systems with discontinuities for Integration routines

J. L. Hay, R. E. Crosbie, and R. I. Chaplin

Department of Electrical Engineering, University of Salford, Salford M5 4WT

complicated when a discontinuity causes the equations to change. This paper discusses the problems introduced by discontinuities and describes subroutines which may be used in conjunction with a general purpose integration routine to aid the modelling of discontinuous systems. The digital computer analysis of dynamic systems, described by differential equations, is often (Received May 1973)

1. Introduction

The dynamic analysis of electrical networks, control systems and other dynamic systems by digital computer is often complicated by the presence of discontinuities. Such systems are usually described by a set of differential equations which change when a discontinuity occurs. These problems are best tackled using specially designed integration routines. This paper discusses the problems of dealing with discontinuities and describes subroutines used in conjunction with a general-purpose integration routine which aid the modelling of discontinuous systems.

2. Location of discontinuities

Most integration routines require the system equations in the form of a first-order set:

$$\frac{dy_i}{dt} = f_i(t, y_1, y_2, \dots, y_n) \ i = 1, 2, \dots, n \tag{1}$$

In a discontinuous system the f_i in (1) change according to the state of the system. Therefore to generalise (1) to permit m different states S_1, S_2, \ldots, S_m

$$\frac{dy_i}{dt} = f_{ij}(t, y_1, y_2, \ldots, y_n) \ i = 1, 2, \ldots, n$$

 $j=1,2,\ldots,m$

where the state, S, of the system is determined by a set of discontinuity functions $\phi_k(t, y_1, y_2, \dots, y_n)$ which are defined such that a discontinuity occurs when one of the conditions $\phi_k = 0$ is satisfied.

 $\phi_k = 0$ is satisfied. The computer program must check the values of ϕ_k repeatedly to determine the state of the system so that the appropriate set of equations from (2) can be substituted. Whatever integration method is used, the values of y_i and ϕ_k will be available only at certain discrete values of t because of the step-by-step nature of digital integration. Therefore, a change of state is detected by noting a change of sign in the value of a discontinuity function and the precise instant at which the discontinuity occurred will not be known.

Subsequent action may take several forms. The simplest approach is to assume that a discontinuity has occurred at the end of the step in which it was detected, equations (2) being changed for the start of the next step. This method introduces a timing error which may seriously affect subsequent results, particularly if more than one discontinuity occurs within a single step. An excessively short step-length may therefore be necessary to locate discontinuities sufficiently precisely.

A second method requires an integration routine which varies

A second method requires an integration routine which varies the step-length according to an estimate of the local truncation error. The discontinuity functions are checked after each derivative evaluation rather than after each complete integration step, so that if necessary the derivative equations are changed part way through a step. Changing equations in midstep produces an artificially large error estimate causing the

step to be subdivided until the control mechanism selects a much reduced step-length until the discontinuity has been negotiated.

A third method, like the first, requires that the discontinuity functions are evaluated only at the end of each step. If, however, a discontinuity is detected, additional calculations are performed to locate it accurately. The last step is then repeated with a shortened step-length so as to end at the discontinuity and the integration continues with the new equations. The routines, described below, use a sequence of linear interpolations between ends of successive steps to locate the discontinuity to a prescribed accuracy. The method employed detects the discontinuity to a specified accuracy, and provides facilities to process any discontinuity which is simply specified by a discontinuity function alone. O'Regan (1970) gives an interesting alternative to linear interpolation which uses a third-order interpolation to pinpoint the discontinuity, without discontinuity detection may be questioned and this technique requires the user to provide more information than the simple step. However, the accuracy repeating the integration discontinuity functions.

A completely different approach is to change the variable $\frac{\partial}{\partial t}$ integration (Fox, 1962) from time to the appropriate ϕ_k . This method has been found rather unwieldy, when applied systems with multiple discontinuities and is not well suited $\frac{\partial}{\partial t}$ general-purpose routines.

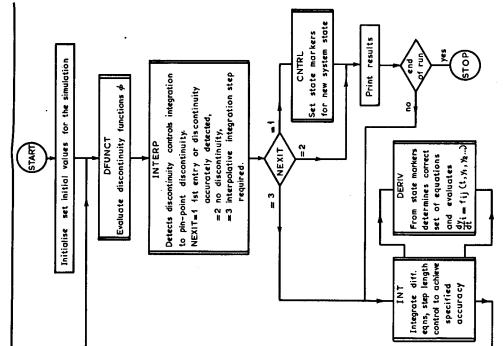
3. Error control of step-length

Error-controlled variation of step-length is a useful feature of some integration routines which is incorporated in the method described in the following section. Organisational problems arise in combining step-length control features and discontinuity location, however, automatic step-length control permits improved computational efficiency. Step-length control is particularly important when solving equations of a discontinuous system because the discontinuity detection procedure demands additional integration steps to be performed. The so-called pseudo-iterative procedures (Sarafyan, 1966) have been found most satisfactory for error estimation. This group of procedures supplies two solutions in each step, of order n and n-1. The difference between these two solutions, which approximates to the nth term in the corresponding Taylor series expansion, is used as an upper bound to the local error (Sarafyan, 1966; Schiesser, 1970; England, 1969; Chai, 1970; Merson, 1957; Crosbie and Hay, 1971).

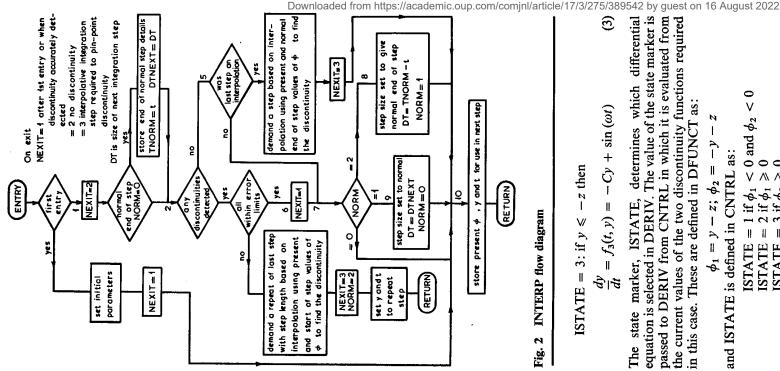
4. The integration routine and discontinuity detection process

INT is a general purpose integration routine which may employ any mathematical integration formulae. However, in general a high order method with automatic step-length control is recommended. Sarafyan (1966) and England (1969) each describe a suitable fifth order integration process which has an embedded fourth order solution. The difference between the

an indication of the local truncation error and may be used to control the integration order solutions is and fourth step-length.


INTERP which intercepts the flow of results from INT to the are introduced by a subroutine 1. If a discontinuity function has changed sign during the last integration step INTERP forces INT to recompute the last step with a reduced step-length to give a first approximation to the point of discontinuity and this interpolative procedure is repeated until the discontinuity is located to a specified accuracy. CNTRL may then be entered to register the change in the system state. However, if no discontinuity has occurred during the last step INTERP arranges for control to pass to the printout instructions and the sub-routine CNTRL is by-passed. INTERP, like the integration subroutine, is a general purpose mathematical subroutine and is not dependent on the system being simulated. Whereas the user provided subroutine DERIV, INTERP obtains values of the discontinuity functions from the user provided routine integration subroutine obtains information of the differential the three user provided subroutines is shown by Fig. 1, and a simplified flow diagram of INTERP is presented in Fig. 2. equations representing the current state of the system from the DFUNCT. The relationship between the two mathematical and Consider as an example a system which has three states: discontinuity facilities instructions, Fig. printout

= 1: if |y| < z then State ISTATE


$$\frac{dy}{dt} = f_1(t, y) = -Ay + \sin(\omega t)$$

2: if $y \ge z$ then ISTATE

$$\frac{dy}{dt} = f_2(t, y) = -By + \sin(\omega t)$$

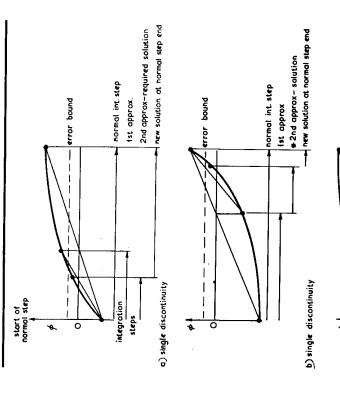
General flow diagram for complete program Fig. 1

INTERP flow diagram Fig. 2

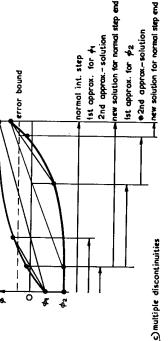
ISTATE = 3: if
$$y \leqslant -z$$
 then
$$\frac{dy}{dt} = f_3(t, y) = -Cy + \sin(\omega t)$$

ල

The state marker, ISTATE, determines which differential equation is selected in DERIV. The value of the state marker is passed to DERIV from CNTRL in which it is evaluated from the current values of the two discontinuity functions required in this case. These are defined in DFUNCT as:


$$\phi_1 = y - z; \ \phi_2 = -y -$$
 and ISTATE is defined in CNTRL as:

ISTATE = 1 if
$$\phi_1 < 0$$
 and ϕ_2
ISTATE = 2 if $\phi_1 \ge 0$
ISTATE = 3 if $\phi_2 \ge 0$


0

٧

cycle is repeated employing an interpolation based on values of the discontinuity function at t equal to T and T + ah or T + ah and T + bh. These operations are repeated until the The system equations are integrated using the standard integration method provided in subroutine INT until a discontinuity is detected. Let the step in which this occurs range ö changed sign. The latter ensures that at the point detected as the from t = T to t = T + h. INTERP now interpolates linearly to obtain a first approximation to the point of discontinuity < 1). An integration step is now taken from T + ah and T + h, in either case an interpolation/integration small and has which T to T + ah and the discontinuity functions are again checked. Either the discontinuity is found between T and T + ahdiscontinuity, the discontinuity function has a sign discontinuity function becomes sufficiently = T + ah(0 < a)

ပ

Ö *Forward interpolations aim for error bound and not ϕ Integration steps when negotiating discontinuities Fig. 3

corresponds to the new state of the system. Fig. 3 indicates the steps which may be necessary, and Fig. 3(c) the steps undertaken when two discontinuities occur within a single step.

system described in the previous section is presented in Fig. 4. The program conforms to the flow diagram of Fig. 1, and the definition of program variables is presented in the following The FORTRAN program which simulates the discontinuous Program detail table.

List of principal program variables associated with: 1. Differential equations

number of differential equations.

independent variable time

of the dependent values of Y at the start of the last integration step. of the current values variables. YLAST

array for the current values of $dX/d\tilde{T}$. parameters of the equations defined in (3). A, B, C, W Σ

Discontinuity functions

NDF

number of discontinuity functions. array of the current values of the discontinuity functions 6

values of DF at the start of the last integration DFLAST

array of error bounds to which the corresponding ERROR

discontinuities must be detected. parameter defining DF defined in (3).

MSIGNS DEFECTOR. TO THE PENGLY OF ALL STATES AND AL DIMENSION Y(1), DY(1), ERBOR(2), DF(2), DFLAST(2), YLAST(1), WORK(11) COMMON ISTATE, A, B,C, W EXTERNAL DELLY WHITE(6,10) DIFF. EQN. DATA MAIN PROGRAM LODP L DEUNCTOD: Y. T. Z. Z. LINTEW-VEXIT, T. DT. Y. YLAST. EHHOH, DF. DFLAST. NDF.N. IFIAST) CASTALOF. ISTATE) TEC6. JOS JETATE) FDAMATCIHI, 6X, 4HTIME, 3X, 7HWTCDEG), 9X, 1HY, 4X, 6HSIN WT//)
FDAMATCIFIO.4)
FDAMATCIFIO.4, FIO.1, 8PIO.4)
FDAMATCICH SYSTEM STATE = JII) DISCONTINUITY FUNCTION DATA (S,11)(EMDACI), I=1,NDF), Z HUN CONTHOL DATA (S,11)DIMAX, EPS, TF TMAX SUBROUTINE DFUNCT(DF,Y,1,2)
DPRENSION DF(2),Y(1)
DF(1),Y(1),Z
RETUAN
END SUBROUTINE CNTRL(DF, ISTATE)
DIMENSION DF(1)
1STATE=1
FFOFF(1)-GE-0.0)1STATE=2
FFOFF(2)-GE-0.0)1STATE=3
FFURN DIFF. EQN. DATA READ(5,11)A,B,C,W,Y(1),T N=1 SUBMICUTINE DEHIVOY, DY, T)
DIMENSION Y(1), DY(1)
COMMON ISTATE, A, B, C, W
GOTU(1, 2, 3), ISTATE J(W*T) T*180.0/3.1415927 T(6,12)T,WT,Y(1),X D=C DY(1)==D*Y(1)+SIN(W*T) RETURN END 1.0 0.5 0.0001 0.0001 3.1415927 0.001 TO 4 D=B 60 TO 4 115 ಶ **–** 00 € 4 ပ

Program-Fig. 4a

3. Integration procedure

DTMAX D EPS

WORK

4. Interpolation procedure

IFIRST NEXIT

= 2 no discontinuity detected,

ಡ an integration step is required to locate discontinuity. =3

and it is the authors' intention that a suitable standard sub-routine will be incorporated from the library available at the The program listing does not contain an integration subroutine, user's computer installation. Any integration process may be used with this program, however, preference should be given to subroutines which comply with the specification presented in the last two sections.

The program running efficiency could be slightly improved by making greater use of FORTRAN COMMON facilities to reduce the time required to communicate arguments during the subroutine calling process. However, this speed improvement is offset by the inconvenience of having a long compulsory list of COMMON variables.

	SUBHOUTINE INTERP(NEXIT, T, DL, Y, YLAST, ERROK, DP, DFLAST,NDF,N, IFIRST) DIMENSION Y(N), YLAST(N), ERROH(NDF), DF(NDF), DFLAST(NDF)	E II	WTCDEGO	*	SIN KT	
	NDIS=0 IF(IFIRST.NE.0)6070 1	SYSTEM STATE				
	IFIRST#1	0.7854	45.0	0.0000	0.7071 0.9239	
	NORM=0	SYSTEM STATE	, , ,			
	IKEM=0 GDTD 10	1.9635	112.5	0.5000	1.0000 0.9239	
-	NEXIT=2	2.3562	135.0	0.9161	0.7071	
	IF(NDKM.NE.0)5010 10 IF(NDKM.NE.0)5010 2	3.1416	180.0	0.8456	0000.0	
	TNOKK T	3.5343 SYSTEM STATE		0.6235	-0.3827	
Q	DIVERSUR T-TLAST	3.7015		0.4999	-0.5311	
	DINEAH*DIFREU NEAR*O	4.3197	247.5	-0.0864	-0.9239	
	NOTACC=0	SYSTEM STATE	11	0005-0-	-0.9746	
	U=DFLAST(I)	5.1051		-0.6398	-0.5299	
	V=DF(!) IF(CU-GE-0-0-AND-V-GE-0-0)-DH-(U-LT-0-0-AND-V-LT-0-0))GQTO 3	5.4978	337.5	-1.0424	-0.7871 -0.3827	
	ERR=ERROR(I) TF(ABCU), GI-ERRINOTACC=1	6.2832		-1.0359	0.0000	
	TEMPEDIPREVAU/(U-V)	7.0686		-0.6075	0 - 70 71	
	NDIS=NDIS+1 IF(TEMP-GE-DINEAR)GOTO 3	SYSTEM STATE 7.1936	n	-0.5000	0.7897	
	DINGAR TEMP NEARS	7.8540	450.0	0.1962	1.0000 0.9239	
က	CONTINUE	SYSTEM STATE				
	IF(NDIS-EM-U)GUIU 5 IF(NDIACC-EM-0)GDIU 6	8.3693		0.6369	0.8701	
	٠	9.0321	517.5	0.7183	-0.0000	
	EAR	SYSTEM STATE)OW	Oov
	DF(NEAR)	9.8175	562.5	0.4563	/nld	/nlo
	TEND=T T=TLAST	10.6029	607.5	-0.1860	-1-0000	oac
.,	N°1	SYSTEM STATE	200		ded	ded
4		11.1043	652.5	-0.5000	-0.9941 -0.9239	fro
w	1.E4.0)60TO 7	11.7810	675.0	-0.9946	-0.7071 -0.3897	om
		12.5664	720.0	-1.1142	htt	htt
	V=1.0/(U-DFEND) DT=TEND-T				ps:/	ps:/
		Fig. 5 Resu	Its from	program	of fig. 4	//ac
v		0))	ca <u>d</u> e
r- 80	-1)10,9,8 M-T	The printe	out resu	Iting fro	om running the program for the	emoio
		specified da	ta is sho	wn in F	ig. 5.	c.ot
٥	EXI				ıp.c	ıp.o
01:	NUANGO DO 11 1=1,NDF	6. Conclusion	Suc		6. Conclusions	com
: :		The softwa	re has	peen sac	ccessfully tested on a number of	√co
ɑ		problems w	ith vario	us types	of discontinuity including multiple	mi
		discontinuit	ies occu	ırring wi	thin one integration step. Work is	nl/a
Hio		proceeding	on the	improve	proceeding on the improvement of interpolation techniques	ndic
1		and a library of standard subroutines of discontinuity is under development.	ry of sta	ındard su ınder de	ubroutines defining common types	മ/17
			er fam	an Taniir		/3/2
Re	References				275/3	275/3
(The state of the s		1/21 15	00		389
J Ć	CHAI, A. S. (1970). Comment on the Runge-Kutta-Merson algorithm', Simulation, Vol. 13, pp. 69-91, Aug. 1970. CROSHE, R. E., and HAY. J. L. (1971). "Variable step-length integration routines", Simulation, Vol. 17, pp. 206-212, Nov. 1971	m', Simulation ion routines',	, vol. 13 Simulatic	, pp. 89-5 22, Vol. 1	7, pp. 206-212, Nov. 1971.	542
EN	timates f	s to systems of	ordinary	/ different	tial equations', The Computer Journal	by c
1	Vol. 12, pp. 166-170, May 1969.	:	·		, , , , , , , , , , , , , , , , , , ,	gue
S.	Fox, L. (1962). Numerical Solution of ordinary and partial differential equations, Pergamon Press, London, 1962. **Language D. H. (1967). 'An anamican mathod for the circle of integration processes.' Proc. Communium on Data Processing Weathons	l equations, Per	rgamon I	Fress, Lo	ndon, 1962. posium on Data Processing Weanons	st ¢
MI	Research Establishment Salishury S Australia 1957	iegianon proe	, cocco			n 1
Ó	O'REGAN, P. G. (1970). 'Step size adjustment at discontinuities for fourth order Runge-Kutta methods', The Computer Journal, Vol. 13	fourth order R	tunge-Kı	utta meth	ods', The Computer Journal, Vol. 13	6.A
	pp. 401-404, Nov. 1970.	,		,		ugu
SA	AAFYAN, D. (1966). Error estimation for Runge-Kutta methods thre	ough pseudo-ite	rative fo	rmulas, T	fech. Report No. 14, Louisiana State	pot2
	University, New Orleans, 1966.				20	20

SARAFYAN, D. (1966). Error estimation for Runge-Kutta methods through pseudo-iterative formulas, University, New Orleans, 1966.
 SCHIESSER, W. E. (1970). 'Technical Comment', Simulation, Vol. 14, pp. 94, Feb. 1970.