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Integrative analyses reveal a long noncoding
RNA-mediated sponge regulatory network
in prostate cancer
Zhou Du1,2,*, Tong Sun3,4,5,*, Ezgi Hacisuleyman6,7,8, Teng Fei3,4,9, Xiaodong Wang3,4, Myles Brown3,4,9,

John L. Rinn7,8,10, Mary Gwo-Shu Lee3,4, Yiwen Chen11,*, Philip W. Kantoff3,4,12,* & X. Shirley Liu9,13,*

Mounting evidence suggests that long noncoding RNAs (lncRNAs) can function as microRNA

sponges and compete for microRNA binding to protein-coding transcripts. However, the

prevalence, functional significance and targets of lncRNA-mediated sponge regulation of

cancer are mostly unknown. Here we identify a lncRNA-mediated sponge regulatory network

that affects the expression of many protein-coding prostate cancer driver genes, by inte-

grating analysis of sequence features and gene expression profiles of both lncRNAs and

protein-coding genes in tumours. We confirm the tumour-suppressive function of two

lncRNAs (TUG1 and CTB-89H12.4) and their regulation of PTEN expression in prostate

cancer. Surprisingly, one of the two lncRNAs, TUG1, was previously known for its function in

polycomb repressive complex 2 (PRC2)-mediated transcriptional regulation, suggesting its

sub-cellular localization-dependent function. Our findings not only suggest an important role

of lncRNA-mediated sponge regulation in cancer, but also underscore the critical influence

of cytoplasmic localization on the efficacy of a sponge lncRNA.
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A
pproximately 70% of the human genome is transcribed,
but less than 2% of the genome encodes protein. On the
basis of size, noncoding RNAs (ncRNAs) can be classified

as small (r200 base pairs) or long ncRNAs (lncRNA; 4200 base
pairs). The human genome encodes around ten thousand lncRNA
genes1–3 and, similar to protein-coding genes (PCGs), some
lncRNAs can mediate oncogenesis or tumour suppression and
are, therefore, a potential new class of cancer therapeutic targets4.
Despite this relevance to cancer, only a handful of lncRNAs have
been functionally characterized.

An important class of small ncRNAs are B22 nucleotide
(in mammals) microRNAs (miRNAs) that are derived from
hairpin precursors5. These RNAs guide the RNA-induced
silencing complex (RISC) to miRNA response elements (MREs)
on target transcripts to post-transcriptionally regulate gene
expression via transcript degradation or translation inhibition5.
Each miRNA can target multiple target transcripts and those
RNAs that share the same MREs (that is, targeted by the same
miRNA or the same miRNA family) are reported to influence the
expression of each other by competing for miRNA binding6,7.
RNAs involved in this type of miRNA-dependent regulation
have been referred to as miRNA sponges6,7, target mimics8

or competing endogenous RNAs (if they are endogenous to
the genome)9.

In one study, a synthetic miRNA sponge carrying engineered
MREs was ectopically expressed to competitively inhibit
endogenous miRNA activity7. The first reported naturally
occurring noncoding miRNA sponge, IPS1 from Arabidopsis
thaliana, sequesters the phosphate (Pi) starvation-induced
miRNA miR-399 and modulates the shoot Pi content8. Since
this discovery, other naturally occurring noncoding miRNA
sponges have been identified as important for biological processes
including muscle differentiation10, host–pathogen interaction11

and cancer12.
PTENP1, a pseudogene of the tumour-suppressor PTEN

(phosphatase and tensin homologue), was among the first reported
noncoding miRNA sponges with a function in cancer12. Compared
with PTEN, PTENP1 has a truncated (by B1 kb) but highly
similar 30 region, which contains conserved target sites for the
PTEN-targeting miR-17, miR-21, miR-214, miR-19 and miR-26
families. Consistent with these sequence features, PTENP1
expression is regulated by PTEN-targeting miRNAs. As a
miRNA sponge, PTENP1 positively regulates PTEN expression,
and the knockdown of endogenous PTENP1 promotes cancer cell
proliferation, indicating the tumour-suppressive function of
PTENP1 (ref. 12). Similarly, the pseudogenes of oncogenic
PCGs, such as kirsten rat sarcoma viral oncogene homolog
(KRAS), are also miRNA sponges12.

Despite identification of these pseudogenes and lncRNAs, the
prevalence, functional significance of lncRNA-mediated sponge
regulation and their relevant targets in human cancer are unclear.
To address these questions, we systematically identify a lncRNA-
mediated sponge regulatory network of protein-coding driver
genes in prostate cancer by integrating sequence features and
gene expression of lncRNAs and PCGs in tumours. We also
validate the tumour-suppressive function of two lncRNAs
predicted to serve as miRNA sponges and positively regulate
PTEN expression. Our study suggests an important role of
lncRNA-mediated sponge regulation in cancer and implied a
therapeutical strategy of manipulating cancer gene function
through modulating lncRNA-mediated sponge regulation.

Results
Prediction of sponge lncRNAs regulating cancer-driver genes.
Sponge-lncRNAs (sp-lncRNAs) are distinct from other regulators

such as transcription factors in that they share similar miRNA
regulatory programmes with their targets. Therefore, they are
positive regulators of the expression of their targets (Fig. 1a), and
the strength of their regulation depends on the stoichiometry of
the involved miRNAs and mRNAs (Fig. 1a). We devised an
integrated computational approach to predict lncRNAs that serve
as sp-lncRNA for a given PCG by taking into account these
characteristics (Fig. 1b, Methods). We developed a computational
pipeline that repurposed the Affymetrix exon array probes for
interrogating lncRNA expression13. Although lncRNAs were not
the originally intended targets of measurement, these array data
are nonetheless informative in providing insights into lncRNA
function and regulation13.

We focused our study on the sponge regulation of those
established and putative protein-coding driver genes in prostate
cancer, which also showed expression variation across different
disease states (Methods) and hence were likely to be functional13.
By applying our integrated computational approach, we
constructed a sponge regulatory network, in which each edge
connects a potential sp-lncRNA to its corresponding PCGs.
This network contains in total 96 predicted regulatory
interactions between 52 sp-lncRNAs and 17 PCGs (Fig. 1c,
Table 1 and Supplementary Data 1). Some PCGs such as PTEN
and MLL2 (also known as KMT2D) showed greater numbers of
predicted sp-lncRNAs than others (Table 1), suggesting that
they might be subject to greater sponge regulation. Most PCGs in
the network had more than one predicted sp-lncRNAs and many
sp-lncRNAs regulated multiple PCGs, suggesting the existence of
combinatorial regulation.

The regulation of PTEN expression is 30UTR-dependent. For
experimental validation, we focused on sp-lncRNAs (Supplementary
Data 2) of PTEN, which is among the protein-coding driver genes
with the largest number of the predicted sp-lncRNAs in prostate
cancer (Table 1). PTEN is a tumour suppressor that is one of the
most frequently mutated protein-coding driver genes and often
exhibits reduced expression in prostate cancer and many other
cancers14. PTEN encodes a protein phosphatase, which can remove
a phosphate from phosphoinositides at the plasma membrane15 and
negatively regulates the PI3K/Akt pathway16,17. PTEN loss has been
found in 9–45% of high-grade prostatic intraepithelial neoplasia, an
abnormality of prostatic glands believed to precede the development
of adenocarcinoma18–21. About 50–70% of castration-resistant
prostate cancers (CRPCs) have genomic alterations in the
PTEN/PI3K pathway, mostly through genetic loss of PTEN22–24.
Loss of PTEN expression is associated with a more aggressive form
of prostate cancer14,25,26. In the absence of genetic loss or mutation,
PTEN can be downregulated in cancers by other mechanisms
such as miRNA-mediated repression. Both pseudogene12 and the 30

untranslated region (30UTR) of PCG27,28 have been shown to
influence PTEN expression through the sponge regulation
mechanism.

Among those sp-lncRNAs that were targeted by more than eight
experimentally validated PTEN-regulating miRNAs, we chose two
sp-lncRNAs lnc-2 (CTB-89H12.4, ENSG00000230551) and lnc-6
(Taurine Upregulated Gene 1 (TUG1), ENSG00000253352;
Supplementary Data 3) that showed consistently the highest
expression in two prostate cancer cell lines (DU145 and 22RV1)
with wild-type PTEN for experimental validation (Fig. 2). We
chose the higher expressed sp-lncRNAs because the higher
expression makes a more effective sp-lncRNA given similar other
conditions. Lnc-2 and lnc-6 showed a consistently positive
correlation in expression with PTEN in the memorial sloan
kettering cancer center (MSKCC)24 (rlnc-2-PTEN¼ 0.32, plnc-2-
PTENo5.89x10� 5, rlnc-6-PTEN¼ 0.45, plnc-6-PTENo5.89x10� 9)
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cohort and Mayo Clinic29 (rlnc-2-PTEN¼ 0.48, plnc-2-
PTENo1.62x10� 32, rlnc-6-PTEN¼ 0.47, plnc-6-PTENo1.66x10� 31)
cohort (Fig. 3a). To assess the utility of using the co-expression
data from these two cohorts instead of one cohort for predicting
candidate sp-lncRNAs, we decided to test another lncRNA lnc-7
(ENSG00000267520) that shared 22 miRNAs with PTEN, but did
not show consistent co-expression with PTEN in different cohorts
(Fig. 3a and Supplementary Data 3 and 4). The genetic alternation
and expression profile of lnc-2 and lnc-6 across normal prostate
and prostate tumours suggested that they might exert a tumour-
suppressive function in both primary prostate cancer and CRPC.
First, their expression was decreased in CRPC tumours compared
with primary tumours (Fig. 3b); second, lower expression was seen
in tumours that harboured copy number loss (Fig. 3c).

To interrogate the function of these three sp-lncRNAs, we
designed four independent short interfering RNAs (siRNAs) for
each lncRNA genes and pooled those that showed efficient
knockdown capability in the experiments (Methods).
The effective siRNA-mediated knockdown of the candidate
sp-lncRNAs was confirmed by quantitative real-time reverse-
transcription PCR (qRT–PCR) analysis (Supplementary Fig. 1a).

Consistent with the role of sp-lncRNAs as positive regulators of
gene expression, the depletion of lnc-2 and lnc-6 transcripts by
siRNAs in the DU145 prostate cancer cell line led to a significant
reduction in PTEN expression (Fig. 4a). The effect on PTEN
expression by siRNA-mediated silencing of either lncRNA was
further confirmed in the 22Rv1 cell line (Supplementary Fig. 1b).
Reciprocally, we found that depletion of PTEN transcript by
siRNAs reduces the expression of lnc-2 and lnc-6, respectively
(Supplementary Fig. 1c). The depletion of lnc-2 and lnc-6
transcripts also reduced the expression of two other PCGs, VAPA
and SERINC1 (Supplementary Fig. 1d), which were previously
shown to serve as sponge-mRNAs of PTEN28. With
lower expression level than that of lnc-2 and lnc-6, other
predicted sp-lncRNAs including lnc-1, 3, 4 and 5 showed a much
weaker effect on PTEN expression (Supplementary Fig. 1d),
indicating that the expression level is an important determinant
of the efficacy of a miRNA sponge.

To further confirm the sponge regulation of PTEN by lnc-2
and lnc-6, we determined whether overexpressing lnc-2 or lnc-6
could rescue PTEN downregulation caused by miRNAs. Because
of the large size of lnc-2 (ENST00000499521, 8,636 bps) and lnc-6
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(ENST00000519077, 5,673 bps), we were only able to clone two
sub-sequences of lnc-2 (703-4834 and 3931-8636) that contain
the majority of the binding sites of the PTEN-regulating miRNAs
into an expression vector (Methods), but not for the
sub-sequences of lnc-6. Overexpressing either of the two lnc-2
sub-sequences (Supplementary Fig. 1e) rescued the down-
regulation of PTEN expression caused by overexpressing known
PTEN-regulating miRNAs (Supplementary Fig.1f). In contrast to
lnc-2 and lnc-6, the depletion of lnc-7 transcripts by siRNAs had
no effect on PTEN expression (Fig. 4a), underscoring the
importance of using co-expression data from multiple cohorts
to ensure the robustness of the computational prediction.

Lnc-6 is officially known as TUG1, a highly conserved lncRNA
expressed in the developing retina and brain as well as in adult
tissues 30. TUG1 can be upregulated by p53 upon DNA damage
in p53 wild-type, but not p53 mutant cells3,31. It associates with
polycomb repressive complex 2 complex and represses the
expression of cell-cycle genes31. In addition, TUG1 is involved
in Polycomb 2 protein (Pc2)-mediated relocation of transcription
units in the three-dimensional space of the nucleus32. Our
discovery of TUG1 as a sp-lncRNA of PTEN established its
cytoplasm function, which is consistent with previous studies
showing an extensive localization of TUG1 in the cytoplasm31,33.

Next, we used a luciferase-PTEN-30UTR reporter system to
investigate whether the observed regulation of PTEN by lnc-2 or
lnc-6 is via the PTEN 30UTR. The use of this reporter assay allows
for uncoupling the regulatory effect of sp-lncRNAs on PTEN
through its 30UTR from the effects through non-30UTR
mechanism such as PTEN transcription. We found that the
siRNA-mediated knockdown of either lnc-2 or lnc-6 significantly
reduced the chimeric luciferase reporter activity, whereas the
knockdown of lnc-7 had little effect on the luciferase activity
(Fig. 4b). These results suggest that the regulation of PTEN by
sp-lncRNAs is through the PTEN 30UTR.

The regulation of PTEN expression is dependent on miRNAs.
To further determine whether sp-lncRNA-mediated PTEN
regulation is dependent on miRNA, we compared the difference
of PTEN regulation by the candidate sp-lncRNAs in isogenic
HCT116 colon cancer cell lines. The only difference between the
two isogenic cell lines is that one has a wild-type DICER, whereas

the other has a mutant DICER (DICERex5) with an insertion
disruption in the N-terminal helicase domain. This hypomorphic
mutation in DICER impaired its function in the maturation of the
vast majority of miRNAs34. It has been shown28 that the levels of
mature PTEN-regulating miRNAs in the HCT116 DICERex5 cell
line are significantly decreased, whereas the siRNA-mediated
silencing is fully functional. Therefore, the DICEREx5 cell line
serves as an ideal system to evaluate the miRNA dependency of
sp-lncRNA-mediated PTEN regulation. Similar results were
observed in DU145 and 22Rv1 cell lines, where the depletion of
lnc-2 or lnc-6 by siRNAs substantially reduced PTEN expression,
whereas the depletion of lnc-7 had no effect on PTEN expression
in the wild-type HCT116 (Fig. 4c). In contrast, in the DICERex5

cell line, the downregulation of PTEN by the loss of lnc-2 or lnc-6
was considerably impaired (Fig. 4c). These results suggest that the
sp-lncRNA-mediated PTEN regulation is critically dependent on
the Dicer-mediated miRNA activity.

The determinants of sponge lncRNA efficacy. Although lnc-7
was predicted to share 22 miRNAs with PTEN, it had no
regulatory effect on PTEN expression. We further investigated the
mechanism, whereby lnc-7 was unable to serve as an effective
miRNA sponge. The miRNA-induced repression occurs
dominantly in the cytoplasm and is mediated by RISC. We thus
hypothesized the reason why lnc-7 cannot serve as an effective
sponge is because it is not predominantly localized in the
cytoplasm and is not effectively accessible to the RISC. To test this
hypothesis, we performed subcellular fractionation followed by
qRT–PCR (Fig. 5a,b) to examine the subcellular localization of in
the DU145 cell line. Indeed, lnc-2 and lnc-6 were predominantly
localized in the cytoplasm in the DU145 and 22Rv1 cell lines,
whereas lnc-7 was not (Fig. 5a,b).

To further confirm the subcellular localization of the lnc-2,
lnc-6 and lnc-7, we employed a single-molecule RNA
fluorescence in situ hybridization (RNA-FISH) method as
previously described35,36. We used the Biosearch probe design
algorithm (Biosearch Technologies, Inc.) to make the probes for
the lncRNAs and targeted the exons of each lncRNA using probes
conjugated to Quasar 570 fluorophore (Methods). The specificity
of the probe sets was validated as previously described36,37.
Briefly, we partitioned each probe set to the even- and
odd-numbered oligonucleotides and coupled each subset with a
different fluorophore (evens with Quasar 570 fluorophore, odds
with Quasar 670 fluorophore). We then hybridized the two probe
sets and imaged each channel, separately. If a probe set is specific

Table 1 | The number of predicted sp-lncRNAs for

protein-coding driver genes.

Gene symbol Number

ARID2 7

BCL2 4

CBL 3

CCND1 1

CDC73 4

CYLD 6

DNMT3A 1

FAM123B 6

GATA2 1

KLF4 2

MLL2 13

PDGFRA 9

PIK3R1 7

PTEN 12

RUNX1 3

SMAD4 8

TET2 9

sp-lncRNA, sponge-long noncoding RNA.
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to the lncRNA of interest, one would expect that the signal from
even and odd probe sub-set would show good co-localization.
Because the specificity of the probe set for lnc-6 was validated in a
previous study38, herein we focused on validating the specificity
of probe sets for lnc-2 and lnc-7. We found the even (red) and
odd (green) probe set signal showed good co-localization for both
lnc-2 and lnc-7 (Supplementary Fig. 2), indicating a good
specificity of these probe sets. Our RNA-FISH analysis revealed
a predominantly cytoplasmic distribution for the lnc-2 and lnc-6
in DU145 (Supplementary Fig. 3a,b) and 22Rv1 (Supplementary
Fig. 3d,e) cell lines, but not for lnc-7 (Supplementary Fig. 3c,f), in
concordance with our biochemical fractionation experiments.
Therefore, both the lower expression and the lower cytoplasmic
localization of lnc-7, in comparison with lnc-2 and lnc-6, reduced
its efficacy as a miRNA sponge.

To ascertain the accessibility of the Ago-containing RISC to
lnc-2, lnc-6 and lnc-7, we performed anti-Ago2-ribonucleopro-
tein immunoprecipitation (RIP) followed by array hybridization
(RIP-ChIP) experiments. The RIP-ChIP found that compared
with a nonspecific mouse serum (NMS) control, lnc-2 and lnc-6
were significantly enriched in the anti-Ago2-RIP fraction in both
DU145 and 22Rv1 cell lines (Fig. 5c,d), whereas lnc-7 was not
(Fig. 5e). Therefore, although lnc-7 sequence harbours potential

miRNA-binding sites, it was not effectively accessible to the RISC
for miRNA targeting and was unable to serve as an effective
miRNA sponge.

Sponge lncRNAs of PTEN exert a tumour-suppressive function.
PTEN serves as a tumour suppressor to negatively regulate cancer
cell growth or survival by reducing the activity of the oncogenic
PI3/Akt pathway16,17. We therefore tried to determine, as the
positive regulators of PTEN expression, whether the sp-lncRNAs
of PTEN also exert a tumour-suppressive function. In the prostate
cell line DU145, the reduction of either lnc-2 or lnc-6 expression
by siRNA significantly increased cell proliferation, which partially
phenocopied the effect of siRNA-mediated silencing of PTEN
(Fig. 6a). This growth promotion upon sp-lncRNA knockdown
was further confirmed in the 22Rv1 cell line (Supplementary
Fig. 4a), suggesting that both lnc-2 and lnc-6 exerted a tumour-
suppressive function. Consistent with the observation that lnc-7
depletion had no effect on PTEN expression, its depletion had
no effect on prostate cancer cell proliferation (Fig. 6a and
Supplementary Fig. 4a). The effect on cell proliferation upon
siRNA-mediated silencing of lnc-2 and lnc-6 was similar in the
wild-type HCT116 cells compared with that in DU145 cells, but
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the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile, respectively. Mann–Whitney U-test was performed for the comparison.
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was considerably dampened in the HCT116 DICERex5 cell line
(Fig. 6b). The difference between wild-type and DICERex5 HCT116
cells further supports that the tumour-suppressive function of

PTEN sp-lncRNAs is miRNA dependent. Moreover, the
siRNA-mediated depletion of either lnc-2 or lnc-6 but not of
lnc-7 significantly increased anchorage-independent cell growth
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from soft-agar colony formation assay (Methods) in DU145
(Fig. 6c) and 22RV1 (Supplementary Fig. 4b) cells. The reduction
of either lnc-2 or lnc-6 expression by siRNA also significantly
increased anchorage-independent cell growth of the wild-type
HCT116 cells (Supplementary Fig. 4c), but the effect was
considerably reduced in the DICERex5 HCT116 cell line
(Supplementary Fig. 4d).

The tumour-promoting effect of PTEN loss/reduction in
human cancer can be partially attributed to an aberrant
elevation of the PI3K/Akt pathway activity14,16,17. To further
determine the molecular underpinning of the tumour-suppressive
function of PTEN sp-lncRNAs, we assessed the impact of
PTEN-regulating sp-lncRNA on the PI3K/Akt pathway activity.
Indeed, the siRNA-mediated silencing of the lnc-2 and lnc-6
significantly elevated phospho-Akt levels in response to serum
stimulation (Fig. 6d).

Discussion
LncRNAs have recently emerged as natural miRNA sponges,
which play important roles in various biological processes such as
muscle differentiation (linc-MD1 (ref. 10)) and embryonic stem
cell self-renewal (lincRNA-RoR39,40). By integrating gene
expression profile data of both lncRNAs and PCGs in tumours
and the sequence features of RNAs, we uncovered a lncRNA-
mediated sponge regulatory network of protein-coding driver
gene expression in prostate cancer. We revealed that the sponge
regulation by lncRNA had a widespread influence on the
expression of key components of the cancer-driving circuits and
those sp-lncRNAs may themselves serve as oncogenes or tumour
suppressors. Furthermore, the regulation of a protein-coding
driver gene expression by sp-lncRNAs was not a simple one-to-
one, but a many-to-many relationship: individual protein-coding
driver genes were regulated by multiple sp-lncRNAs and one
sp-lncRNAs could regulate many protein-coding driver genes.
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The regulatory function of two computationally predicted
sp-lncRNAs of PTEN, a master tumour suppressor in prostate
cancer was experimentally confirmed. These two lncRNAs not
only regulated PTEN expression in a miRNA-dependent manner,
but also demonstrated tumour-suppressor activities in prostate
cancer cell lines. Moreover, both lncRNAs exhibited concordance
between expression reduction and copy number loss in prostate
cancer, representing strong genetic evidence of their function
in vivo. In CRPC, both lncRNAs were downregulated compared
with primary prostate tumours, suggesting that they might
have an important function in advanced prostate cancer by
downregulating PTEN expression level.

One of the validated PTEN sp-lncRNA lnc-6 (TUG1) was
previously known to be involved in polycomb repressive complex
2-mediated transcriptional regulation and the three-dimensional
organization of the transcription unit in the nucleus. The newly
discovered cytoplasm function TUG1, a miRNA sponge, indicates
that a lncRNA can have multiple functions depending on its
sub-cellular localization. This underappreciated functional
plasticity of individual lncRNA could form the basis for their
context-dependent function. Moreover, we showed that
the expression level, the cytoplasmic localization and/or the
accessibility to the RISC are important factors for determining
the sponge efficacy of a lncRNA.

In summary, our study reveals a prevalent and complex
lncRNA-mediated sponge regulatory mechanism that may
significantly contribute to the aberrant expression of critical
protein-coding driver genes in prostate cancer. Those
sp-lncRNAs might have oncogenic or tumour-suppressive
function and perturbation of the lncRNA-mediated sponge
regulation might be exploited for cancer therapy. Our study also
suggests the vast functional space of lncRNAs as miRNA sponges
in cancer pathogenesis and the enormous plasticity of lncRNAs in
performing multiple functions.

Methods
Cell cultures. DMEM, RPMI-1640, McCoy’s 5A and fetal bovine serum (FBS) are
from Invitrogen. DU145, 22Rv1, HCT116 Dicer wild-type or HCT116 Dicerex5

cells were grown in RPMI-1640 with 10% FBS, DMEM with 10% FBS or McCoy’s
5A with 10% FBS, respectively. 22Rv1 and DU145 cell lines were obtained from
American Type Culture Collection, HCT116 Dicer wild-type and Dicerex5 cells
were a kind gift from Dr Vogelstein’s group from the Johns Hopkins University
School of Medicine. All cell lines were authenticated using Promega Power Plex
16HS Kit (Promega Inc.) and were tested to ensure no mycoplasma contamination
using MycoSEQ Mycoplasma detection kits (Thermo Fisher Scientific Inc.). All cell
lines were grown in penicillin/streptomycin and glutamine containing medium, at
37 �C in a humidified atmosphere with 5% CO2.

Transient transfection. SiGENOME non-targeting siRNA #2 (siLuc), siPTEN
smartpool and all siRNAs for lncRNAs are from Dharmacon. The sequences of
siRNAs used to knockdown each candidate PTEN sp-lncRNA are listed in
Supplementary Table 1. For the transfection of siRNAs, DU145 (3� 105) or 22Rv1
(2� 105) were seeded into six-well dishes. The following day they were transfected
with 100 nM siRNAs using lipofectamine2000 (Invitrogen Inc.) according to the
manufacturer’s recommendations. PTEN 3’UTR overexpression was achieved by
transient transfection using pGL3luc expression vectors. MiRNA/target interaction
was measured by a luciferase reporter assay. PTEN and lncRNA expression levels
were detected by qRT–PCR.

Dual luciferase reporter assay. DU145, 22Rv1, HCT116 Dicer wild-type or
HCT116 Dicerex5 cells were seeded at a density of 2� 105 cells per six-well dish.
Twenty-four hpurs later, 1,000 ng of pGLU/PTEN-30UTR were co-transfected
with 100 ng of pRL-TK using Lipofectamine2000. Forty-eight hours after
transfection, the luciferase activity was measured by Dual-Luciferase reporter assay
kit and normalized. PGL3-control, pRL-TK and Dual-Luciferase reporter assay kit
are from Promega.

RNA extraction and qRT–PCR. For qRT–PCR analyses, total RNA was extracted
from cells using Trizol reagent (Invitrogen Inc.) as per the manufacturer’s
instructions and subsequently column purified with RNeasy kits (Qiagen). cDNA
synthesis was performed using the High-Capacity cDNA Archive kit (Applied

Biosystem) and SuperScript II reverse transcriptase (Invitrogen Inc.) according to
the manufacturer’s instructions. The qRT–PCR primer sequences are listed in the
supplementary Data 5.

Western blot analysis. Cells were collected and lysed (50mM Tris, pH 8.0,
1mM EDTA, 1mM MgCl2, 150mM NaCl, 1% NP-40, 1mM b-glycerophosphate,
1mM Na3VO4, 1mM NaF, protease inhibitors). Proteins (30mg per lane) were
separated on 10% SDS–polyacrylamide gel and transferred to nitrocellulose
membrane. Immunoblotting of the membranes was performed using the following
primary antibodies: anti-PTEN (1:2,000), anti-AKT (1:2,000), anti-Phospho-
AKT(1:2,000) or anti-b-actin (1:5,000). Anti-PTEN (#9559), anti-AKT (#9272) and
anti-Phospho-AKT Ser473 (#9271) are from Cell Signaling; anti-b-actin antibody is
from Sigma-Aldrich. Signals were revealed after incubation with recommended
secondary antibody coupled to peroxidase by using enhanced chemiluminescence.
Scanned images were quantified using ImageJ software. The uncropped scans of the
most important western blots are shown in the Supplementary Figure 5.

Overexpression of lncRNAs and PTEN-regulating miRNAs. Lnc-2 fragment 1
(F1, ENST00000499521, 703-4834) and fragment 2 (F2, ENST00000499521,
3931-8636) were successfully cloned into an EF-1 alpha-promotor-driven
expressing vector. For PTEN expression rescue experiment, transfection reagent
only (Mock), miRs (3 nM each of miR-106a, -106b, -17-5p, -19a, -19b, -20a, -20b,
26a, -26b and -93), negative miR control (30 nM), empty expression vector
(100 ng, vector control), fragment 1 (100 ng, F1), fragment 2 (100 ng, F2) were
transfected separately or co-transfected together (F1þmiRs, F2þmiRs) into
DU145 cells. Synthetic, chemically modified short single-stranded RNA
oligonucleotides: Pre-miR-106a, Pre-miR-106b, Pre-miR-17-5p, Pre-miR-19a,
Pre-miR-19b, Pre-miR-20a, Pre-miR-20b, Pre-miR-26a, Pre-miR-26b, Pre-miR-93
and Pre-miR-negative control,were purchased from Ambion/Life Technologies. All
TaqMan primers and probes were purchased from Applied Biosystem. Forty-eight
hours after transfection, cells were collected and expression levels of miRs, lnc-2 or
PTEN were detected by qRT–PCR or western blot analysis.

Nucleus-cytoplasm fractionation. Both nuclear and cytoplasmic RNA from
cultured DU145 or 22Rv1 cells were isolated by SurePrep Nuclear or Cytoplasmic
RNA Purification Kit (Fisher Scientific BP2805-25) followed manufactuere’s
instruction. U1 RNA and GAPDH processed mRNA were detected in isolated
RNAs as control for nuclear RNA and cytoplasm RNA, respectively. Biological
triplicates were carried out and followed by qRT–PCR to detect abundance of
lncRNAs.

RNA-FISH. The FISH protocol was performed as described previously36. The
oligonucleotide probes were designed and purchased from Biosearch Technologies,
Inc. The sequences of RNA-FISH probes are listed in Supplementary Data 6. The
probes targeting lncRNA exons were conjugated to the fluorophore Quasar 570.
Briefly, before fixation and hybridization, DU145 and 22Rv1 cells were plated on the
two-chamber dishes (Nunc Lab-Tek Chambered Coverglass, Thermoscientific cat.
no. 155380) and grown overnight at 37 �C. Next day, the cells were fixed in 1ml of
4% formaldehyde for 10min at room temperature, washed with 1� PBS twice and
permeabilized with 70% EtOH in two-chamber dishes. Before the hybridization, the
cells were rehydrated with wash buffer containing 10% formamide (Ambion, cat. no.
AM9342) and 2� sodium citrate buffer (SSC; Ambion, cat. no. AM9765) for 5min.
Then, the probes (0.3–0.6mM final) were hybridized in 10% dextran sulfate
(Sigma, cat. no. D8906), 10% formamide and 2� SSC at 37 �C overnight. After
hybridization, the cells were washed in wash buffer at 37 �C for 30min twice (with
the addition of 4,6-diamidino-2-phenylindole (1� ) in the second wash) and then in
2� SSC twice. The imaging was done immediately after with 2� SSC as the
mounting medium. More than 70 nuclei for each lncRNA across multiple passages
were examined. 4,6-Diamidino-2-phenylindole and Cy3 channels were used to detect
the nuclei and the exon signals, respectively. To further check for background
autofluorescence, the FITC channel was used for imaging, and it was confirmed that
the exon signals did not co-localize with the signals observed in the FITC channel.
Across all samples, 27–33 z-stacks, each 0.33mm, were taken.

Ago RIP-ChIP. Ago RIP-ChIP was performed as previously described41. The
monoclonal antibody against Ago2 was purchased from Abcam (ab57113). Briefly,
DU145 or 22Rv1 cells were rinsed and lysed on ice with fresh lysis buffer with
protease inhibitors. Cell lysates were collected and cleared with pre-blocked Protein
G beads (Invitrogen), and proceeded for co-IP with either anti-AGO G beads,
Nonspecific Mouse Serum (NMS, Pierce Biotechnology) G beads at 4 �C for
90min. RNAs that co-IP with anti-AGO antibodies were extracted using TRIzol
(Invitrogen). Biological triplicates were carried out and followed by qRT–PCR
detection for the enrichement of lncRNAs. We used the anti-AGO-RIP-ChIP
approach, which uses anti-AGO to IP AGO-containing miRNPs and associated
mRNAs. MiRNPs in total cell lysates from DU145 and 22Rv1 cell lines were co-IP
with anti-AGO and investigated. As controls, IP with a non-immune serum were
performed in parallel.
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Cell proliferation. Eight hours after transfection, 1� 105 DU145, 22Rv1, HCT116
Dicer wild-type or HCT116 Dicerex5 cells were trypsinized, resuspended in 50ml
and seeded in 8 sets of 4 wells of a 96-well plate. Starting from the following day
(d0), 1 set of wells per day was washed once with PBS, stained with WST-1 (Roche)
at 450 nm according to the manufacturer’s recommendation until day 5.

Growth in semisolid medium. Anchorage-independent growth of DU145 and
22Rv1 cells transfected with siRNAs against PTEN sp-ncRNAs, siRNA-negative
control or siPTEN were determined by using Cell Transformation Detection Assay
Kit (Millipore) according to the manufacturer’s instructions. Briefly, the bottom layer
was obtained by covering six-well dishes with 2ml of 0.6% agar in DMEM. The 10
days after, 5� 104 transected cells were seeded on top in triplicate in 2ml of 0.3% agar
in DMEMþ 10% FBS. Colonies were counted after 3–4 weeks at � 40 magnification.

Statistical analysis of experimental results. In vitro data were analysed using
unpaired t-test (GraphPad Prism, GraphPad Software, Inc.) Values of Po0.05
were considered statistically significant (*). The mean±s.d. of three or more
independent experiments is reported. Regression analyses and correlation
coefficients were generated using GraphPad Prism, GraphPad Software, Inc.

Genomic and clinical data of prostate cancer. Two sets of exon array data of
prostate cancer, which were generated by MSKCC Prostate Oncogenome Project24

and by Mayo Clinic29, respectively, were downloaded from Gene expression
Omnibus (GEO; GSE21034 and GSE46691). In addition to the exon-array data, the
MSKCC data set contains the matched clinical information and SCNA data.

LncRNA expression from Affymetrix Human Exon 1.0 ST array. We collected
lncRNA annotation from two sources: the catalogue of lncRNA from Ensembl
database42 (Homo sapiens GRCh37, release 72) and the catalogue of lncRNA
generated based on transcriptome assembly from RNA-seq data2. For those
lncRNA transcripts that have overlap on the same strand between these two
sources, we only kept the Ensembl annotation to avoid redundancy. The
re-annotation of the exon-array probes for interrogating lncRNA expression was
performed as described previously13. A total of 11,271 lncRNA genes had at least
four exon-array probes that were uniquely mapped uniquely to their exons.
The gene expression summarization and normalization based on probe-level data
were performed as described in our previous study13. We further performed coding
potential analysis and 10,640 lncRNAs eventually were considered as noncoding
and were selected for further study.

Coding potential analysis. To confirm the lncRNA genes are noncoding as are
annotated, we used the algorithm CPAT(http://lilab.research.bcm.edu/cpat) with
the default parameter. CPAT is an alignment-free method43, which showed
favourable performance compared with other coding potential prediction methods.
For lncRNA gene with more than one transcript, we only considered it as
noncoding if all of its transcripts were noncoding.

MiRNA target prediction. MiRNA sequences and family information were
obtained from TargetScan website (http://www.targetscan.org/). We selected
miRNAs from conserved miRNA families and showed top 50% expression in the
prostate cell line DU145. The target sites of miRNAs were predicted by using
TargetScan44. For lncRNA transcripts, the default parameters were used to predict
miRNAs’ target sites. For PCGs, the predicted target sites on 30UTRs were obtained
from TargetScan website, in which 23-way alignment information was used for
prediction.

Predicting the sp-lncRNAs of protein-coding driver genes. We obtained a
comprehensive list of protein-coding cancer driver genes, both oncogenes and
tumour suppressors, from Vogelstein et. al.45. We focused on 45 driver genes in
prostate cancer, which showed differential expression (two-tailed Mann–Whitney
U test, Pr0.01) between normal prostate and primary tumours or between
primary and metastatic tumours for further study. We devised a computational
strategy to identify candidate sp-lnRNA-driver gene pairs (Fig. 1b). First, for each
lncRNA-driver gene pair, we estimated the significance of shared miRNAs with the
same seeds (P-value of one-tailed Fisher’s exact test) and the significance of
expression correlation across tumours in MSKCC data set (P-value of one-tailed
Pearson’s correlation coefficient test). We then computed a combined P-value by
converting P-values of these two tests P1 and P2 by using the formula

Pcombine¼P w
2
4 � � 2

P

2

i¼1

In pið Þ

� �

, which is known as Fisher’s method. The

candidate sp-RNA-driver gene pairs met the criterion that the adjusted combined
P-value is no larger than a threshold of 5% (that is, false discovery rate (FDR)
r0.05). Second, we selected sp-RNA-driver gene pairs that shared at least ten
different miRNAs and at least eight unique targeting sites for these shared miRNAs
(different miRNAs sharing the same seed sequence could target the same site).
Third, we selected the sp-RNA-driver gene pairs that showed at least moderate

positive correlation of expression (rZ0.25) in two independent clinical cohorts
from MSKCC24 and Mayo clinic29.
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