applicability for embedded systems development

[4]. The prototype systems implemented within the European

project SIRENA [5] as well as some commercial products

that provide support for Devices Profile for Web Services

standard [6] further prove the applicability of the SOA concept

in the embedded domain. However, applying SOA to deeply

constrained devices such as sensor nodes is still an open

research problem due to unacceptable overhead. Some of the

proposed solutions are based on modifications of the SOA

protocols that simplify the implementation and lower the

resource requirements [7]. However, the majority of research

efforts have been directed towards using middleware software

running on more capable devices or gateways as suggested by

Wolff et al. in [8] or in the work of R. Bosman et al. [9].

This middleware is responsible for exposing the functionality

of the whole sensor network as services using standard SOA
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technology. In this way, communication within the network is

still based on specialized, proprietary protocols. This approach

has the benefit of leaving the resource-intensive tasks related

to standard service implementation to the gateway, but also has

some drawbacks such as a single point of failure, an inability

to support heterogeneity on the node level [10], etc.

Although the node-level service implementations have al-

ready been proposed, there are no studies investigating the

applicability of deploying fully interoperable and compliant

services, such as those described in WS-I Basic Profile 1.0,

directly on the sensor nodes. This is due to the general

perception that the use of XML-based services on highly

constrained sensor nodes is inapplicable or even impossible, as

stated by Leguay et al. [11]. The higher overhead, in terms of

power consumption, latency, RAM and CPU usage, related

to serialization, transmitting and parsing of verbose XML

messages is undisputed, and has in fact been well studied

by Groba et al. [12] where empirical data that quantifies the

overhead of web services on embedded devices is presented.

Especially challenging are the high memory requirements

resulting from the need for large buffers used to accommodate

the XML documents.

In this paper, we present few techniques for improving

efficiency that allow us to deploy standard SOAP web services

on resource-constrained sensor nodes. These techniques are

implemented in a proof-of-concept application that connects

sensor nodes to an enterprise application. The architecture

of the experimental setup is shown in Figure 1. Among

others, we applied sensor data aggregation for reducing the

transmission time and active mode intervals of the nodes,

and hence increasing battery life. As this technique is not

applicable in general case a real-world scenario which allows

for such aggregation is also presented. In [13], Lee et al. used

similar approach for industrial monitoring application.

The remainder of this paper is structured as follows - we

provide a motivation for our work in Section II. Section III

summarizes the related work in the area and presents some

of the technologies used. Section IV goes into details about

the problems related to the use of SOA in WSAN. Section

V presents our sample application together with performance

measurements. In Section VI, we give the possible improve-

ments and extensions to our work, and Section VII concludes

the paper.

II. MOTIVATION

As pointed out by Jammes et al. [14], the manufacturing en-

terprises, pushed by the global competition, are seeking ways

to increase their responsiveness to the market demands on a

real-time scale. At the same time, the costs for maintaining the

process flows evolution or modification are substantial due to

the semi-automatic, or even error prone manual, configurations

involved. A recent study by Candido et al. proposed an archi-

tecture that supports the device and process lifecycle evolution

based on SOA and Evolvable Production Systems (EPS) [15].

As part of this architecture, the devices have SOA interfaces

that allow high level business applications to interact with

them without any intermediary protocol gateways - a concept
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Fig. 2. The SOCRADES cross-layer approach

also suggested in [16]. The support for cross-layer integration

between the shop floor and enterprise systems was also a main

objective for the SOCRADES project [17]. As an outcome of

this project, an architecture for vertical integration based on

the SOA approach was proposed, where the ERP and MES

systems together with shop floor devices are integrated using

web services. Kalogeras et al. presented similar architecture

with emphasis on the use of web services, workflows and

ontologies [18]. A diagram from the SOCRADES Roadmap

shown in Figure 2, represents the concept of applying SOA ap-

proach for vertical inter-enterprise integration. As depicted, the

resource constrained devices, including wireless sensors and

actuators, are exposed to the SOA interface through service

gateways or mediators. The work presented in this article is

an extension to the aforementioned SOA architecture aiming

at deploying the service interface provided by the gateways

directly on the wireless nodes. This is made possible due to

the advancement in embedded systems hardware but also the

application of resource-aware implementation techniques.

III. BACKGROUND AND RELATED WORK

Service-Oriented Architecture denotes the usage of well-

defined and self-contained function calls between distributed

nodes independent of the location and platform of the parties

involved. It also implies that interoperable network protocols

for communicating service requests and responses are avail-

able. Although many challenges still remain, there are different

approaches for providing low layer (physical and data-link)

integration of wireless networks in an industrial environment

[19], [20]. In this work we focus on providing application

layer integration with the use of an access point for the data-

link layer integration and TCP/IP stack on the network and

transport layers.

There are many service technologies that are built upon the

SOA approach: CORBA, UPnP, OPC-UA, Jini and different

flavors of web service technology (SOAP-based, RESTful

[21], etc). The web services conforming to the Web Services

Description Language (WSDL) specification are designed to

be application- and transport protocol-agnostic, which leads

to compatibility issues. For that reason, different web service

profiles are specified to leverage the diversity of network
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protocols used and to adapt the specifications to a particular

application domain. Services in enterprise systems mostly

conform to WS-I Basic Profile 1.0, while Devices Profile for

Web Services is used to define a set of protocols to enable

plug-and-play behavior for embedded networked devices. Both

profiles rely on SOAP as an application layer protocol for

serialization of service requests and responses.

Fig. 3. Direct orchestration of sensor node and enterprise web services is
made possible due to their compatibility

Advantages and disadvantages of the aforementioned ser-

vice technologies applied to different applications are already

being studied by researchers (e.g. [5]); thus, a comparison of

them is not included in this paper. The analysis performed in

research projects such as SIRENA, SOCRADES and within

the research program ITEA gives priority to SOAP-based

web services in which the devices are integrated with the IT

systems using DPWS. The main argument in support of this

architecture is the possibility to apply service orchestration of

embedded and system services directly without the need for

adapters, as shown in Figure 3. A white paper by Boyd et

al. [22] provides further reading on service orchestration and

other SOA concepts along with case studies of applying SOA

to manufacturing infrastructure.

The use of proprietary or nonstandard SOA implementations

requires translation middleware when working with standard-

ized service orchestration, such as Business Process Execution

Language (BPEL). As our approach aims at limiting the

external dependencies of the SOA implementation for devices

the work presented in this paper considers standard SOAP-

based web services.

To ensure interoperability, SOAP web services are entirely

based on open standards and rely heavily on the usage of

XML and XML Schema Definition Language (XSD). Thus,

each SOAP message is a XML document that must first be se-

rialized, transmitted, received and then parsed. To avoid these

resource-intensive operations being performed on the sensor

nodes, researchers are investigating the use of middleware

software deployed on gateway devices that first communicate

with the nodes in an ad-hoc manner and then translate their

functionality as web services to external systems. An example

of such a design was proposed by Avilés-López et al. [23];

In their system, the middleware included an advanced registry

mechanism. A similar solution that also incorporated a light-

weight, ad-hoc service protocol within the sensor network was

presented by Leguay et al. [11]. In that work, the translation

between internal and external DPWS-compatible services was

done on the gateway. The architecture supports one-to-one,

but also many-to-one, relations between the services with a

highly flexible eventing mechanism built upon hierarchical

subscriptions. Another approach more closely related to the

work presented in our paper is that by Priyantha et al. at

Microsoft Research [24]. Instead of using specialized, ad-hoc

services for node-to-node communications, they proposed to

use web services described by WSDL. To keep the overhead

low, these services were implemented using HTTP binding and

not SOAP. This provides for shorter and easier to parse and

serialize messages but also implied constraints on the structure

of the data transmitted and impaired the compatibility with

enterprise systems. To address these issues, Priyantha et al.

proposed an external server called Controller that more or

less fulfilled the role of the gateway middleware presented

in the previous papers. The controller served as a proxy that

translated the internal web services to SOAP-based services

and provided eventing through the use of WS-Eventing. In

this way, the client applications communicated with the sensor

nodes indirectly through the controller. Also presented in

that paper are different techniques to lower the XML-related

impact on performance as well as an analysis of possible

application scenarios where this approach will lead to cost

savings.

In contrast with the aforementioned approaches, the solu-

tion presented in the present paper deploys fully compatible

SOAP-based web services directly on a highly constrained

sensor platform and hence eliminates the need for additional

middleware. In this way, its main contribution is an efficient

implementation that combines a lightweight TCP/IP stack -

lwIP [25] and a gSOAP [26] web service toolkit. The lwIP

provides two different APIs to access the network services:

a low-level ”raw” API relies on callbacks, and a higher-level

”sequential” API is easier to work with but also implies higher

resource consumption. We used the ”raw” API to minimize the

footprint of our solution.

The gSOAP toolkit includes a highly efficient runtime

environment to process SOAP messages that uses either a

general-purpose XML parser or an application-specific one

that can be generated from the service description (WSDL)

file. The use of an application-specific parser and serializer

provides for lowering the RAM and ROM utilization, as

the processing logic for the input and output generators is

optimized for the specific usage, and there are no execution

paths left unused by the application.

SOAP-based service implementation with a general-purpose

XML parser on Tmote Sky was reported by Yazar et al.
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[27]. Their solution differs from our approach in that it

does not provide tool support for developing SOAP-based

services but rather is only used to evaluate the performance of

their RESTful implementation, as stated in their paper: ”The

SOAP-based implementation is used as a reference point in

performance evaluation and is not intended for general use.”

Also not included in the work of Yazar et al. is a mechanism to

dynamically discover the network location of a service, neither

by their RESTful nor their SOAP implementation.

A work that is aiming at deploying standard-based em-

bedded web services directly on resource constrained sensor

nodes is available from open source project WS4D-uDPWS

[28]. Although, the intended outcomes of WS4D-uDPWS and

our approach are very similar the implementation techniques

differ in many aspects. First, the network layer used in WS4D-

uDPWS is uIP TCP/IP stack. It has smaller footprint than lwIP

but provides lower throughput. Second, while we built our

solution on an existing service implementation (i.e. stripped

version of gSOAP), uDPWS provides its own web service

runtime which is highly optimized and has smaller RAM and

ROM footprint than our runtime. However, WS4D-uDPWS

does not provide tool support for generating the application-

specific parts of its runtime based on the WSDL service

descriptions. Code-generation is provided, but it is based on

text files with formatting and naming conventions specific to

WS4D-uDPWS. Moreover, while the processing of the SOAP

headers is automated, the parsing and serialization of the

SOAP body is left to the web service developers.

IV. SOA ON SENSOR NODES

Due to the number of nodes in WSN, it is very important

to deploy and configure sensor nodes with the least manual

work possible. The initialization and configuration parameters

can depend on various conditions, most probably originating

outside of the sensor network. Looking at factory automation

as an example, these conditions are connected to MES systems

but also to strategic decisions in ERP systems, historical data

from databases, etc. Any changes done in these systems that

affect the behavior of the sensor nodes must be propagated

down while sensor data, after undergoing filtering and ag-

gregation, must be propagated up. Using SOA all the way

down to the smallest devices results in increased compatibil-

ity, where auto-configuration and plug-and-play capabilities

can be modeled as services. In such way, higher flexibility

for tuning or even changing the manufacturing processes

is achieved stemming from direct interactions between all

system components. However, this flexibility also leads to

complex systems integration and difficulties when defining or

verifying the required functionality of particular module or

the system as a whole. Handling this complexity requires data

models that constrain the possible interactions and formats

for data exchange. Examples of such data models are OPC-

UA information model or Business to Manufacturing Markup

Language (B2MML) used to link business systems such as

ERP and supply chain management systems with manufactur-

ing systems such as control systems and MES. Similar models

used for interfacing sensing devices are described by Sensor

Web Enablement Framework of Open Geospatial Consortium.

A. Web services

The main drawback to using SOAP-based web services is

the need to parse verbose XML documents. However, there

are already a number of compression techniques that require

a factor of ten less RAM, CPU and bandwidth as compared

to text-based XML. The most promising of these is Efficient

XML Interchange (EXI) [29], a W3C recommendation as of

March 10, 2011. EXI is defined as an alternative mean to

represent the XML Information Set [30] that provides one-to-

one translation to text-based XML representation. Depending

on the document properties and processing options specified,

EXI provides between 50% and 99% reduction in size and

up to 15 times faster processing [31]. The work presented

in this paper shows that even verbose XML can be used as

a service message protocol for sensor nodes; future binary

XML representations will only extend the applicability of the

presented solution. Introducing the EXI encoding to embedded

web service implementations however, will require the ability

to change the XML parser and serializer with EXI ones. Our

first attempt in this direction is the creation of EXIP open

source project1. Another question arising from the use of

binary encoding is how to connect embedded EXI encoded

web services with text-based enterprise services. One such

techniques that is already available as a commercial product

is to introduce a transparent HTTP proxy in between. The

role of the proxy is to translate binary EXI encoding to text-

based XML and vise versa. More details on the opportunities

and challenges of using EXI in industrial environment are

presented in [32].

B. Tools

The development of web service applications depends upon

a runtime system responsible for the network communications,

parsing, validation and serialization of service requests and

responses. Besides the runtime system, software tools are used

to map data structures in the XML to programming language

constructs - also known as XML data binding. Based on the

characteristics of our target domain, the required properties of

the SOA runtime system and supporting tools are as follows:

• written in programming language that is used for sensor

and actuator nodes development - currently most widely

used are C and its dialect nesC.

• easily portable on different embedded platforms.

• featuring small footprint implementation.

• highly configurable - it should be possible to remove

features that are not used or needed.

For C language, there are two web service toolkits, namely,

gSOAP and Apache Axis2/C. While gSOAP supports and has

been ported on several embedded platforms, Axis2/C is mostly

used on Windows and Linux machines. Moreover, gSOAP

runtime has a wide range of features that can be selectively

included or excluded from it. The version of gSOAP used in

our solution has the following components removed: XML

DOM parser, HTTPS and SSL support, compression, logging

1Efficient XML Interchange Processor - http://exip.sourceforge.net/
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module, all support for attachments including SOAP with At-

tachments, MIME, DIME or MTOM, HTTP chunked transfer

mode.

V. PROOF OF CONCEPT

WS-I Basic Profile 1.0 defines a bare minimum of con-

straints on the WSDL specification that make different web

service implementations compliant. Examples of such con-

straints are the use of SOAP version 1.1 binding, HTTP

1.0 or HTTP 1.1 as a transport protocol. The applications

developed using our solution are compliant with WS-I Basic

Profile 1.0 provided that the ”-1” command-line option is used

when executing gSOAP soapcpp2 code generator. The current

enterprise systems are mostly conforming to this profile which

enables interoperability with our SOA approach for sensor

nodes.

DPWS, in contrast, poses many more requirements aimed

at providing plug-and-play capabilities as well as automatic

deployment and configuration. It also denotes the usage of

SOAP version 1.2 as well as the addressing fields in the SOAP

header defined in WS-Addressing specification. Moreover, a

set of predefined services must be available on the devices

willing to comply with the DPWS standard. As an example,

a manifest service called device is responsible for hosting and

advertising the other services that represent the functionality

provided by the device. Another predefined service, with an

interface consisting of six operations, is specified in WS-

Discovery - a protocol that enables dynamic discovery of

available services on the network without the use of centralized

registry such as UDDI. All six operations use SOAP-over-UDP

to minimize network traffic. Figure 4 shows all of the protocols

included in the DPWS specification, with those not covered

by our solution illustrated with hatching.

SOA application

WS-Discovery WS-Eventing
WS-

MetadataExchange

WS-Addressing WS-Security WS-Policy

SOAP 1.2

WSDL 1.1, XML Schema

UDP

HTTP 1.1

TCP

IPv4 / IPv6 / IP Multicast 

Fig. 4. DPWS protocol stack. Parts not covered in this work are illustrated
with hatching

When the required settings for using SOAP v1.2 and

SOAP-over-UDP are specified as described by the gSOAP

documentation, our current solution supports SOAP-over-UDP,

SOAP 1.2, WSDL 1.1, WS-Addressing and certain parts of

WS-Discovery. Two WS-Discovery operations are included in

our implementation: Probe, which is a query multicasted to

specific IP multicast address and port, and ProbeMatch, which

is the response of the queried nodes to the Probe message.

The use of discovery proxies, as defined by the specification

is not supported. Nevertheless, this limited implementation is

sufficient to locate a service advertised by a WS-Discovery-

compliant device.

The security scheme defined by DPWS enables protection

of the service executions in three directions: authentication

of the parties involved, message integrity protection and

confidentiality. While the majority of the target applications

will not require confidentiality for sensor data and/or actuator

control data, authenticity and integrity are crucial especially

for wireless communications. However, the resources available

on current sensor platforms are not sufficient for supporting

standard based authentication mechanisms based on digital

certificates and asymmetric cryptography. For that reason,

the presented approach is only appropriate for non-critical

applications where the sensor nodes are behind enterprise

firewall.

A. Architecture

As was already stated, the web service implementation

presented in this paper is built upon the gSOAP toolkit. The

gSOAP design supports different network layers with BSD-

socket API supported out of the box. However, its runtime

is written with the perception that the network interface it

uses supports sequential execution, which requires the use of

threading. Thread-based network APIs provide abstraction of

the complex event-driven nature of network communications.

The trade-off inherited from this abstraction is a higher re-

source consumption, which makes it not suitable for highly

constrained sensor nodes [25]. So, to use the event-based

”raw” lwIP API, the network layer of gSOAP runtime was

rewritten and an additional lwIP wrapper was introduced.

This includes splitting of the sequential execution blocks that

contain blocking network operations into smaller non-blocking

programming sequences connected with callback functions. As

an example, consider the following simplified programming

fragment that uses threaded network layer:

Block 1 ( ) {
b l o c k i n g c o n n e c t ( ) ;
/∗ The TCP c o n n e c t i o n i s e s t a b l i s h e d ∗ /

s e r i a l i z e h t t p h e a d e r ( ) ;
b l o c k i n g s e n d ( ) ;
/∗ The h t t p header i s s e n t ∗ /

s e r i a l i z e s o a p ( ) ;
b l o c k i n g s e n d ( ) ;
/∗ The soap message i s s e n t ∗ /

c l e a n u p ( ) ;
}

The equivalent functionality based on non-blocking lwIP

network operations and callbacks is coded as follows:

Block 1 ( ) {
s t o r e s o a p s t a t e ( ) ;
l w i p c o n n e c t ( ) ; /∗ c a l l s B lock 2 ( ) when c o n n e c t e d ∗ /

}
Block 2 ( ) {

s e r i a l i z e h t t p h e a d e r ( ) ;
l w i p s e n d ( ) ; /∗ c a l l s B lock 3 ( ) when t h e header i s s e n t ∗ /

}
Block 3 ( ) {

s e r i a l i z e s o a p ( ) ;
l w i p s e n d ( ) ; /∗ c a l l s B lock 4 ( ) when t h e soap i s s e n t ∗ /

}
Block 4 ( ) {

c l e a n u p ( ) ;
}
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The listings also present the concept of transmission on the

fly - when the HTTP header is serialized, it is sent over the

network. Then the sending buffer is released and used for

storing the SOAP message before its transmission. The same

technique is used on the receiving side: when the HTTP header

is received it is parsed and then the receiving buffer is released.

In this way, the size of the buffers, and hence the RAM usage,

can be restricted.

Sensor node application
Data

storage and
manipulation

Sensor
sampling

Power
management

   Input
handlers

 Output
handlers

<C function calls>

gSOAP runtime
Input SOAP 
messages

Output SOAP 
messages

HTTP, UDP HTTP, UDP 

<Network>

WSDL interface

Sensor node

Fig. 5. System architecture

The overall architecture is depicted in Figure 5. The mod-

ules responsible for power management, sampling the sensors

and aggregating the data are not affected by the service

interface; hence, legacy code can be reused. Instead of con-

necting the input and output of the sensor application to a

network API implementing proprietary, specialized protocols,

the data are passed to the gSOAP runtime using handlers. The

runtime serializes the output data to a SOAP message, and

then uses lwIP to send it over the network. The opposite is

true for input data: it is first parsed and then forwarded to

the sensor application. The interface describing the services

provided by and consumed by the nodes is available through

the use of standardized Web Service Description Language.

This allows for so-called top-down SOA development, where

the WSDL interfaces for the nodes are defined first - usually

using graphical tools2- and then are used to generate the

SOAP runtime. At the end the developer connects the provided

interface with the sensor application. This is the approach used

in the development of our testbed, described in the subsequent

subsections.

B. Mulle sensor platform

The Mulle sensor platform [33] used in our experimental

setup is equipped with a Renesas M16C/62 microcontroller

running at 10 MHz with 31kB RAM and 384 kB programming

memory. A Mitsumi Bluetooth radio transceiver, operating

2In our use case we used Eclipse WSDL Editor

at 57 kbits/s, was used in our testbed to enable mobility

through the use of a mobile phone as an access point. The

Mulle sensor platform is also available with an IEEE 802.15.4

radio transceiver, which also can be employed instead of the

Bluetooth one, provided that the lwIP stack is configured for

using it.

C. Proof of concept experiment

To test the applicability and performance of our solution,

several services were implemented. The first was a very

simple, light service with operations for switching a LED

on and off and for checking the status of the LED. Tests

were performed under different scenarios with the service

being hosted on a sensor node using our solution, on a

stationary PC or on both. To check compatibility, two different

implementations of the light service were used on the PC. The

first was C-based, using a gSOAP port for Linux. The other

was Java-based, using JAX-WS API running on a GlassFish

server. In both cases the interactions between the sensor node

and the PC proceeded without any compatibility problems.

For the second test, it was decided to replicate a real-world

scenario where, despite the overhead, the SOA implementation

would still be beneficial to use [34]. In such an application, the

system must lack any real-time properties. Also, it should be

possible to aggregate the sensor data before its dissemination

that should happen at long intervals. The source of inspiration

was a district heating project [35] aimed at increasing the

efficiency of energy distribution.

District heating scenario: In today’s district heating substa-

tions, different sensors and actuators are hard-wired together.

This limits the possibilities for system optimization as commu-

nication barriers limit the information interchange. With wire-

less sensor platforms integrated in such district heating devices

as a circulation-pump, heat meter and temperature sensors,

greater opportunities for system optimization are achieved as

information can be interchanged without limitations.

With a service-oriented architecture integrated in the end

nodes, there is no direct need for a central control unit, as the

sensor nodes are powerful enough to control the relatively

slow heating process. The slow process makes the use of

SOA over WSAN particularly suitable as there is no need

for frequent data transmission, which would decrease the

expected life-length of the sensor platforms. Thus, the nodes

are in sleep mode most of the time with short active intervals

for sensor sampling and data aggregation. The transceiver

is infrequently turned on only when the highly aggregated

data are sent directly to the enterprise systems responsible for

heating process management.

In our testbed, nodes were equipped with temperature and

humidity sensors, and the data sent to the server consisted of

multiple metrics, such as current sensor readings as well as

the average, minimum, maximum and standard deviation of

the temperature and humidity for a given period, as shown in

Figure 6. The intervals in which the sensor nodes communicate

the data were controlled by the management system. For the

implementation of the heating process management system we

chose the SOA Swordfish toolkit that supports deployment
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<hts:GetSummary>

  <Temp>

    <Current>19.3</Current>

    <Average>18.2</Average>

    <Min>17.4</Min>

    <Max>21.0</Max>

  </Temp>

  <Humidity>

    <Average>65</Average>

    <StdDeviation>5.0</StdDeviation>

  </Humidity>

</hts:GetSummary>

Fig. 6. Segment of the service request initiated by the Mulle sensor node.
It contains an aggregation of the sensor data for the period of interest

on a Java EE application server. Also implemented on the

server was a Java version of WS-Discovery, which was used

to advertise the heating service on the network.

The implementation started with modeling the desired in-

teractions between the sensors and the management system

using Web Service Description Language. The abstract WSDL

service definitions were then fed into Swordfish framework to

generate the serialization and parsing code. The same WSDL

interface was used by the gSOAP code generation tools. The

code produced was then combined with our modified gSOAP

runtime, lwIP and our network layer wrapper, which were

deployed on the Mulle sensor platform. To avoid manual

configuration of the server address for each sensor node, two

operations of the WS-Discovery were also implemented and

deployed on the sensor platform to dynamically locate the

heating service.

Mobility scenario: The heating management service was

also used as a testbed for a mobility scenario where a

sensor node is being carried by a person with a Bluetooth-

enabled mobile phone. This can be useful for assisting and

documenting manual inspections and diagnostics of industrial

equipment by technicians for example. The phone provides

access to a 3G network that enables connectivity of the sensor

node and the Java server on a TCP/IP layer. With this infras-

tructure setup, the sensor node seamlessly communicates the

aggregated sensor data to the enterprise application using web

services. However, an important requirement in this scenario

is the presence of a secured VPN connection between the

mobile phone/wireless HMI and the enterprise network as our

solution does not support the security mechanisms defined in

the DPWS specification and the connection is established from

outside the enterprise firewall.

D. Performance measurements

A gSOAP runtime with no network layer or deployed

services requires around 5.5 kB of RAM and 123 kB of

programmable memory. For each service (client or server)

added, an additional 13 kB of ROM is required, on average.

During service invocation 3 kB of RAM are allocated and

hence need to be available on the system. If only one service

is executed at a time, the overall RAM consumption is 8.5

kB independent of the number of services added. However,

allowing different service executions to be interleaved requires

an additional 3 kB of RAM for each service deployed. The

time needed to parse and serialize a particular request or

SOAP Messages
Parsing time

(ms)
Serialization

time (ms)

Heating service request
654 bytes

– 14.5

Heating service response
479 bytes

14.5 –

LED check status service request
386 bytes

24 7

LED check status service response
414 bytes

26 16

LED switch service request
415 bytes

25 7.5

TABLE I
TIME NEEDED BY THE MULLE SENSOR PLATFORM TO PROCESS SOAP

MESSAGES

response is highly dependent on its size, structure and the

number of namespaces used in the XML document. Table I

shows the processing time for messages used in the LED and

heating service examples.

To evaluate the latency overhead, we used the GetStatus

operation of the LED web service hosted on a PC running

Linux with a Bluetooth v1.2 dongle. A Mulle sensor node,

with LED service client implemented using our solution, was

also set up within transmission range. All communication were

performed using the Bluetooth Personal Area Networking

(PAN) profile where the PC was hosting the Network Access

Point (NAP) service and the Mulle acting as user (PAN-U).

The deployment of the LED service client on the Mulle node

allowed it to use sleep mode such that it periodically waked

up and sent GetStatus SOAP request, then waited for the

response, parsed it and went back to sleep mode. Having the

node as a LED server would increase the power consumption

substantially as it would require the Bluetooth module to be

powered on at all times. The current approach allows the

Bluetooth module to be duty-cycled.

The same interactions between the PC and the Mulle node

were implemented using a bare TCP approach with one-byte

payload. In such way the type of operation (GetStatus or

Switch) is encoded using a single bit and another bit is used to

indicate the status (on or off ) of the LED. Although it cannot

be applied in practice, the ad-hoc one-byte TCP implemen-

tation represents the shortest possible encoding of the LED

operations over TCP/IP thereby enabling the overhead of our

solution to be measured.

Figure 7 shows the completion time for our SOAP-based

solution (514 ms) compared to the bare TCP approach (129

ms). The measured time, averaged over 50 transmissions,

is given for the three phases of the service execution i.e.

TCP connection establishment, SOAP message transmission

and XML processing. The results show that the time to

parse and serialize SOAP messages by the Mulle sensor node

denotes just a small part of the latency related to web service

invocation - 33 ms for the GetStatus LED service or about 6.5

% of the total service execution time. The larger part is due to

the actual transmission. This observation proves that the use

of more compact representation of the service messages, even

compression and other techniques which affect the processing
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Fig. 7. Completion time in milliseconds for service execution

speed, will improve the real-time properties of the system.

Moreover, it takes almost four times longer to complete the

SOAP service compared to a one-byte TCP payload ad-hoc

representation of the LED service operations.

VI. FUTURE WORK

The work presented in this paper shows that even highly

resource-constrained networked sensor nodes can be integrated

within an IT infrastructure using standard SOA technology.

However, even efficient implementation poses significant per-

formance overhead, which makes the solution only suitable for

applications where the sensor data can be heavily aggregated

and transmitted over relatively long periods. One such exam-

ple from energy management domain was presented in the

paper, but other applications for home and factory automation

networks would also meet this criterion. The level of data ag-

gregation and the length of non-transmission intervals needed

depend on many parameters such as power consumption, sleep

schedule, real-time requirements, etc. Therefore, a precise

analysis showing their exact threshold that would make this

solution beneficial is an important topic for future work.

This analysis must take into account all parameters, and their

interdependence, that play a role in the applicability of the

SOAP-based web services. This analysis must also provide

a comparison with emerging standards for embedded web

services such as those described by Shelby in [36].

Applying the same SOA approach to full-scale sensor

networks, where most communications are multihop and the

nodes use IEEE 802.15.4 radio, is another area for future

exploration. In addition, different ways to lower the related

overhead should be investigated. The most important in this

respect is the use of binary encoding for the SOAP messages.

VII. CONCLUSION

Integration of high-end systems with deeply embedded

wireless sensor nodes is an important area of research that aims

to provide new possibilities for control and monitoring appli-

cations. The solution presented in this paper enables standard-

based and direct application-layer integration between web

service-enabled IT systems and resource-constrained sensor

nodes. Its main contribution is the efficiency of the provided

implementation, which combines light-weight TCP/IP stack

implementation and SOAP-based web service implementation.

In addition, we included performance measurements on the

impact of this method on latency. One important observation

was that the overhead related to SOAP message processing

is very small compared to message transmission. We also

showed an example application that can benefit from the SOA

approach, despite the related overhead.
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