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ABSTRACT 

Despite rapid progress in characterizing the role of host genetics in SARS-Cov-2 infection, there 

is limited understanding of genes and pathways that contribute to COVID-19. Here, we integrated 

a genome-wide association study of COVID-19 hospitalization (7,885 cases and 961,804 controls 

from COVID-19 Host Genetics Initiative) with mRNA expression, splicing, and protein levels 5 

(n=18,502). We identified 27 genes related to inflammation and coagulation pathways whose 

genetically predicted expression was associated with COVID-19 hospitalization. We functionally 

characterized the 27 genes using phenome- and laboratory-wide association scans in Vanderbilt 

Biobank (BioVU; n=85,460) and identified coagulation-related clinical symptoms, immunologic, 

and blood-cell-related biomarkers. We replicated these findings across trans-ethnic studies and 10 

observed consistent effects in individuals of diverse ancestral backgrounds in BioVU, pan-UK 

Biobank, and Biobank Japan. Our study highlights putative causal genes impacting COVID-19 

severity and symptomology through the host inflammatory response. 

SINGLE-SENTENCE SUMMARY 

Large-scale genomic studies identify genes in the inflammation and coagulation pathways 15 

contributing to risk and symptomology of COVID-19 disease. 
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Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), was first reported in December 2019 and rapidly progressed into a 

global pandemic (1). Approximately 10-20% of patients known to be infected with the respiratory 

virus SARS-CoV-2 need hospitalization (2), and among them, a fraction face significant morbidity 

and mortality (3). The host’s genetic background is likely to contribute in explaining such diverse 5 

clinical outcomes. While previous efforts have demonstrated the role of ACE2 and TMPRSS2 in 

host defense against COVID-19 (4), there remains limited understanding for the role of host 

genetics contributing to severe COVID-19 outcome variability.  

 

Here we integrated mRNA expression, splicing, and protein abundance data (n=18,502) with 10 

GWAS of COVID-19 related hospitalization (n=7,885 cases, 961,804 controls; Freeze 4 COVID-

19 HGI excluding 23andMe participants (5–9) ) to map genes and pathways involved in COVID-

19 severity. We performed mRNA/splicing/protein transcriptome-wide association studies 

(TWAS/spTWAS/PWAS) to identify 27 genes across 13 genomic regions whose genetically 

predicted activity is associated with COVID-19 related hospitalization. We investigated the 15 

functional role of these 27 genes using phenome-wide (PheWAS) and laboratory-wide (LabWAS) 

association scans to map their role in immunity and blood biomarkers in European and African 

ancestry patients from the Vanderbilt University Medical Center biobank (BioVU; n=85,460). We 

replicated phenotypes identified from BioVU in secondary cohorts of multi-ethnic individuals 

from the Pan-UK Biobank (980 Admixed American, 6,636 African, 8,876 Central/South Asian, 20 

2,709 East Asian, 420,531 European, and 1,599 Middle Eastern) and Biobank Japan (up to 212,453 

Japanese participants). Taken together, our results suggest multiple molecular mechanisms 

contributing to severe COVID-19 outcomes and highlight potential therapeutic targets. 
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RESULTS 

TWAS identifies genes for COVID-19 related hospitalization 

Figure 1: Significant genes. The integrative analyses identified 27 genes (labeled) across 13 regions 
(color coded) shown in the ideogram.  
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To identify genes underlying COVID-19 related hospitalization, we tested the predicted expression 

of 22,207 genes across 49 tissues for association with COVID-19 related hospitalization (see 

Methods). We identified 123 associations representing 21 genes across 45 tissues at 8 independent 

genomic regions (p-value < 2.3E-6; Fig. 1, 2; Tables S1-S3). Next, to improve statistical power, 

we tested for association between predicted gene expression levels from multiple tissues 5 
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simultaneously with COVID-19 related hospitalization GWAS. Of the 22,207 tested genes, we 

identified 14 genes across 10 genomic regions, which consisted of 2 additional genes – XCR1 and 

DNAH3 (p-value < 1.4E-06; Fig. S1.; Table S4.). Overall, we found 23 TWAS-based gene 

associations across 10 genomic regions. 

Figure 2: TWAS: The top panel is a Manhattan plot of genes associated via multiple-tissue 
TWAS. Each data point represents a gene grouped by chromosome (x-axis) and lowest p-
value (y-axis) of the gene across significant tissues. The significant genes are shown as pink 
triangles, wherein triangles facing up and down represent positive and negative z-scores, 
respectively. The bottom panel show distribution of z-scores across significant gene-tissue 
pairs. The genes are grouped based on chromosome (y-axis) and respective tissues (x-axis). 
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To find additional support for genetic regulation of identified susceptibility genes by SNPs at risk 

regions, we tested the 123 gene/tissue pairs identified in single-tissue scans for allelic imbalance 

within 1Mb GWAS regions (see Methods). We identified 9 genes (ABO, CCR2, CXCR6, FYCO1, 

IFNAR2, IL10RB, LZTFL1, OAS1, OAS3) with evidence of allelic imbalance at COVID-19 GWAS 5 

risk variants, with 3 genes (ABO, OAS3, IL10RB; see Fig. S2., Table S5.) when restricted to 

leading GWAS index variants (p-value < 0.05 / 21). Together, these results further support a model 

where risk is conferred through genetic dysregulation at susceptibility genes.  
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Next, we focused on the impact of genetic regulation of alternative splicing for COVID-19 severity 

and performed a multi-tissue splicing transcriptome-wide association study (spTWAS; see 

Methods). Overall, we tested 131,376 splice sites of predicted alternative-splicing expression 

across 49 tissues for association with COVID19 related hospitalization and identified 420 

associations representing 43 splice variants for 11 genes across 49 tissues and 5 genomic regions 5 

(see Fig. 1, 3.; Tables S6.-S8.). Next, we performed a multi-tissue analysis (see Methods) and 

Figure 3: Splicing TWAS.  The top panel is a Manhattan plot of genes associated via multiple 
tissue spTWAS. Each data point represents splice site grouped by chromosome (x-axis) and 
lowest p-value (y-axis) of the splice site across significant tissues. The annotated genes to splice 
site are labeled. The significant splice sites are shown as pink diamonds. The bottom panel show 
distribution of splice sites across significant site-tissue pairs. The genes annotated to splice sites 
are grouped based on chromosome (y-axis) and respective tissues (x-axis). 
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identified 34 splice variants for 12 genes (2 genes – IFIT3 and GNL3 not identified in single-tissue 

scans) across 40 tissues (p-value < 3.7E-07; see Fig. S3.; Table S9.).  

 

Comparing genes identified from TWAS (23 genes) and spTWAS (13 genes), 9 genes were 

implicated by both approaches - LZTFL1, DPP9, IL10RB, IFNAR2, OAS3, FYCO1, ABO, OAS1 5 

and XCR1. Alternative splicing had stronger overall association signals at the 9 genes in common 

(p-value = 2.17E-09), with 5/9 genes showing greater signals on average (p-value < 0.05 / 9; see 

Table S10.).  

 

Next, we interrogated the role of genetic regulation of protein abundances and performed a 10 

proteome-wide association study (PWAS) using 1,031 predictive models of plasma proteins fitted 

from population data in the INTERVAL study (N=3,301; see Methods) (10). Of the 1,031 tests 

performed, 2 genes (ABO, and OAS1) were significantly associated with COVID-19 related 

hospitalization (p-value < 4.85E-5; Fig. 1, Table S11.).  

Phenome- and laboratory-wide association scans highlight functional role for 15 

the 27 genes 

We investigated the potential functional role of the 27 TWAS genes using data of 1,404 clinical 

phenotypes for N=70,439 individuals of European ancestry using the Vanderbilt Biobank, BioVU 

(see Methods; Fig. 4., Table S12.). Overall, 40 clinical phenotypes were significantly associated 

with genetically-predicted ABO, IFNAR2, and CCR1 expression levels; ABO accounted for the 20 

majority (30 out of 40) of the associations. Across the 17 phenotype categories, we found 

circulatory system-related phenotypes were enriched for association (see Methods; 7.23-fold 

enrichment, p-value = 8.62E-22, Table S13). We repeated an enrichment analysis using all 

association data, regardless of statistical significance, and observed circulatory- and infectious 

disease-related phenotypes strongly enriched for association signal on average (p-value < 3.9E-25 

44; Table S14). Top associations with genetically-derived ABO gene expression were driven by 

circulatory system phenotypes, including acute pulmonary heart disease, deep vein thrombosis, 

other venous embolism and thrombosis, pulmonary heart disease, and acute pulmonary thrombosis 

and infarction (OR=1.47; p-value = 3.97E-11). IFNAR2 was associated with migraine (OR = 1.35; 

p-value = 4.10E-06) and with throat pain (OR = 2.05; p-value = 2.62E-05; Table S12).  30 
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Next, we focused on laboratory results for N=70,337 individuals of European ancestry using the 

Vanderbilt Biobank, BioVU (see Methods).  For the 323 laboratory traits tested, we found 32 labs 

significantly associated with four genes (ABO, IFNAR2, KEAP1, and SLC6A20; p-value < 1.55E-

04; see Fig. 5., Table S15.). Of these, ABO captured 27/32 significant associations (mean OR = 5 

1.33; p-value = 8.02E-14 < 1.40E-04). Across the 12 broad lab definitions in our data, our 

significant LabWAS findings were enriched for blood-related lab measurements (see Methods; 

4.21-fold enrichment, p-value = 1.23E-11; Table S16.). When extending our enrichment analyses 

to all associations, we found blood- (see Methods; p-value = 9.23E-22; Table S17.) and immune-

related labs (p-value = 2.81E-14) displayed the greatest enrichment, with toxicology-, urinary-, 10 

and cancer-related labs exhibiting significant depletion of signal (Table S17.). Genetically-

predicted ABO expression was associated with various measures of blood and platelet count, 

coagulation factors, and ferritin in blood, as well as labs measuring immune and metabolic function 

(Table S15.). Genetically-predicted IFNAR2 expression was negatively associated with creatine 

Figure 4: PheWAS Manhattan Plot. Each data point represents phenotypic associations with genetically-
regulated expression of gene-tissue pairs. The data points are grouped and color-coded by phenotype groups 
(x-axis) and -log10(p-value) (y-axis). The dashed line represents Bonferroni threshold, and most significant 
gene-phenotype associations across all significant tissues are text-labeled. 
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kinase (OR=0.89; p=5.85E-05; Table S15.). Genetically-predicted KEAP1 expression was 

positively associated with total cholesterol, and non-high-density lipoprotein levels (beta= 0.50, 

p=3.72E-05). SLC6A20 genetically-predicted expression was negatively associated with basophil 

volume in blood (beta = -0.19, p= 4.04e-5) and magnesium volume in serum/plasma (beta= -0.26, 

p= 1.04e-4).  5 

 

Cross-ancestry phenotypic comparisons  

To perform cross-ancestry validation of the clinical and laboratory phenotypes implicated in the 

European-based results, we performed PheWAS and LabWAS in the N=15,123 individuals of 

African ancestry in the BioVU records. Of the 32 identified laboratory measures, we found 22 10 

ABO-associated labs replicated at nominal levels (p-value < 0.05) with 5 replicating after adjusting 

for the number of tests performed (p-value < 0.05 / 32). We attribute lack of statistical power to 

the 17 phenotypes that did not replicate after multiple testing correction. Effect sizes across 

Figure 5: LabWAS Manhattan Plot. Each data point represents laboratory-trait associations with 
genetically-regulated expression of gene-tissue pairs. The data points are grouped and color-coded 
by clinical laboratory-test groups (x-axis) and -log10(p-value) (y-axis). The dashed line represents 
Bonferroni threshold, and most significant gene-laboratory trait associations across all significant 
tissues are text-labeled. 
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ancestries were highly concordant (slope=0.87, 95CI [0.73, 1.01], p-value = 1.66-13; see Methods; 

Table S15), with no individual gene/lab pair demonstrating evidence of significant heterogeneity 

(p-value < 0.05 / 32). Of the 40 clinical phenotypes identified in participants of European ancestry, 

we found none that replicated at Bonferroni adjusted levels. This was largely due to reduced 

statistical power from smaller sample sizes, as estimated effect-sizes were similar across ancestries 5 

(slope=0.33, 95CI[0.25, 0.41], p-value = 6.72E-10; see Methods; Table S12.). These cross-

ancestry analyses suggest similar effects of predicted expression on relevant clinical and laboratory 

phenotypes.  

 

We next sought to test cross-ancestry replication of identified phenotypes in the Pan-UK Biobank 10 

and Biobank Japan. Briefly, we performed PheWAS using LD-independent eQTL/sQTL SNPs 

(see methods) of TWAS-identified genes. We identified 233 FDR significant SNP-phenotype 

results dominated by the associations between ABO (214/233, 91.8%) SNPs and blood differential 

tests such as basophils and monocytes. A subset of 80/233 (34.3%) FDR significant associations 

also were nominally significant in at least one population of non-European ancestry (p-value < 15 

0.05; Tables S18.-S19.). There were six instances of FDR significant effect estimate heterogeneity 

across ancestries, all of which involved ABO SNPs and the biomarker alkaline phosphatase or 

erythrocyte properties. We next tested how significant EUR effect estimates reflect SNP effects 

across ancestries. We found that EUR SNP effects significantly predicted SNP effects in six global 

ancestry groups (maximum prediction in AMR; Table S20.). 20 

DISCUSSION 

COVID-19 disease is characterized by a wide variability in presentations and severity. We 

integrated multi-tiered regulatory information with publicly available variant-level data to identify 

genes associated with COVID-19 related hospitalization. To investigate the clinical relevance of 

these findings, we performed a phenome-wide and lab-wide assessment of the genetically 25 

predicted mRNA expression value of each gene that was significantly associated with COVID-19. 

We further examined these associations across diverse ancestries and found nominal replication of 

blood cell traits in diverse ancestral cohorts of Pan-UKBB, BBJ, and an African American 

population in BioVU. 

 30 
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All three TWAS approaches (mRNA expression, splicing, and protein expression) identified two 

genes – ABO at 9q34.2 and OAS1 at 12q24.13. PheWAS results implicated ABO in several 

thrombotic and coagulation-related phenotypes. Thrombotic complications are reported to be both 

risk factors and sequalae to COVID-19 diagnosis. For example, coagulopathic conditions such 

venous thromboembolism (11, 12), deep vein thrombosis (13), and  pulmonary heart disease and 5 

embolism (14, 15) constitute of more than 30% prevalent disorders in hospitalized COVID-19 

patients. Abnormal blood cell indices are a common denominator shared by severe COVID-19 

(16) and thrombotic disorders (17). These phenotypic observations are further supported by lab-

trait associations which showed predicted expression of ABO was associated with coagulation 

factor VIII, which is critical for thrombotic homeostasis regulated by its carrier protein - von 10 

Willebrand factor (18, 19). Analysis in individuals of both European and African ancestry 

supported predicted ABO expression associating with blood differential tests including mean 

corpuscle volume, monocyte count, and erythrocytes. 

 

We observed that associated phenotypes and gene functions converged on cytokine-cytokine 15 

receptor signaling involved in inflammatory response (e.g., CXCR6, CCR9, CCR5, XCR1, 

IFNAR2, IL10RB), and on JAK-STAT signaling pathways involved in antiviral host response (e.g., 

IFNAR2, OAS1, OAS3). IFNAR2 encodes the interferon-alpha/beta receptor beta chain and is 

responsible for stimulating interferon response which is critical for anti-viral immunity previously 

observed in influenza viral infection (20). IFNAR2 is hypothesized to modulate immune response 20 

to COVID-19 (21–23)  and interferon deficiency is reportedly associated with severe symptoms 

of COVID-19 (24–26). These findings are reinforced by results showing that reduced expression 

(observed in 14 of the 16 significant tissues) of IFNAR2 is associated with COVID-19 related 

hospitalization. Genetically predicted expression of IFNAR2 was associated with migraine in 

BioVU patients without severe COVID-19. Given that more than 10% of the COVID-19 diagnosed 25 

individuals requiring hospitalization reported migraine and headache symptoms (27, 28), we 

hypothesize that reduced host expression of IFNAR2 may modulate risk for migraine symptoms in 

the context of severe COVID-19 infection. 

 

Our results are consistent with previous studies investigating the impact of inflammation on severe 30 

COVID-19 outcomes; however, we note there are limitations. First, TWAS analyses rely on SNP-
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based predictive models of mRNA and alternative splicing trained using mostly European-ancestry 

individuals in GTEx v8 (29). While consistent with the ancestry makeup of COVID-19 HGI 

GWAS ((6); https://www.covid19hg.org/), applying these models to non-European individuals 

(e.g., African Americans in BioVU) will result in loss of power or bias due to different underlying 

linkage disequilibrium patterns. Second, TWAS uses mRNA, alternative splicing, or protein levels 5 

in bulk tissue, with cell-type effects likely to be missed. Third, TWAS assumes additivity of SNP 

effects on gene expression and downstream hospitalization risk, which ignores the possibility of 

epistatic and gene-environment interactions contributing to COVID-19 related hospitalization risk. 

Finally, our study focuses on the host genetic factors that contribute to severe COVID-19 but did 

not incorporate the social determinants of health that are known to influence risk for severe 10 

COVID-19. The biological insights identified here should not be interpreted as explanatory factors 

for disparity, but instead as key genomic pathways modulating host response to SARS-Cov-2 

across populations. 

 

Functional studies of key genes identified are needed to identify mechanisms through which these 15 

genes influence COVID-19 related hospitalization. Additionally, while well-powered molecular 

genetic datasets in diverse populations often lag behind European-ancestry counter parts, massive 

collaborative science efforts such as the HGI-19 continue to accumulate new datasets to address 

this discrepancy. Leveraging population eQTL/spQTL/pQTL data with ancestry-matched 

COVID-19 GWAS will be crucial in identifying and understanding mechanisms underlying 20 

COVID-19 related hospitalization. In conclusion, our work raises specific hypotheses relating host 

genetic variation to symptom and lab-trait profiles thereby focusing efforts for future drug 

repurposing and therapeutic discovery research.  

METHODS AND MATERIALS 

COVID19-HGI genome-wide association summary statistics 25 

We downloaded GWAS summary statistics for severe COVID-19 outcomes meta-analyzed across 

21 studies (hospitalized N=7,885; population N=961,804). A detailed description of the 

contributing studies, meta analyses, and primary GWAS results for several COVID-19-related 

phenotypes are presented at https://www.covid19hg.org/results/, specifically the Freeze 4-October 
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2020 results File: COVID19_HGI_B2_ALL_leave_23andme_20201020.txt.gz. These summary 

statistics do not include 23&Me cohort results, and their sample size was removed from final 

sample reported. Genome-wide association statistics consisted of inverse-variance meta-analyzed 

log-odds ratios and their standard errors to compute a final Wald statistic and p-value. Most of the 

individuals of the contributing studies to meta-analysis genomic study were of European descent 5 

(93%). We performed strict quality control on GWAS data, by filtering statistics at palindromic 

variants, harmonizing variants with GTEx v8 European-panel genotypes (29). Our quality control 

procedure resulted in a final count of 10,340,768 autosomal genetic variants with summary 

statistics. 

TWAS and spTWAS using models of predicted gene and alternative splicing 10 

expression 

To perform TWAS and spTWAS we leveraged pre-trained prediction models fitted in GTEx v8 

data (49 tissues, N=838) using the fine-mapping software DAP-G with a biologically-informed 

prior, Multivariate Adaptive Shrinkage in R (MASHR). For detailed information regarding 

molecular, genetic, and phenotypic data in GTEx v8, please see (29). Prediction models for each 15 

tissue were integrated with COVID19-HGI GWAS data using the software S-PrediXcan (30). In 

total, we tested 655,563 and 1,728,429 models of total expression and alternative splicing, 

respectively for association with severe COVID19 outcomes, however, owing to the significant 

amount of correlation across tissues, we used a per-tissue Bonferroni correction threshold in our 

multi-tissue analyses (see Table S1). To combine association statistics across all tissues while 20 

adjusting for tissue–tissue correlation, we used S-MultiXcan (31). For 22,206 genes, we also 

performed a joint multi-tissue approach using S-MultiXcan which accounts for tissue correlation 

and boosts statistical power. Here, we applied a single Bonferroni correction of 0.05 / 22,206. 

PWAS using models of predicted expression 

To perform a protein-wide association study (PWAS) using predicted protein expression, we fitted 25 

predictive models using genetic and plasma proteins from European-ancestry individuals in the 

INTERVAL study (N=3,301) (10). We performed quality control on genotype data and kept only 

bi-allelic SNPs with MAF ≧ 0.01, HWE p > 5e-5, imputation quality INFO > 0.6 and were 

annotated in HapMap3. Plasma proteins had undergone strict quality control and adjustment in the 

original study (10). We fit predictive 3,222 predictive models for 3,170 proteins using genotypes 30 
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within 1Mb flanking the gene body (i.e., ±500kb gene start and stop). For measured proteins 

consisting of multiple monomers (i.e., dimer, trimer, etc.), we fit multiple predictors, each 

restricted contributing gene’s region. We included the following covariates into all downstream 

models of protein abundance: age, sex, duration of blood processing, the top 3 genotyping PCs, 

contributing cohort, and top 4 protein PCs). To reduce the number of tests and increase statistical 5 

power, we restricted to genes whose protein levels exhibited evidence of genetic control by testing 

for non-zero cis-heritability (p-value < 0.05) using GCTA. Our final set of local/cis-based 

predictors resulted in 1,031 models of protein with significant cis-SNP heritability (p-value < 

0.05). We fit penalized linear models using SuSiE (32) and performed downstream PWAS using 

the tool FUSION (33) with the same quality controlled genome-wide association statistics as 10 

above. 

Allelic Specific Expression 

To determine the allelic effect of GWAS SNPs (p-value < 5e-5) on identified susceptibility genes, 

we used haplotype-level ASE data with WASP filtering (34) from the GTEx v8, containing 15,253 

samples spanning over 49 human tissues and 838 individuals (29, 35). We used haplotype-15 

aggregated allelic expression generated by phASER (36). To assess cis-acting regulatory effect of 

expression imbalance between the alleles in heterozygous individuals, we compared allelic 

imbalance between the individuals homozygous and heterozygous for each SNP. All individuals 

with minimum coverage of 8 reads (with one pseudocount added) were included. Allelic imbalance 

was quantified as the log ratio between the two allelic counts or log allelic Fold Change (log aFC) 20 

(37) and to ensure robustness to rare variant effects and phasing errors the absolute value of log 

aFCs  are compared, using a one-sided ranksum test. We used a gene-level Bonferonni correction 

for the total number of genes tested (p-value < 0.05 / 21).  

EHR-based PheWAS 

To better understand the phenotypic consequences of dysregulated mRNA expression across our 25 

genes of interest, we performed a Phenome-Wide Association Study (PheWAS) (38) including 

patients in the Vanderbilt EHR and linked biobank, BioVU. Phenotypes in BioVU are represented 

as phecodes, which are assigned as a dichotomous trait and are a hierarchical clustering of the 

International Classification of Diseases (ICD9/ICD10) codes. For each phenotype we required a 
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minimum number of 100 cases for inclusion in our PheWAS analyses, which resulted in testing 

1,404 phecodes in 70,439 individuals of European ancestry and 740 phecodes in 15,174 

individuals of African ancestry. We used the  PheWAS  package  in  R  to  perform logistic  

regressions  to  identify the  phecodes that are significantly associated with imputed gene 

expression after adjusting  for  sex,  age, and  the  top ten principal  components  from genetic data 5 

to control for population stratification  (Denny et  al.  2010, 2013). We corrected for the number 

of tests (i.e. 0.05/1404 = 3.56e-05) to determine statistical significance.  

EHR Biomarker LabWAS 

The Lab-Wide Association Scan (LabWAS) (39) allows us to screen clinical lab tests from the 

Vanderbilt University Medical Center EHR. For each gene identified in the TWAS analyses, we 10 

tested the association between its predicted gene expression and all clinical labs. We applied the 

QualityLab cleaning pipeline (39) with settings to yield median age-adjusted (residual taken after 

regressing the cubic splines of age with 4 knots) inverse normal quantile transformed lab values 

(to control for skewness and non-normality). We screened across all labs with measurements for 

at least 100 individuals, which resulted in testing 323 labs in 70,337 individuals of European 15 

ancestry and 241 labs in 15,123 individuals of African ancestry. The lab tests are divided into 12 

sub-categories; blood, metabolic, endocrine, kidney, immune, liver, urinary, OB/gyn, toxicology, 

cardiovascular and cancer. Our analyses included the covariates age, sex, and top ten principal 

components from genetic data to adjust for genetic ancestry. We used a Bonferroni-corrected 

threshold accounting for the number of labs present in the associations tested (i.e. 0.05/323 = 20 

1.55e-04).  

PheWAS and LabWAS category enrichment analyses 

We tested for enrichment of association signals across the clinical categories of phenotypes 

(laboratories) in PheWAS (LabWAS) in two ways. First, we performed a hypergeometric test 

using phenotypes/labs that were labelled as significant/not-significant per category. Second, we 25 

performed a relaxed test that considers for the average magnitude of association signal in a given 

category. Here, we computed the mean 𝜒𝜒2 association statistic per phenotype (laboratory) category 

and bootstrapped its standard error using 2000 bootstraps. Our enrichment (depletion) statistics for 

a phenotype (laboratory) category were the difference between its mean  𝜒𝜒2 from 1 (the expected 
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𝜒𝜒2 under the null) divided by the bootstrapped standard error. We used a Bonferroni adjusted p-

value < 0.05 / k to determine enrichment or depletion for either aproach, where k=17 for PheWAS 

category enrichment tests and k=12 for LabWAS category enrichment tests. 

Cross-ancestry gene effects 

We compared effect-sizes of predicted expression on phenotypes and laboratories estimated in 5 

European-ancestry patients from the BioVU with estimates obtained from of African-ancestry 

records. To do so, we performed a weighted linear regression, �̂�𝛽𝐴𝐴,𝑖𝑖 = �̂�𝛽𝐸𝐸,𝑖𝑖𝛼𝛼 + 𝜖𝜖𝑖𝑖, where �̂�𝛽⋅,𝑖𝑖 are the 

effect-sizes estimated for the ith gene/phenotype or gene/laboratory pair in African- (A) or 

European-ancestry (E) patients, 𝛼𝛼 is the cross-ancestry relationship, and 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁 �0,𝜎𝜎2 ⋅𝑆𝑆𝑆𝑆��̂�𝛽𝐴𝐴,𝑖𝑖�2� is the gene/phenotype-specific (gene/laboratory) noise parameterized by the overall 10 

variance 𝜎𝜎2 and squared standard-error around the African-ancestry-based estimate. We report 

estimates of 𝛼𝛼� and its 95 confidence intervals assuming normality. 

Cross-ancestry SNP effects 

We investigated BioVU phenotypes and laboratory measures significantly associated with TWAS-

associated loci for heterogeneous effects in the trans-ethnic Pan-UK Biobank (Pan-UKB). The 15 

Pan-UKB represents a multi-ancestry analysis of 7,221 phenotypes in six continental ancestry 

groups: African (AFR N=6,636), Admixed American (AMR N=980), Centra/South Asian (CSA 

N=8,876), East Asian (EAS N=2,709), European (EUR N=420,531), and Middle Eastern (MID 

N=1,599). The Pan-UKB consists of 16,119 genome-wide association studies of biological assays, 

health status, behavioral information, and lifestyle factors. We clumped SNPs in PLINK using 20 

eQTL/sQTL p-values (q-value ≦ 0.05) reported in GTEx v8 and limited pair-wise SNP 

correlations to r2=0.1 over 250kb windows. Per-tissue clumping resulted in 27 SNPs (ABO, 

IFNAR2, CCR1, and SLC6A20) that were tested with respect to 1,571 Pan-UKB phenotypes from 

the same trait domains detected by PheWAS in BioVU (e.g., circulatory system, digestive disorder, 

neurological). We used linear models to test for consistency of EUR effect estimates at FDR 25 

significant and high confidence SNPs with those estimated in AFR, AMR, CSA, EAS (Pan-UKB 

and Japan Biobank), and MID populations. Additionally, we used Biobank Japan to verify 

associations between EUR and EAS-based SNP effects in the Pan-UKB due to increased sample 
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size in the latter. Biobank Japan consists of genetic data for over 200,000 participants and ~120 

disease states and quantitative measures (cell type percentage, body mass index, etc.).  
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MAIN TEXT FIGURE CAPTIONS 

Fig. 1. Significant genes: The integrative analyses identified 27 genes (labeled) across 13 regions 

(color coded) shown in the ideogram. 

Fig. 2. TWAS: The top panel is a Manhattan plot of genes associated via multiple-tissue TWAS. 

Each data point represents a gene grouped by chromosome (x-axis) and lowest p-value (y-axis) of 25 

the gene across significant tissues. The significant genes are shown as pink triangles, wherein 

triangles facing up and down represent positive and negative z-scores, respectively. The bottom 

panel show distribution of z-scores across significant gene-tissue pairs. The genes are grouped 

based on chromosome (y-axis) and respective tissues (x-axis). 

Fig. 3. Splicing TWAS.  The top panel is a Manhattan plot of genes associated via multiple tissue 30 

spTWAS. Each data point represents splice site grouped by chromosome (x-axis) and lowest p-

value (y-axis) of the splice site across significant tissues. The annotated genes to splice site are 

labeled. The significant splice sites are shown as pink diamonds. The bottom panel show 
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distribution of splice sites across significant site-tissue pairs. The genes annotated to splice sites 

are grouped based on chromosome (y-axis) and respective tissues (x-axis). 

Fig. 4. PheWAS Manhattan Plot. Each data point represents phenotypic associations with 

genetically-regulated expression of gene-tissue pairs. The data points are grouped and color-coded 

by phenotype groups (x-axis) and -log10(p-value) (y-axis). The dashed line represents Bonferroni 5 

threshold, and most significant gene-phenotype associations across all significant tissues are text-

labeled. 

Fig. 5. LabWAS Manhattan Plot. Each data point represents laboratory-trait associations with 

genetically-regulated expression of gene-tissue pairs. The data points are grouped and color-coded 

by clinical laboratory-test groups (x-axis) and -log10(p-value) (y-axis). The dashed line represents 10 

Bonferroni threshold, and most significant gene-laboratory trait associations across all significant 

tissues are text-labeled. 
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