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versions of SNAP-25 that mimic cleavage
by BoNT/A (residues 1 to 197) were recon-
stituted into vesicles (with 15% PS). As a
control, a truncated version of SNAP-25
that mimics cleavage by BoNT/E (corre-
sponding to residues 1 to 180), was tested
in parallel [this cleavage event results in a
more profound block of exocytosis (13)].
Fusion was abolished by the “BoNT/E”
truncation (Fig. 4B). In contrast, the
“BoNT/A” truncation supported a low level
of fusion that could be enhanced by in-
creasing [Ca2�]; the Ca2� response was
too impaired to determine the precise
[Ca2�]1/2, but this value is �360 �M (Fig.
4B). Thus, the reconstituted system recapit-
ulates the functional effect of BoNT/A and
E treatment on neurons (13, 19, 20).

Membrane-embedded syt has been re-
ported to stimulate membrane fusion in a
Ca2�-independent manner (21). We have
repeated these experiments and observed
the same phenomena. The lack of an effect
of Ca2� is surprising, because the ability of
syt to interact with its targets in the reduced
fusion assay is promoted by Ca2�. The
easiest explanation, however, is that the
bacterially expressed full-length syt is not
fully functional. Variants of a number of
isoforms of syt, including syt I, that lack a
transmembrane domain are expressed in
cells where they may also regulate mem-
brane traffic in vivo, supporting the idea
that studies with the cytoplasmic domain of
syt are physiologically relevant (22–24 ).

The data reported here indicate that a
complex of syt, membranes, and SNARE
proteins forms the core of the Ca2�-triggered
fusion apparatus. With this reconstitution ap-
proach, it should be possible to test additional
factors to construct a Ca2�-triggered mem-
brane fusion complex that operates on the
rapid (millisecond) time scale observed dur-
ing synaptic transmission.
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Integration of Word Meaning and
World Knowledge in Language

Comprehension
Peter Hagoort,1,2,3* Lea Hald,1 Marcel Bastiaansen,1

Karl Magnus Petersson1

Although the sentences that we hear or read have meaning, this does not
necessarily mean that they are also true. Relatively little is known about the
critical brain structures for, and the relative time course of, establishing the
meaning and truth of linguistic expressions. We present electroencephalogram
data that show the rapid parallel integration of both semantic and world
knowledge during the interpretation of a sentence. Data from functional mag-
netic resonance imaging revealed that the left inferior prefrontal cortex is
involved in the integration of both meaning and world knowledge. Finally,
oscillatory brain responses indicate that the brain keeps a record of what makes
a sentence hard to interpret.

Language is used, among other things, to
exchange information about the world. This
entails that, during online comprehension, the
meaning of a phrase or sentence is derived
and, in many cases, its truth is verified. For
this to be possible, usually information about
the words of a language and about the facts of
the world need to be retrieved from memory.

At least since Frege (1, 2), theories of
meaning have made a distinction between
the semantics of an expression and its truth
value in relation to our mental representa-
tion of the state of affairs in the world (3,
4 ). For instance, the sentence “the present
queen of England is divorced” has a coher-
ent semantic interpretation, but it contains a
proposition that is false in the light of our
knowledge in memory that she is married to
Prince Phillip. The situation is different for

the sentence “the favorite palace of the
present queen of England is divorced.” Un-
der default interpretation conditions, this
sentence has no coherent semantic interpre-
tation, because the predicate is-divorced
requires an animate argument. This sentence
mismatches with our representation of the
world in memory, because the descriptive
features of the purported state of affairs are
inherently in conflict. The difference between
these two sentences suggests the distinction
that can be made between facts of the world
and facts of the words of our language, in-
cluding their meaning. Although theories of
semantic memory usually do not make this
distinction (5), accounts of online language
processing often do, and they distinguish be-
tween the retrieval and usage of world knowl-
edge and of knowledge of word meaning.

Relative to the distinction between facts
of the world and facts of the words of one’s
language, some aspects of word meaning
might be characterized as linguistic in nature,
whereas other aspects relate to world knowl-
edge. In linguistic theory, the latter is referred
to as the domain of pragmatics, and the
former as the domain of semantics. Based on
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this distinction between semantics and prag-
matics (6–8), the semantic interpretation of a
sentence is thought to be separate from and to
precede the integration of pragmatic or world
knowledge information (9). However, a num-
ber of researchers (3, 10) have pointed out
that the distinction between linguistic mean-
ing and world knowledge is problematic be-
cause many words are polysemous, and their
meaning can only be fully established by
invoking world knowledge (11).

We decided to contribute to settling this
issue by providing neurophysiological evi-
dence on the integration of semantic and
world knowledge information. The underly-
ing idea is that if a principled distinction can
be made between linguistic meaning and
world knowledge, concomitant processing
differences should be obtained during the
interpretation of a sentence.

This study presents electroencephalogram
(EEG) and functional magnetic resonance
imaging (fMRI) data that speak to this issue.
While participants’ brain activity was record-
ed, they read three versions of sentences such
as “the Dutch trains are yellow/white/sour
and very crowded” (the critical words are in
italics). It is a well-known fact among Dutch
people that Dutch trains are yellow, and
therefore the first version of this sentence is
correctly understood as true. However, the
linguistic meaning of the alternative color
term white applies equally well to trains as
the predicate yellow. It is world knowledge
about trains in Holland that makes the second
version of this sentence false. This is different
for the third version. This version contains a
violation of semantic constraints. The core
meaning of sour is related to taste and food.
Under standard interpretation conditions, a
predicate requires an argument whose seman-
tic features match that of its predicate. For
our third sentence, this is clearly not the case,
because semantic features related to taste and
food do not apply to trains. One could thus
argue that for semantic internal reasons, the
third sentence is false or incoherent (3, 12). It
is our knowledge about the words of our
language and their linguistic meaning that
pose a problem for the interpretation of the
third version of this sentence.

The increased interpretation load of seman-
tic and world knowledge violations is assumed
to have an effect on electrophysiological brain
activity and on the hemodynamic response. If
semantic interpretation precedes verification
against world knowledge, the effects of the
semantic violations should be earlier and might
invoke other brain areas than the effects of the
world knowledge violations.

Based on EEG recordings from 29 elec-
trode sites (13, 14 ), event-related brain po-
tentials (ERPs) were computed and time-
locked to the onset of the critical words that
embodied the semantic violation, the world

knowledge violation, and their correct
counterpart. ERPs reflect the summation of
the postsynaptic potentials of a large en-
semble of synchronously active neurons.
They provide a sampling of the brain’s
electrical activity with a very high temporal
resolution. We focused on one particular
ERP effect, referred to as the N400. The
amplitude of this negative-going ERP be-
tween roughly 250 and 550 ms, with a
maximum at �400 ms, is influenced by the
processing of semantic information (15 ).
The easier the match between the lexical
semantics of a particular content word and
the semantic specification of the context,
the more reduced the N400 amplitude will
be. The N400 is known to be very sensitive
to semantic integration processes (16, 17 ).

As expected, the classic N400 effect was
obtained for the semantic violations. For the
world knowledge violations, we also ob-
served a clear N400 effect. Crucially, this
effect was identical in onset and peak latency
and was very similar in amplitude and topo-
graphic distribution to the semantic N400
effect (Fig. 1). This finding is strong empir-
ical evidence that lexical semantic know-
ledge and general world knowledge are both

integrated in the same time frame during
sentence interpretation, starting at �300 ms
after word onset.

In addition, we used the EEG data to inves-
tigate oscillatory brain activity in a wide fre-
quency range (1 to 70 Hz) in relation to the
semantic and world knowledge violations. Am-
plitude increases of EEG oscillations in specific
frequency bands, such as theta (4 to 7 Hz) and
gamma (�30 to 70 Hz), that are induced by a
cognitive event are thought to reflect the dy-
namic recruitment of the relevant neuronal net-
works engaged in cognitive processing (18). A
wavelet-based time-frequency representation
(TFR) of EEG power changes (Fig. 2) revealed
a clear gamma peak for the world knowledge
violation that was not seen for the semantic
violation (19). In contrast, relative to the other
conditions, the semantic violation resulted in an
increase in power in the theta frequency range.
Both effects are visible within the latency range
of the N400. Especially at lower frequencies
(e.g., at theta frequencies), the temporal resolu-
tion of the wavelet transform is relatively poor.
This implies that the relative onset difference
between theta and gamma activity cannot be taken
as a reliable indicator of onset differences in the
underlying neurophysiological events. In particu-

Fig. 1. Grand average (n � 30 subjects) ERPs for a representative electrode site (Cz) for the correct
condition (black line), world knowledge violation (blue dotted line), and semantic violation (red
dashed line). ERPs were time-locked to the presentation of the critical words (underlined). Semantic
violations resulted in a larger N400 amplitude between 300 and 550 ms than the control condition
[F(1,29) � 73.0, P � 0.0001]. N400 amplitudes to world knowledge violations were also larger than
for correct controls [F(1,29) � 27.4, P � 0.0001]. The size of the effect was slightly larger for
semantic violations than for world knowledge violations (P � 0.05). The onset of the effects for
semantic and world knowledge violations was not significantly different (14). Spline-interpolated
isovoltage maps display the topographic distributions of the mean differences from 300 to 550 ms
between semantic violation and control (left) and between world knowledge violation and control
(right). Topographic distributions of the N400 effect were not significantly different between
semantic and world knowledge violations (P � 0.9).
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lar, the latency of the gamma peak seems to be
later than the onset and the peak of the N400 ERP
response. This suggests that the oscillatory brain
responses reflect post-integration processes.

Gamma oscillations have been associated
with feature binding within and across mo-
dalities (20, 21). These oscillations are
suggested to play an important role in the
integration of activity in both local and dis-
tributed neural networks (18). It has been
suggested that activity in the theta band might
involve contributions from the hippocampal
complex with, presumably, additional corti-
cal contributions (22). Theta activity has been
observed in relation to both episodic and
working memory tasks (23). Although the
integration of word meaning and world
knowledge occurs rapidly and simultaneous-

ly, the different oscillatory responses for
semantic and world knowledge violations
indicate that the brain seems to keep a record
of the nature of the integration problem.

Finally, we ran an event-related fMRI ex-
periment using the same materials (24). The
fMRI data, time-locked to the onset of the
critical words, revealed an increase in activa-
tion in the left inferior prefrontal cortex
(LIPC), as compared to correct sentences,
that was common to both semantic and world
knowledge violations (Fig. 3). The activation
was observed in, or in the vicinity of, Brod-
mann’s areas (BAs) 45 and 47. This region
has previously been reported in connection to
semantic processing (25, 26). This region is
also known to contain one of the N400 gen-
erators, based on evidence from intracranial

electrical and magnetoencephalogram record-
ings (27, 28). Our study provides the first
evidence for a role of the LIPC in the inte-
gration of world knowledge that is represent-
ed in long-term memory, next to the integra-
tion of lexical semantic knowledge.

Both word meaning and world knowledge
are recruited and integrated very rapidly, within
some 400 ms, during online sentence compre-
hension. The LIPC seems to be critical both in
the computation of meaning and in the verifi-
cation of linguistic expressions. Although Frege
(1) made an important distinction between the
sense of a proposition and its reference, their
processing consequences appear to be immedi-
ate and parallel. Our results provide evidence
against a nonoverlapping two-step interpreta-
tion procedure in which first the meaning of a
sentence is determined, and only then is its
meaning verified in relation to our knowledge
of the world. This is compatible with findings of
the immediate influence of visual information (29)
and of the preceding discourse on the interpreta-
tion of phrases and sentences (30). Semantic in-
terpretation is not separate from its integration
with nonlinguistic elements of meaning.

In conclusion, while reading a sentence,
the brain retrieves and integrates word mean-
ings and world knowledge at the same time.
The LIPC is a crucial area for this integration
process. Moreover, it does not take longer to
discover that a sentence is untrue than to
detect that it is semantically anomalous.
However, the oscillatory brain responses sug-
gest that the brain keeps a record of what
makes a sentence hard to interpret, whether
this is word meaning or world knowledge.
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The apicomplexan Cryptosporidium parvum is an intestinal parasite that affects
healthy humans and animals, and causes an unrelenting infection in immuno-
compromised individuals such as AIDS patients. We report the complete ge-
nome sequence of C. parvum, type II isolate. Genome analysis identifies ex-
tremely streamlined metabolic pathways and a reliance on the host for nu-
trients. In contrast to Plasmodium and Toxoplasma, the parasite lacks an api-
coplast and its genome, and possesses a degeneratemitochondrion that has lost
its genome. Several novel classes of cell-surface and secreted proteins with a
potential role in host interactions and pathogenesis were also detected. Elu-
cidation of the core metabolism, including enzymes with high similarities to
bacterial and plant counterparts, opens new avenues for drug development.

Cryptosporidium parvum is a globally impor-
tant intracellular pathogen of humans and
animals. The duration of infection and patho-
genesis of cryptosporidiosis depends on host
immune status, ranging from a severe but
self-limiting diarrhea in immunocompetent
individuals to a life-threatening, prolonged

infection in immunocompromised patients. A
substantial degree of morbidity and mortality
is associated with infections in AIDS pa-
tients. Despite intensive efforts over the past
20 years, there is currently no effective ther-
apy for treating or preventing C. parvum
infection in humans.

Cryptosporidium belongs to the phylum
Apicomplexa, whose members share a com-
mon apical secretory apparatus mediating lo-
comotion and tissue or cellular invasion.
Many apicomplexans are of medical or vet-
erinary importance, including Plasmodium,
Babesia, Toxoplasma, Neosprora, Sarcocys-
tis, Cyclospora, and Eimeria. The life cycle of
C. parvum is similar to that of other cyst-
forming apicomplexans (e.g., Eimeria and Tox-
oplasma), resulting in the formation of oocysts

1Department of Veterinary and Biomedical Science,
College of Veterinary Medicine, 2Biomedical Genom-
ics Center, University of Minnesota, St. Paul, MN
55108, USA. 3Department of Microbiology and Immu-
nology, Weill Medical College and Program in Immu-
nology, Weill Graduate School of Medical Sciences of
Cornell University, New York, NY 10021, USA. 4De-
partment of Veterinary Pathobiology, College of Vet-
erinary Medicine, Texas A&M University, College Sta-
tion, TX 77843, USA. 5Division of Infectious Diseases,
Tufts University School of Veterinary Medicine, North
Grafton, MA 01536, USA. 6Center for the Study of
Biological Complexity and Department of Microbiol-
ogy and Immunology, Virginia Commonwealth Uni-
versity, Richmond, VA 23198, USA. 7MRC Laboratory
of Molecular Biology, Hills Road, Cambridge CB2
2QH, UK. 8National Center for Biotechnology Infor-
mation, National Library of Medicine, National Insti-
tutes of Health, Bethesda, MD 20894, USA. 9Depart-
ment of Microbiology, University of Minnesota, Min-
neapolis, MN 55455, USA.

*To whom correspondence should be addressed. E-
mail: abe@umn.edu
†These authors contributed equally to this work.
‡Present address: Bioinformatics Division, Genetic Re-
search, GlaxoSmithKline Pharmaceuticals, 5 Moore
Drive, Research Triangle Park, NC 27009, USA.

R E P O R T S

www.sciencemag.org SCIENCE VOL 304 16 APRIL 2004 441

 o
n 

D
ec

em
be

r 
3,

 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org

