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INTEGRA nON ON NONCOMPACT SUPERMANIFOLDS 

MITCHELL J. ROTHSTEIN 

ABSTRACT. We note that the Berezin integral, which is ill-defined for noncompact 
supermanifolds, is a distribution with support on the underlying manifold. This leads 
to the discovery of correction terms in the Berezinian transformation law and 
thereby eliminates the boundary ambiguities. 

1. Introduction. A perspective on the Berezin integral. A real (p, q)-dimensional 
COO supermanifold is a ringed space (M, d) such that 

(1.1) d is a sheaf of supercommutative algebras over R. 
(1.2) (M, dl %) is a p-dimensional Coo manifold, where % is the sheaf of 

nilpotents. We denote dl % by Coo. 
(1.3) For any point m EM, there is a neighborhood ~ of m such that dl'fl::::: 

Coo I 'fI ® A(Rq) as sheaves of supercommutative algebras. 
One may imagine that M sits inside some larger manifold and that d is the 

restriction of the structure sheaf of the larger manifold to M. The ideal in d 
defining M as a submanifold is generated by coordinates which anticommute. 

An integration theory in the category of supermanifolds should consist of the 
prescription of a suitable sheaf of d modules, which may be called volume forms, 
and a linear functional on its global sections. There is a first candidate for such a 
sheaf: the p-forms on M form a Coo module and therefore also an d module, since 
Coo = dl%. Since this ignores the anticommuting coordinates it is an uninteresting 
choice. But if one regards a p-form on M as a distribution on d supported on M, 
specifically one which annihilates the ideal defining M, then one is led to consider 
more general distributions, namely those of the form 

(1.4) 

where w is a p-form on M and L is a differential operator on d. In general, L will 
involve differentiation with respect to the anticommuting coordinates, so that for 
any section f E f(d), nilpotent or not, there will be some distribution of the form 
(1.4) for which 1M w . L[f] '* O. This suggests that a better candidate for the volume 
sheaf of d is ~.ft ®dF), the sheaf of linear differential operators on d whose 
values are p-forms on M. (F) stands for the sheaf of differential operators on d.) If 
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388 M. J. ROTHSTEIN 

M is oriented, a section w E f(QP ® £/)) defines a linear functional 

f(JIJ1) ~ R, < w,f) = 1M w[f], 

provided this converges. QP ® £/) is naturally a right §Lmodule, and < w, f) 
= < wf, I), so the natural definition for the integral on sections of QP ® £/) is 

f w = f w[l]. 
d M 

(1.5) 

The point that will be developed in this paper is that this is the Berezin integral. 
More precisely, there is a codimension-one subsheaf (QP ® £/))+c QP ® £/), to be 
defined in §2, such that if w is any global section of (QP ® £/))+ and f is any global 
section of JIJ1, then w[f] is an exact p-form. Therefore on compact supermanifolds 
without boundary the integral (1.5) is well defined on sections of QP ® 

£/)/(QP ® £/))+. This quotient turns out to be the sheaf of Berezin forms, known as 
!lie"', and (1.5) yields the Berezin integration formula. (For a brief introduction to 
Berezin integration see §§2, 3. A better introduction may be found in [3], and a 
beautiful elaboration of !lie'" is given in [4].) The sequence 

(1.6) 0 ~ (QP ® £/))+ ~ QP ® £/) ~!lId ~ 0 

does not split naturally, which is why noncompactly supported sections of !lie'" 
cannot be integrated. 

Though nilpotent sections of JIJ1 move across the ® sign as zero, QP ® £/) and 
(QP ® 2iJ) + are nevertheless free JIJ1 modules under right multiplication (Proposition 
2.1). By choosing a local splitting of (1.6) and studying the transformation law for 
QP ® 2iJ under change of coordinates, one may see which boundary terms to add in 
order to compensate for the ambiguity in the Berezin integral. The explicit formula 
for this transformation law is the main result of §3. 

One may also consider Q~ ® sO' £/) for k < p. Q. ® JIJ1 is naturally a complex 
(similar to one described in [4]), and a version of Stokes' theorem appears automati-
cally. This is described in §4. 

Other authors have addressed the problem of integration on supermanifolds from 
a different point of view. See [5, 6]. For general background regarding supermani-
folds, see [2, 3]. 

I wish to thank George Jennings and Robin Graham for their enthusiasm and 
many helpful conversations. 

2. The Fermi integral, the Berezin integral, and the Lie derivative. QP ® JIJ1 is a left 
and right JIJ1 module. The right action is the good one. 

PROPOSITION 2.1. QP ® £/) is a locally free JIJ1 module of infinite rank. 
T 

PROOF. Given an isomorphism JIJ1I '*' ~ CO" I '*' ® A (V), where dim V = q, and 
given coordinates x\ ... , xP for I5If and a basis 0\ ... , oq for V, the sections 
'T- 1(X 1 ), .•• , 'T- 1(x P ), 7"-1(01), ... , 'T-1(oq) are called a coordinate system for JIJ1I,*,. 
If X is a derivation of JIJ1 and f is a section of JIJ1, the differential df is defined by 
df(X) = (-l)IXllfIX[f]. The partial derivatives are defined by dOa(a/aO b ) = ISb, 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTEGRATION ON NONCOMPACT SUPERMANIFOLDS 389 

etc. Note that aoa/ao b = -St. A general section of QP ® ~1'fI may be written 

( ) 1 a a I 2.1 dx ... dx P ® - - 0 f ,I'-ax I aol'-
where 1= (il"'" ip) E (Z+)P and /L = (/Ll"'" /L q) E {a, IF. In what follows, the 
® and 0 will be omitted, with the understanding that a nilpotent function appearing 
to the left of the derivatives is 0, and that (a/axi)f means composition of operators. 
If it is intended that the operator L be applied to the function f, the notation L[f] 
will be used. Also dx l ... dx P will be abbreviated to dx, and a/ao q ••• a/ao l will 
be abbreviated to a/l' Now write F'I'- = f/'I'-(x)OP, where p is a multi-index of the 
same sort as /L. The sum in (2.1) is not free: Because the nilpotents annihilate dx, 
dx(a/aOI'-)OP = ° unless p < /L. But for the same reason, dxa/lOI'- = ±dx(a/aOl-I'-), 
where 1 - /L = (1 - /Ll"'" 1 - /Lq). Therefore the sections dx(a/axl)a/l span 
QP ® ~1'fI' and they are easily seen to be linearly independent. 0 

Given an arbitrary coordinate system (x, 0), define 

DAx,O) = (-I)llldx~a/l' ax 
By Proposition 2.1, the D1(x, O)'s form a local basis for QP ® ~. 

Define the Fermi integral, IF' to be the sheaf morphism 

iF 1. QP ® ~-+ QP, F W = w[I]. 
That is, 

(2.2) 

If M is oriented, the Berezin integral is the iterated integral 

~er w = 1M t W = 1M W [ 1]. 

If f I = ° for I > 0, this is the usual definition of the Berezin integral. If, in addition, 
p = 0, this is the integration over Grassmann variables introduced by Berezin in [1]. 

Given an open set tl/i, define (QP ® ~)+(tl/i) c QP ® ~(tl/i) by the condition that 
wE (QP ® ~)+(tl/i) if and only if for any section h E .s#(M) with supp(h) compact 
and contained in tl/i, 1M w[h] = 0. It is an easy exercise that tl/i -+ (QP ® ~)+(tl/i) is 
a complete presheaf. 

If (x, 0) is a coordinate system on tl/i and h is compactly supported inside tl/i, then 
1M dx(ah/ax l ) = ° whenever I> 0. From this follows 

PROPOSITION 2.2. Let (x,O) be a coordinate system. Take w E QP ® ~ and write 
w = D1(x,O)F. Then w E (QP ® ~)+ if and only iff a = 0. 0 

By Propositions 2.1 and 2.2, (QP ® ~)/(QP ® ~)+ is a locally free.s# module of 
rank 1, with local generator D(x, 0) = Do(x, 0) + (QP ® ~)+. 

PROPOSITION 2.3. Let w be a global section of (QP ® ~)+. Then IF w is exact. 

PROOF. IF w = w[I]. Choose a partition of unity 1 = LCP", where each cP" is a 
compactly supported section of .s# with support in a neighborhood tl/i" with 
coordinates (x"' 0,,). Then wcp" = D1(x", O,,)f! where f"o = ° and f! has compact 
support in tl/i ,,' It follows that for each a there is a (p - I)-form 1)" such that 
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390 M. J. ROTHSTEIN 

w[cp",] = dTJ", and SUPPTJ", C suppcp",. Then iF W = LW[cp",] = LdTJ",. This last sum is 
locally finite, so that iF W = d(LTJ",), as desired. 0 

COROLLARY 2.4. QP ® E&/(QP ® E&)+= !!i.e't, the sheaf of Berezin forms. 

PROOF. By Proposition 2.3, the Berezin integral as defined in this paper gives a 
well-defined linear functional on compactly supported sections of QP ® 
9/(QP ® 9)+. It is known that compactly supported sections of !!i.e't also admit a 
functional with the same local coordinate expression (2.2) [3]. The integral is 
nondegenerate in the sense that iBer W • h = ° for all compactly supported h if and 
only if W = 0. Thus (QP ® E&)/(QP ® E&)+ must transform as a Berezin form under 
change of coordinates. 0 

Since (QP ® 9)+ is a E&-submodule of (QP ® E&), one has 

COROLLARY 2.5. !!i.e't has a canonical right E&-module structure. 0 

REMARK. This E&-module structure is the Lie derivative defined m [3] and 
discussed further in [4]. 

3. The transformation properties of QP ® 9. It is clear from §2 that one cannot 
expect to integrate noncompactly supported Berezin forms. The classic example is 
the supermanifold COO(O, 1) ® A(R2 ), with even coordinate x and odd coordinates (P 
and (J2. Denote the coordinate Berezin form by D(x, (J). If y = x + (Jl(J2 and 
TJa = oa, then the superdeterminant, or Berezinian, of (}(x, (J)/(}(y, TJ) is 1.1 However 

f D(y,TJ)Y = t dy ~ ~~ 1 [y] = 0, 
o UTJ UTJ 

whereas 

f D(x, (J)(x + (Jl(J2) = 11 dx (}2[X ; (J:(J2] = l. 
o (}(J (}(J 

To correct the ambiguity in the Berezin integral, one must pass from !!i.e't to 
QP ® 9. That is, 

Do(y,TJ) = Ber( ~~~:;~ )Do(X,(J) + l~oDI(X,(J)CPI 
for some superfunctions cpl.2 The problem now is to describe this law. 

1 Let B be a supercommutative algebra. Glp,q(B) is defined to be the group of invertible matrices with 
coefficients in B having the form (~ ~), where a is p X P and has even entries, I) is q X q and has even 
entries, and /3 and y have odd entries. The Berezinian is the one-dimensional representation 

Ber( ~ ~) = Det(a - /31)-ly)/Detl). 

The Berezinian satisfies Berex = estrX, where str is the supertrace: str(~~) = tra - trl). 
2 The Jacobian a(y, T/)/a(x, fJ) satisfies 

( a(y,T/»)i dxJ +( a(y,T/»)i dfJ a = dyi and (a(y,T/»)h dxJ +( a(y,T/»)h dfJa = dT/h . 

a(x,fJ) J a(x,fJ) a a(x,fJ) J a(x,fJ) a 

Schematically, 

a(y,T/) = (ay/ax 
a(x,fJ) aT/lax 
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INTEGRATION ON NONCOMPACT SUPERMANIFOLDS 391 

Any coordinate system (x, () endows d with a Z-grading: An element lEd 
has degree 0 if alla()a = 0 for all a, and has degree n + 1 if alla()a has degree n 
for all a. 

Let Y be a derivation of d. Y will be called degree increasing if for all j, 
Y(..IV J) c ..IV J+ 1, where % is the nilpotent ideal. (It is sufficient that this hold for 
j = 0 and 1.) If Y is even and degree increasing, then e Y defines an automorphism 
of d. 

PROPOSITION 3.1. Let (x, () and (Y,1/) be two coordinate systems lor d. Then 
there exists a unique coordinate system (Yo, 1/1) and a unique even degree-increasing 
derivation Y such that 

(3.1) (Yo, 1/1) and (x, () endow identical Z-gradings to d, and 
(3.2)(Y, 1/) = e Y(Yo,1/1)· 

PROOF. Define Yo to be the Oth degree part of y with respect to the (x, () grading 
and define 1/1 to be the first degree part of 1/. Then (Yo' 1/1) is a coordinate system. 
The assignment Yo ~ y, 1/1 ~ 1/ generates an automorphism of d by Taylor 
expansion, since Yo - Y and 1/1 - 1/ are nilpotent. Call this automorphism T. Then 
1 - T is degree increasing and therefore nilpotent. Define Y = log T. The uniqueness 
follows easily (cf. [7]). 0 

Now write 

D1(y, 1/) = DAx, ())~f. 
Then (~f) is defined by the condition that for all I, 

(_l)IIldy a: la1j [J] = (_l)IJI dx a~J ao [~f/l. 

In case (Y,1/) and (x, () endow identical Z-gradings to d, this law reduces 
essentially to the usual transformation law for differential operators on M. We may 
assume d= Coo ® A(Rq) and that xl, ... , x P and yl, ... , yq are all sections of Coo. 
Then a1/ala()b E Coo for all a and b as well, so that 

ao = a1jDet( d1/b( a!a )). 

Therefore ~f is also Oth degree and defined by 

_a = (_l)III+IJII ax I_a Det(d b(_a ))~J. 
ayl ay axJ 1/ a()a I 

In particular 

which is a special case of the Berezinian transformation law. 
Much more interesting is the case in which (y, 1/) = e Y( x, (), where Y is a 

degree-increasing even derivation. Then 

(3.3) a a Y a -Y 
-I 1j = e -I aoe . 
ay ax 
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392 M. J. ROTHSTEIN 

Since e Y = 1 + (degree increasing), one has 

(3.4) 

The main result of this section is 

THEOREM 3.2. Write 

eY = qAJ_3_ + (_3_) 
3xJ 30 a 

where (3/30 a ) is in the left ideal generated by 3/301, ... , 3/30 q• Then 

D1 (Y,11) = Dl+Ax,O) Ber( ~~~:;~ )gJ. 

PROOF. For t E R, let (Yt, 11t) = etY(x, 0). Let Bt = Ber(3(x, 0)/3(yl' 11J). Let 
etY = g{(3/3x J) + (3/30 a ). The claim is that for all f and t, 

( _1)111_3_3 [f] I = (_1)111+IJI_3_3 [.l J'j]j . 
3 1 1), M 3 I+J 0 B gt Yt X / M 

3/3y/ and 3/3x l agree on M and may be discarded. Also f may be replaced by 
BJ. So the claim is that for all f and t 

(3.5) 

Let a/ = 30e- tYB/. By (3.4), the left-hand side of (3.5) is a/[f]IM' 

LEMMA 3.3. Let 

Then dat/dt = -aIL. 

PROOF. 

It must be shown that 

(d) ( 3;V 3ya ) dt - Y [Bt] = - Bt 3xi - 30a . 

It is convenient to change notation and write 

( 1 p 01 oq) _ ( 1 p+q) x , ... ,x, , ... , - x , ... ,X 

(resp. y) and ya = "A P+ a. So now Y = "Ai(3/3x i), summing from 1 to p + q. The 
Berezinian is multiplicative, and its derivative at the identity is the supertrace (see 
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footnote 1). Therefore 

(:r - Y) [ BI ] = (:r - Y) [Ber( ;;J] 
= B str( aYI .(!!.. _ Y)[~]). 

I ax ~ a~ 

Furthermore 

So 

(d) [ ax ] i i ( a ) - - Y - = - dY [x] -. . 
dt aYI . ay} 

} I 

This gives 

(:r - Y)[BI] = -Blstr( (~~): dY[x i ]( a:; )) 
= - BI ( ( - 1) Ixk I dy/ ( a: i ) dY [ Xi] ( a :/ ) ) . 

Switch the two factors and remember the sign changes: 

= - BI (( -1) Ix'i dY[Xi] ( a:/ ) dy/L:i ) ) 

= -BI((-l)IX'ldY[X i ](a: i ))' 

Since 

axi = (_l)IX'IIXfldxi(~) = (_l)IX'IIXfISi, ax) ax} } 
Y[Xi] = (-l)lx'IN, so 

(!!.. - Y)[B] = -B . dN(~) = (_l)IX'I B aN 
dt I I ax' I ax' ' 

which is what was claimed. 0 
Now let 

( ) IJI a J 
PI = -1 an axJgI ' 

The proof of Theorem 3.2 will be complete once it is shown that dpr!dt = - plL. 
Observe that if t is compactly supported, then 

f at f at Do(x, 0) axi = Do(x, 0) aoa = o. 
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394 M. 1. ROTHSTEIN 

Thus 

! DO(x, O)ao[h]j = (_1)(lhl+1)q! Do(x, O)haof 

if hf is compactly supported. Then 

! Do(x,O)pt[h]j= ! Do(x,O)(-1)IJla~Jao[g{h]f 
= ! Do(x,O)ao[g{h] ~f ax 

= (_1)(lhl+1)q! Do(x,O)hg{ a~Jaof 

= (_1)(lhl+1)q! Do(x,O)hetYaof. 

Therefore 

;! Do(x, O)pt[h]j = (_1)<lhl+ 1)q! Do(x, O)hYetYaof 

That is, 

= (_1)(lh l+1)q! Do(x,O)h( Ai a: i + ya a:a )etyall f 

= (_1)<lh l+ 1)q! Do(x, 0)( - a~:~i) _ (_l)(l+ lhl) a(a~Yaa) ) etYaof 

= (_1)(lhl+1)q! D ( 0)(- aCNh) + a(yah )) tYa f o x, . aoa e 0 ax' 

= - ! Do(x,O)ptL[h]j. 

for all compactly supported f. So dptldt = -ptL, which completes the proof of 
Theorem 3.2. 0 

To illustrate, return to the example 

! Do(y,1))(Jo(Y) + 1)11)2f1(Y))' 

with Y ranging over (0, 1). Set Y = x + 010 2g( x) and 1)a = 0 a. Then 

a(y,1)) _ (1 + 0102g'(X) 02g -Olg ) 
a(x 0) - 0 1 O· 

, 0 0 1 

So 
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Also (Y, 1J) = eY(x, ()), where Y = ()1()2g(x)a/ax. Then 
Do(Y,1J) = Do(x,())(l + ()1()2g'(X)) 

+D1(x,())(1 + ()1()2g '{X))(()1()2g (X)) 

= Do(x,())(l + ()1()2g'(x)) + D1(X,())()1()2g(x). 

Then 

while 

395 

f [Do(x,())(l + ()1()2g') + D1(x, ())()1()2g][fo(x + ()1()2g) + ()1()2f1(X + ()1()2g )] 

= f [Do( x, ())( 1 + ()1()2g') + D1 (x, ()) ()1() 2g] [fo + f~g()1()2 + f1()1() 2 ] 

= f Do(x, ())()1()2(Jog' + f~g + f1) + D1(x, ())()1()2gfo 

= f Do(x, ())()1()2( g'(x )fo(X) + f~(x )g(x) + f1(X) - ~ (g(x )fo(x))) 

= f dxf1(X), 

as desired. 

4, Stokes' theorem, OP ® !» belongs to the complex (O:W ®"",!», d'), where d' is 
defined in such a way that it is right .1# linear and IF is a chain map: d'w[f] = 
d(w[fJ). 

PROPOSITION 4.l. The cohomology sheaf of (0' ® !», d') is 

£k(O'®!», d') = {O, k ~ p, 
!!Je't, k = p. 

PROOF. This is essentially given in [4] at the end of §1.4. There 0 is replaced by 
the sheaf of differential forms on the supermanifold rather than on the manifold. In 
the present context, £P(O'®!», d') = !!Je't is almost immediate, since !!Je't is 
explicitly O'® !»/(O'® !»)+. One then proves directly that £P-\O'® !»,d') = 0, 
and the rest follows by induction on p. 0 

<l> 
Let (M,.1#) -+ (N,!!J) be a morphism of supermanifolds. «Il consists of an 

underlying map M! N and a sheaf morphism ip -1!!J !.1#. Given m E M and 
w E O~ ® ~6BIq,(m) and f E .1#lm' the pullback «Il*wl m is defined by «Il*w[f] = 
ip*(w[gJ), where cp(g) = f. Thus «Il*w is defined only if kercp C;;; ker(ip* 0 w), and 
even then it is defined only as an operator on the range of cpo 

To define supermanifold with boundary, two modifications of the definition of , 
supermanifold are needed. First, M now has a boundary aM ~ M. Second, there is 

, 
a supermanifold a.1# over aM and a morphism .1#laM -+ a.1#. 
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396 M. J. ROTHSTEIN 

Stokes' theorem follows immediately from the usual Stokes' theorem. Indeed 

1 d'w = f d( w[l]) = 1 w[l] 
(M,.!¥') M aM 

= 1 L*w[l] = 1 L*W. 
aM (aM, a.!¥') 

Note that no reference is made to the odd dimension of ad. The choice 
dimad= (p - 1, q) is not forced, but Stokes' theorem offers two arguments in , 
favor of such a choice. First, if the map dl aM --+ ad is surjective, then the pullback, 
L*W, when it is defined, will be defined on all of ad. Without this, the results of the 
previous sections are unavailable. This forces the odd dimension of ad to be at 
most q. Then q itself is preferred so that ken will be as small as possible. 
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