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We integrate comeasured gene expression and DNA methylation

(DNAme) in 265 human skeletal muscle biopsies from the FUSION

study with >7 million genetic variants and eight physiological traits:

height, waist, weight, waist–hip ratio, bodymass index, fasting serum

insulin, fasting plasma glucose, and type 2 diabetes.We find hundreds

of genes and DNAme sites associated with fasting insulin, waist, and

body mass index, as well as thousands of DNAme sites associated

with gene expression (eQTM). We find that controlling for heteroge-

neity in tissue/muscle fiber type reduces the number of physiological

trait associations, and that long-range eQTMs (>1 Mb) are reduced

when controlling for tissue/muscle fiber type or latent factors. We

map genetic regulators (quantitative trait loci; QTLs) of expression

(eQTLs) and DNAme (mQTLs). Using Mendelian randomization (MR)

and mediation techniques, we leverage these genetic maps to predict

213 causal relationships between expression and DNAme, approxi-

mately two-thirds of which predict methylation to causally influence

expression. We use MR to integrate FUSION mQTLs, FUSION eQTLs,

and GTEx eQTLs for 48 tissues with genetic associations for 534 dis-

eases and quantitative traits. We identify hundreds of genes and

thousands of DNAme sites that may drive the reported disease/quan-

titative trait genetic associations. We identify 300 gene expressionMR

associations that are present in both FUSION and GTEx skeletal muscle

and that show stronger evidence of MR association in skeletal muscle

than other tissues, which may partially reflect differences in power

across tissues. As one example, we find that increased RXRA muscle

expression may decrease lean tissue mass.

DNA methylation | gene expression | eQTL | mQTL | skeletal muscle

Understanding the interplay between genetic inheritance and
environmental exposure is critical to developing a full pic-

ture of human health and disease. However, this interplay cannot
be revealed without a detailed understanding of the molecular
events taking place in cells within multiple human tissues. His-
tone marks, transcription factor binding, and chemical modifi-
cations of DNA can actively influence or passively reflect gene
expression programs, which are translated into action by proteins
that carry out the actual work of the cell through molec-
ularsignaling events. A critical challenge for genomic medicine is
to understand how the molecular features within this dynamic
landscape not only correlate but causally relate to one another,
ultimately driving physiological traits or the development of disease.

Such knowledge is crucial, as it can inform efficacious therapies,
interventions, and disease diagnostics.
In recent years, common single nucleotide variant (SNV) genome-

wide association studies (GWASs) have led to the identification of
regions of the genome (and in some instances, specific genes) that

Significance

Identifying causal relationships within a web of human geno-

type–phenotype correlations is a substantial challenge. Using

the largest genetic study to date of comeasured expression and

DNA methylation (DNAme) in skeletal muscle, we identify cor-

relations among expression, DNAme, and physiological traits.

Leveraging Mendelian randomization (MR) and mediation tech-

niques, we identify 213 putative causal relationships between

expression and DNAme. We further use MR to prioritize hun-

dreds of genes and thousands of DNAme sites that may drive

genetic associations for diseases and quantitative traits. Our

study integrates genetic, diverse -omics, and physiological

measurements—a challenge of increasing importance in the field

of human genomics.
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influence diverse physiological and molecular traits (reviewed in refs.
1–3). These SNVs can also be remarkably useful statistical instru-
ments for untangling causality, as for the vast majority of loci, the
genotype is constant over the lifespan of an individual, regardless of
disease or physiological or molecular trait changes. Because of the
invariance of SNVs, they can be used as “anchors” to ground causal
predictions—the basic insight behind Mendelian randomization
(MR) (4, 5).
In this study, we present the largest integrative -omics analysis

to date of human skeletal muscle, spanning gene expression,
DNA methylation (DNAme), physiological traits, and genotype
information (Fig. S1) derived from 318 Finnish participants (265
with all measurements; Table S1). Using skeletal muscle gene
expression and DNAme, we identify associations with eight
physiological traits and demonstrate that traits with a large
number of associated genes also tend to be associated with many
DNAme sites. We subsequently use the comeasured molecular
traits to identify associations between gene expression and
DNAme. By considering the role of tissue/cell composition and
muscle fiber type, we document the importance of accounting for
tissue/cell type heterogeneity when analyzing molecular trait
readouts from bulk tissue. Finally, we map genetic regulators of
expression and DNAme, and use these genetic variants to dis-
entangle correlation from causation. Using MR and mediation
techniques, we help unravel the complex web of associations
between gene expression and DNAme, triangulating on a small
number of loci where we predict a causal relationship (i.e.,
DNAme driving gene expression or vice versa). We then use MR
to itemize genes and DNAme sites that may underlie 534 dis-
ease/quantitative traits (using “disease/quantitative traits” to
distinguish the GWAS-based traits from eight physiological traits
measured in our samples). We provide summary statistics from
analyses as a publicly available resource (Methods). Collectively,
these data represent the largest analysis to date of multiple
molecular and physiological traits in skeletal muscle, and illus-
trate the challenges and potential combined approaches to nar-
row in on causal relationships.

Results

Molecular Trait Associations with Tissue/Fiber Types and Physiological

Traits. We previously described the signature of type 2 diabetes
(T2D), body mass index (BMI), fasting serum insulin, and fasting
plasma glucose in the transcriptome of skeletal muscle (6). We
build on that study by (i) expanding our set of physiological traits
to include waist, weight, waist–hip ratio (WHR), and height; (ii)
measuring skeletal muscle DNAme, using the EPIC array on
separate pieces of tissue from the same biopsies; (iii) exploring the
effects of tissue/cell type heterogeneity on the levels of gene
expression and DNAme; and (iv) identifying associations of
DNAme with physiological traits. To prioritize sets of results for
analysis, we use a false discovery rate (FDR) of ≤1% throughout
this work as a pragmatic threshold to identify biologically rele-
vant signals (7).
Within a muscle biopsy, gene expression and DNAme levels

vary with the tissue/cell type composition, and therefore have the
potential to strongly influence and/or confound conclusions with
other molecular traits or phenotypes. To estimate the proportion
of different tissue/cell types within our muscle biopsies, we
compared gene expression signatures from our biopsies with
signatures from four tissue/cell types from the GTEx study (8):
skeletal muscle, subcutaneous adipose, whole blood, and
Epstein–Barr virus–transformed lymphocytes. All our samples
had >87% estimated muscle tissue and up to 13% estimated
adipose tissue (Fig. S2A). The estimated proportion of muscle
and adipose were positively (Pearson’s r = 0.76) and negatively
(r = −0.76) correlated, respectively, with the first principal
component of gene expression (Methods), suggesting we are
capturing a large portion of tissue variability with our estimates.
In addition, for six samples, we repeated the estimation with a
second piece of tissue from the same biopsy stock and saw high
correlation (r > 0.88) between first and second sample estimates

(Fig. S2B). Because the FUSION DNAme data were also
obtained from the same biopsy stock and a comprehensive tissue
reference panel does not exist for DNAme, we used the gene
expression-based tissue type proportions for both gene expres-
sion and DNAme analyses.
We found that estimated tissue type proportion was associated

with 10,079 (48%) of 20,952 tested genes and 126 (0.0173%) of
727,141 DNAme sites. We also examined the association between
eight physiological traits and tissue composition (Table S2A); only
fasting serum insulin showed an association with tissue composi-
tion (P = 0.0069).
Gene expression and DNAme levels also vary by skeletal muscle

fiber type composition. Muscle is composed of slow twitch type 1
fiber (oxidative), fast twitch 2A fiber (intermediate oxidative and
glycolytic), and fast twitch type 2X fiber (glycolytic) (9). Each of the
three main fiber types expresses a unique myosin heavy chain. As
an mRNA-based fiber type proxy, we estimated the proportion of
mRNA from each of the threeMYHmRNA levels (estimated fiber
type proportion; Methods). We observed substantial variability in
estimated fiber type proportion across individuals (Fig. S3A), and
an association with the third principal component of adjusted ex-
pression (rtype1 = 0.59; rtype2 = −0.13; rtype3 = −0.54). We repeated
the estimation for the six replicates and saw very strong correlation
(r > 0.98) for estimated fiber type proportions (Fig. S3B).
We found both that estimated fiber type proportion was as-

sociated with expression for 5,483 (26.2%) genes and DNAme at
13,582 (1.9%) DNAme sites (Dataset S1), and that coefficients
of gene expression or DNAme for fiber type 2A were typically
intermediate to those for type 1 and type 2X, consistent with the
2A fiber having both oxidative and glycolytic components.
Of the eight tested physiological traits, we found that fiber

type was associated with fasting serum insulin, BMI, weight,
waist, and WHR (P ≤ 1.4 × 10−4), but not with the other three
traits (P > 0.12). Higher levels of these five physiological traits
were associated with higher proportions of type 2X fiber type
(Table S2B).
We tested for association of the eight physiological traits with

gene expression and DNAme. Using a base set of covariates
(technical covariates, smoking status, age, and sex), we found
that >5% of genes and >0.1% of tested DNAme sites were as-
sociated with fasting serum insulin, BMI, and waist (Fig. S4A).
To assess the effects of confounding of association by tissue or
fiber type heterogeneity, we ran the physiological trait associa-
tion analysis controlling for tissue composition, fiber type, or
tissue composition and fiber type (Fig. S4A). Tissue composition
had little effect on most traits, but increased the number of
DNAme sites detected for fasting serum insulin and waist (Fig.
S4B). In contrast, controlling for tissue composition and fiber
type substantially reduced the number of genes and DNAme
sites associated with fasting serum insulin, BMI, waist, and WHR
(FDR ≤ 1%) relative to the base model (Fig. S4C) or tissue
composition alone (Fig. 1), suggesting that many of the associ-
ations were driven by muscle fiber type.
To assess the overall biological relationship of gene expression

with physiological traits, we performed gene ontology term en-
richment analysis. We found enrichment for lower expression of
cellular respiration genes for T2D (Fig. S5) and for lower ex-
pression of proteins targeted to the endoplasmic reticulum for
higher fasting serum insulin, BMI, and WHR (Figs. S6–S8),
consistent with our previous analysis (6).

Potential Causal Relationships Between Gene Expression and DNAme.
A long-standing scientific challenge is to understand the molecular
wiring of tissues/cells across diverse environmental contexts and
molecular traits. In contribution to these efforts, we identified (i)
DNAme sites whose DNAme level is correlated with gene ex-
pression, termed expression quantitative trait methylation (eQTM);
(ii) genetic regulators of expression and DNAme; and (iii) potential
causal relationships between gene expression and DNAme.
We identified eQTM by testing all DNAme sites at a variety of

distances, up to 10 Mb from the transcription start site (TSS) of
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the target gene (Methods). At distances between 1 and 10 Mb from
the TSS, we observed a low but constant discovery rate of eQTM
that was attenuated by including tissue and fiber type proportions
as covariates (Figs. S13 and S14), suggesting very little signal at
distances >1 Mb. For our primary analysis of eQTMs, we used a
1-Mb window and controlled for additional variation, using latent
factors learned from the gene expression and DNAme data
(Methods), which captured tissue/fiber type, technical, and addi-
tional latent variation (Figs. S15 and S16). In total, we identified
37,464 eQTMs (FDR ≤ 1%; 38% positive effect and 62% negative
effect) for 7,539 (36%) of 20,953 genes and 27,403 (3.8%) of
727,141 DNAme sites.
Using 7,128,878 autosomal SNVs, we mapped expression

quantitative trait loci (eQTLs) and methylation quantitative trait
loci (mQTLs), testing all SNVs within 1 Mb of the gene or
DNAme site, while controlling for genetic population structure
by using genotype principal components and for batch/tissue
composition effects by using latent factors (Methods). We iden-
tified 10,154 (48%) of 20,953 genes and 149,543 (21%) of
727,141 DNAme sites with at least one QTL (FDR ≤ 1%;
Fig. S17).
We used these genetic associations to infer potential causal

relationships between gene expression and DNAme at the
eQTMs (e.g., DNAme driving changes in gene expression or vice
versa) by applying MR and mediation techniques.
MR is a statistical framework that uses a genetic association

(“the instrument”) for one trait (“the exposure”) to test for a
causal influence on another trait (“the outcome”). An MR result,
in which the exposure instrument is associated with the outcome,
can arise under four distinct models (10, 11): (i) there is no
causal relationship, but a SNV that influences the outcome is in
linkage disequilibrium (LD) with a SNV that influences the ex-
posure; (ii) the exposure causally influences the outcome; (iii)
the outcome causally influences the exposure (a reverse causal
relationship); or (iv) the exposure and outcome are not causally
related but share a SNV that influences both the exposure and
the outcome independently (horizontal pleiotropy). To distin-
guish among these models, we use four complementary tests
(defined here; Fig. S18): an MR test (consistent with all models),
a colocalization test (distinguishing model i from models ii–iv;
Note S1), the MR Steiger test (distinguishing model ii from
model iii), and the causal inference test (CIT; distinguishing
among models ii–iv).
Of the 37,464 eQTMs, 31,578 had an eQTL and/or mQTL

(FDR ≤ 1%). For these 31,578 eQTMs, we modeled both ex-
pression and DNAme as an exposure, using the most strongly as-
sociated SNV for the respective molecular trait to perform an MR

test (Methods). We identified 22,843 gene–DNAme site pairs with
a putative MR association (FDR ≤ 1%) for which the results could
be consistent with any of the four models described. Next, we re-
moved pairs with evidence of being driven by two different SNVs in
LD (distinguishing model i from ii–iv) by using the “heterogeneity
in dependent instruments” (HEIDI) test (12) to identify 16,122
gene–DNAme site pairs (3,851 genes, 12,787 DNAme sites) with
potentially colocalized eQTL and mQTL signals (PHEIDI > 0.05).
Having identified eQTMs with potentially colocalized genetic

signals, we sought to both distinguish the direction of causality
(model ii from iii; M → E or E → M) and distinguish between a
causal and independent model (models ii–iv; Note S2). We used
a recently developed MR extension, MR Steiger (13), that pre-
dicts the direction of causality by comparing the variance in gene
expression explained by the SNV to the variance in DNAme
explained by the SNV. We identified 7,952 of the 16,122 gene–
DNAme site pairs with a predicted causal direction from the MR
Steiger test (FDR ≤ 1%; Methods).
Because MR Steiger cannot distinguish between a causal and

independent model, we next used the CIT (14), a mediation-
based approach in which a causal chain from SNV to exposure
to outcome is predicted using a series of conditional regression
tests (Fig. S19). Of the 7,952 pairs, 214 pairs had a predicted
causal direction from the CIT (Methods), of which 213 had
concordant directions of effect with the MR Steiger prediction.
These 213 gene–DNAme site pairs (Dataset S2) are likely to

be a conservative estimate, given we use fairly stringent criteria for
identifying causal relationships and because measurement error can
lead the CIT to predict independence for truly causal relationships
(13). Within our 213 predicted causal relationships (115 genes, 190
DNAme sites), 137 (64%) predict methylation to causally influence
expression (M → E) and 76 (36%) predict expression to causally
influence methylation (E→M). DNAme sites were closer to the
gene TSS for the M → E predictions than for E → M (P =

0.0082; Fig. S20A); however, we did not observe a substantial
difference in chromatin state overlaps between M → E and
E→M predictions (minimum Bonferroni P = 1; Fig. S20 B and C).
As an example with strong evidence from each causal test, we

highlight the predicted M→ E effect for cg09001591 DNAme and
FAM179A expression. FAM179A expression and cg09001591
DNAme are strongly associated (P = 5.7 × 10−32; Fig. 2B), and
they share the same top QTL SNV, rs1867944 (PFAM179A-eQTL =

2.1 × 10−17, Pcg09001591-mQTL = 9.5 × 10−44; Fig. 2A). Both the CIT
and MR Steiger test predict a causal methylation to expression
(M → E) relationship (Fig. 2 C–E). The cg09001591 DNAme site
(chr2:29236578) lies in a skeletal muscle TSS between two skeletal
muscle ATAC-seq peaks at the start of the most highly expressed
FAM179A exons (Fig. S21). We analyzed the chromatin states of
the six SNVs in strong LD with rs1867944 (r2 > 0.8) across a panel
of tissues (Methods) and found both rs1867944 and cg09001591 lie
in a TSS state unique to skeletal muscle and duodenal mucosa
(Fig. S22). This TSS may explain why the strongest FAM179A-
rs1867944 associations in GTEx (phs000424.v7.p2) are for skele-
tal muscle, stomach, and colon-sigmoid (P = 8.2 × 10−9, 3.3 × 10−7,
and 3.0 × 10−6, respectively).

Candidate Links Between Disease/Quantitative Trait Genetic Signals:

FUSION Skeletal Muscle Gene Expression and DNAme. A primary
goal motivating molecular trait genetics is to understand the
molecular effects of noncoding genetic loci associated with dis-
ease. To integrate our genetic maps of molecular traits with
genetic maps for disease/quantitative traits, we performed MR
for FUSION skeletal muscle gene expression and DNAme, using
GWAS summary statistics for 522 disease/quantitative traits from
the UK Biobank and GWAS meta-analysis summary statistics for
T2D and 11 T2D-related traits (a total of 534 disease/quantitative
traits; Table S3 and Methods). Controlling for the number of tests
performed across all 534 disease/quantitative traits (Benjamini
Hochberg), we found 7,145 preliminary MR associations for gene
expression and 79,444 for DNAme (FDR ≤ 1%, PGWAS ≤ 5 × 10−8),
spanning 1,059 genes and 13,112 DNAme sites. We performed
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Fig. 1. Association of FUSION physiological traits with skeletal muscle gene

expression and DNAme, controlling for estimated fiber type proportions.

Analysis performed with base covariates (sex, age, sample collection site,

smoking status, and molecular-trait specific technical covariates), plus tissue

type (base+tissue, green bars and points), or base+tissue plus fiber type cova-

riates (base+tissue+fiber, orange bars and points). (A) Percentage of DNAme

sites or genes (x axis) associated with each physiological trait (y axis; FDR ≤ 1%).

(B) Scatter plot of the number of DNAme sites (y axis) and number of genes (x-

axis) associated with each physiological trait adjusting for base+tissue or for

base+tissue+fiber covariates (results for a given trait connected with black line).
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HEIDI colocalization analysis and identified 2,417 gene expression
and 26,718 DNAme associations (560 genes, 6,722 DNAme sites)
with potentially colocalized molecular and disease/quantitative trait
genetic signals (FDR ≤ 1%, PHEIDI > 0.05, PGWAS ≤ 5 × 10−8),
removing many associations that lacked evidence of shared genetic
factors, consistent with previous studies (10, 12, 15). We refer to
these potentially colocalized results, constituting pairs of disease/
quantitative traits and genes or DNAme sites, as MR associations
(FDR ≤ 1%, PHEIDI > 0.05, PGWAS ≤ 5 × 10−8). Assuming a low
probability of a reverse causation (Note S2), these results are con-
sistent with either a causal or independent (horizontal pleiotropy)
model (12).
For gene expression, the disease/quantitative traits with the

most MR associations were height (standing or sitting: 140
genes), bioimpedance-derived traits excluding fat mass/percent-
age traits (43–71 genes), and weight (40 genes; Fig. S23 and
Dataset S3). We observed a similar pattern for DNAme MR
associations (Fig. S24 and Dataset S4) and a strong correlation
between the number of gene expression- and DNAme-based MR
associations per trait (r = 0.99; Fig. S25).
We looked for MR associations in which the same SNV had an

expression MR association and DNAme MR association for the
same disease/quantitative trait, identifying 593 trait–gene–DNAme
site sets that spanned 171 unique gene–DNAme site pairs and 89
unique SNVs. Within the 171 gene–DNAme site pairs, 86 (50%)
were eQTM (FDR ≤ 1%); for the remaining 85 pairs, the eQTM P
value distribution was markedly skewed toward smaller P values
(Fig. S26), suggesting many additional eQTM associations that did
not reach the FDR ≤ 1% threshold. None of the 86 gene–DNAme
site pairs that passed the eQTM FDR threshold were in our set of
213 causal gene–DNAme site predictions (0.006% of the 37,464
considered gene–DNAme pairs that passed the eQTM FDR
threshold of 1%); thus, we did not identify instances of predicted
causal pathways from gene expression to DNAme to disease/
quantitative trait or from DNAme to gene expression to disease/

quantitative trait. We note, however, that given the stringent
thresholds of our causal predictions, this result does not prove
horizontal pleiotropy at these loci.

Candidate Links Between Disease/Quantitative Trait Genetic Signals:

FUSION Skeletal Muscle and GTEx Tissue Gene Expression. We com-
pared the FUSION skeletal muscle gene expression MR asso-
ciations with those for GTEx skeletal muscle and put them in
context of the other 47 GTEx study tissues (8). For each GTEx
tissue, we performed MR for the 534 disease/quantitative traits,
using eQTL summary statistics from the GTEx study (Methods).
Overall, the number of GTEx MR associations scaled roughly

with tissue sample size (Fig. S27); both GTEx (n = 491) and
FUSION (n = 301) skeletal muscle had similar numbers of MR
associations, at 2,229 and 2,417, respectively. The number of MR
associations per disease/quantitative trait was strongly correlated
between FUSION and GTEx skeletal muscle (r = 0.98), but also
between FUSION skeletal muscle and other GTEx tissues (Fig.
S28). The number of MR associations was positively associated
with the number of GWAS trait SNVs with P < 5 × 10−8 (Fig.
S29), suggesting that for this set of traits, the number of MR
associations for each disease/quantitative trait is more strongly
influenced by the number of tissue samples and number of trait
GWAS signals than the biology underlying a specific tissue and
disease/quantitative trait combination. However, within a given
trait, we observed a stronger correlation between the FUSION
and GTEx skeletal muscle gene-specific MR association strengths
(Fig. S30, shown for trunk predicted mass; r = 0.62) than between
FUSION and other GTEx tissues (maximum r = 0.45). This ob-
servation is consistent with either different genes potentially
influencing a disease/quantitative trait in different tissues and/or
with different levels of power to detect eQTLs in different tissues.
As an example, for T2D, we saw five MR associations with

FUSION skeletal muscle, three for GTEx skeletal muscle, four

A B

E

C D

Fig. 2. FAM179A-cg09001591 causal analysis. (A, Top) SNV association with cg09001591 (orange) or FAM179A (green). (A, Bottom facet) cg09001591 DNAme

site (orange lollipop) and FAM179A gene body (green line). (B) Scatter plot of cg09001591percentage DNAme (x axis) and FAM179A transcripts per million

(TPM; y axis). (C) Scatter plot of mQTL effect sizes with SEs (x axis) by eQTL effect sizes with SEs (y axis) for SNVs used in the HEIDI test. The black dashed line is

the estimated MR effect based on the top QTL SNV (black triangle). (D) Percent DNAme and gene expression variance explained (y axis) by rs1867944

genotypes. (E) Scatter plot of residual cg09001591 DNAme (adjusted for PEER factors used in eQTM mapping; x axis) and residual FAM179A gene expression

(adjusted for PEER factors; y axis). Linear regression line for eQTM association overall (black) and colored by the rs1867944 genotype (TT, green; TC orange;

CC, purple; Left). Box plots and linear regression line (additive model) of residual cg09001591 DNAme by rs1867944 genotype (facet M). Box plot and re-

gression line as for M, except with adjustment of residual cg09001591 DNAme by residual FAM179A gene expression (facet MjE). Box plots and linear re-

gression line (additive model) of residual FAM179A gene expression by rs1867944 genotype (facet E). Box plot and regression line as for E except with

adjustment of residual FAM179A gene expression by residual cg09001591 DNAme (facet EjM).
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for subcutaneous adipose, and associations with other tissues
(e.g., pancreas, brain; Fig. S31). All these tissues are known to
play a role in T2D etiology (16); however, we cannot draw strong
conclusions about T2D tissue specificity from these results due to
the lack of other important T2D tissues in GTEx (e.g., pancreatic
islets), the small number of MR associations, and the small sample
sizes for most GTEx tissues.
Of the 2,417 FUSION skeletal muscle gene–disease/quanti-

tative trait MR associations, 921 were also observed in GTEx
skeletal muscle (FDR ≤ 1%, PHEIDI > 0.05, PGWAS ≤ 5 × 10−8 with
the FUSION and/or GTEx eQTL SNV). For 300 of these pairs,
the GTEx muscle MR association was stronger (smaller P value)
than that for all other GTEx tissues (Dataset S5). These genes
were more highly expressed in muscle (P = 7.1 × 10−6), and
showed increased muscle specificity (P = 0.0021; Fig. S32); thus,
some of the signals may reflect skeletal muscle-specific biology.
However, as more and stronger MR associations are seen in GTEx
tissues with larger sample sizes (of which muscle is the largest; Fig.
S27), some top skeletal muscle signals are likely due to greater
power rather than muscle specificity.
We found strong evidence in FUSION and GTEx skeletal muscle

for overlap between genetic regulators of RXRA (retinoic acid re-
ceptor RXR-alpha) expression and a locus associated with four body
mass/composition related traits derived from bioimpedance measures
(Fig. 3 and Fig. S33; muscle expression specificity index = 0.55). The
strongest association was for trunk predicted mass (PGWAS = 1.29 ×

10−9, PMR-FUSION = 3.78 × 10−8, PMR-GTEx = 4.39 × 10−6), a mea-
surement that approximates trunk lean tissue mass based on bio-
impedance, weight, age, and height (17). Using rs6583658 as an
instrument, our MR results suggest that increased RXRA expres-
sion may decrease lean tissue mass (Fig. 3C and Dataset S5),
which is approximated by the four correlated bioimpedance-
derived traits: trunk predicted mass, trunk fat-free mass, whole
body fat-free mass, and whole body water mass. Analysis of LD
identified 31 SNVs in LD with rs6583658 (r2 > 0.8), making the
identification of candidate causal SNVs difficult, although
several SNVs lie in muscle-specific flanking TSS chromatin
states (Fig. S34).
Muscle may have stronger RXRA MR associations for these

traits than other GTEx tissues due to larger sample size. To ad-
dress this issue, we estimated the power to detect an RXRA MR
association for trunk predicted mass in other tissues, assuming the
rs6583658 effect size observed in GTEx skeletal muscle was ob-
served in the other GTEx tissues (Methods). GTEx muscle had an
estimated 99% power to detect an MR association (FDR ≤ 1%),
whereas of the 48 other GTEx tissues, only 8 tissues had >80%
power and 35 tissues had <50% power to detect an MR associa-
tion (Fig. 3A). These findings leave open the possibility that other
tissues might have similar evidence for overlap of genetic associ-
ations with RXRA expression and trunk predicted mass.
We also investigated whether this RXRA MR association

may be driven by height [lean tissue mass is known to be as-
sociated with height (18)], even though height is accounted for
in the lean tissue mass calculations (17). Compared with lean
tissue mass, we found weaker RXRA MR signals for height
(standing height: PGWAS = 1.01 × 10−6, PMR-FUSION = 4.7 × 10−6,
PMR-GTEx = 3.2 × 10−4; sitting height: PGWAS = 9.46 × 10−8,
PMR-FUSION = 7.87 × 10−7, PMR-GTEx = 2.13 × 10−5), suggesting
this result is not driven by height.

Discussion

In this study, we integrate skeletal muscle gene expression,
DNAme, estimates of tissue and muscle fiber type, physiological
traits, SNVs, and external GWAS results for disease/quantitative
traits. We use genetics to begin to untangle the complex web of
correlations between molecular and physiological traits and
identify putative causal relationships.
Within our data, we find that estimated tissue/cell type propor-

tions are associated with a large proportion of genes (26.2–48%)
and a small proportion of DNAme sites (0.017–1.9%). Although
our estimated tissue/cell-type proportions do not capture the full

variety of cell types present in muscle, the low proportion of
associated DNAme sites is consistent with previous whole genome
bisulfite sequencing studies that report only ∼15–21% of CpG sites
showing tissue-specific DNAme patterns (reviewed in ref. 19)—
most of which lie in enhancers, a class of regulatory elements
poorly captured by the EPIC array (20). Even though propor-
tionally fewer DNAme sites are associated with tissue/cell type
heterogeneity, we find that controlling jointly for tissue and muscle
fiber type decreases the number of genes and DNAme sites asso-
ciated with physiological traits and substantially reduces the num-
ber of long-range (>1 Mb) associations between gene expression
and DNAme. Overall, these results emphasize the importance
of tissue/cell type composition as a component of physiological
traits and the need for single cell data, either for the study of

Fig. 3. MR association of UK Biobank GWAS of trunk predicted mass and

RXRA-eQTL results in FUSION skeletal muscle and GTEx tissues. (A) MR asso-

ciation (x axis) for UK Biobank trunk predicted mass with the top RXRA-eQTL

SNV from FUSION (rs6583658; square) or the top GTEx tissue-specific RXRA-

eQTL SNV (triangle) across FUSION skeletal muscle and GTEx tissues (y axis).

Power to detect an RXRAMR association (color of tissue name;Methods). ACC,

anterior cingulate cortex; GE, gastroesophageal, NAc, nucleus accumbens

basal. (B, Top) UK Biobank trunk predicted mass–SNV association (gray points);

MR association P values for RXRA (dark blue diamond) and nearby, protein-

coding genes (light blue diamond; diamonds drawn at the TSS of the gene).

(Middle) FUSION SNV-gene expression association results for RXRA and other

nearby genes. (Bottom) Genes in the region. (C) Scatter plot of FUSION RXRA-

eQTL effect sizes and SEs (x axis) and trunk predicted mass GWAS effect sizes

and SEs (y axis) for SNVs used in the HEIDI test. The black dashed line is the

estimated MR effect based on the top QTL SNV (black triangle).
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samples or as a source of cell type signatures for more accurate
estimates of tissue composition.
Our study also demonstrates how putative causal predictions can

be inferred using genetic associations through multilayered analy-
sis, giving special consideration to the assumptions and biases of
the models being used. Many MR approaches between molecular
traits and disease/quantitative traits rely on the assumption that a
proximal SNV association with a molecular trait is not mediated
through the complex trait (Note S2). However, for MR tests of two
molecular traits, such as gene expression and DNAme, there is less
a priori information about how the SNV might affect the traits;
thus, other methods must be used in attempt to infer the direction
of causality, if present.
In our analysis, we use two methods (MR Steiger and CIT),

leveraging the strengths of each method to identify a modest set of
213 possibly causal relationships. Roughly two-thirds of these gene
expression–DNAme pairs have evidence of DNAme driving gene
expression, and one third the reverse—highlighting that a model
in which DNAme always drives changes in gene expression cannot
be assumed. Our findings may represent true causal relationships
of DNAme on expression or expression on DNAme, but are in
themselves not proof. Of the 7,952 causal predictions from MR
Steiger, 7,731 are predicted to be driven by independent genetic
effects based on the CIT. This low level of CIT causal predictions
is consistent with the findings from other studies (21, 22), as well
as with limited power to detect causality due to modest sample
sizes and noise (e.g., measurement error) within the data (13). If
the many independent predictions are due to biological effects and
not statistical issues, such results are consistent with a model in
which SNVs influence the local regulatory environment (23),
which then influences both gene expression and DNAme.
Finally, we integrate genetic maps for 534 disease/quantitative

traits with genetic maps for FUSION skeletal muscle gene ex-
pression and DNAme, as well as GTEx gene expression from 48
diverse tissues. We use these data to identify variants that may
work through (or be easier to detect in) muscle, highlighting RXRA
as an example—although we also show that we have greater power
to detect MR associations in muscle than other GTEx tissues.
RXRA belongs to the RXR transcription factor family of nuclear

receptors that, in the context of skeletal muscle, has been linked to
myoblast differentiation (24–26), insulin sensitivity, and glucose and
fatty acid metabolism (reviewed in ref. 27). Although we observe a
stronger MR association for skeletal muscle than other tissues, we
cannot rule out the possibility of an independent model (horizontal

pleiotropy) with action through other tissues, genes, or molecular
traits. Nonetheless, our results suggest that increased RXRAmuscle
expression may contribute to decreased lean tissue mass, perhaps
through long-term changes in muscle physiology.
With the increasing accessibility and affordability of molecular

measurements on humans for both genetic loci and specific mo-
lecular traits (e.g., RNA-seq, DNAme), multilayered datasets will
become commonplace across many tissues and diseases. As more
comprehensive genome-wide QTL catalogs become available (i.e.,
distal/trans QTLs) and multi-instrument MR methods mature, it
may become possible to better distinguish instances of horizontal
pleiotropy (reviewed in ref. 11). MR approaches, when their as-
sumptions can be verified, will help provide a way to cut through
the Gordian knot of correlations to better understand the molec-
ular underpinnings of disease.

Materials and Methods

The study was approved by the coordinating ethics committee of the Hospital

District of Helsinki and Uusimaa. A written informed consent was obtained

from each participant. A detailed description of computational and experi-

mental analyses is provided in Supplementary Materials and Methods. Briefly,

we conducted strand-specific mRNA-seq, DNAme assessment using the 850K

EPIC chip, and dense array genotyping spanning 318 human skeletal muscle

biopsies. We tested for associations of estimated tissue type and fiber type

proportions, physiological traits, and proximal SNVs, with gene expression and

DNAme. We tested for association of gene expression with DNAme and for

evidence of a causal relationship between gene expression and DNAme, using

MR, MR Steiger, and the CIT. We tested for MR associations of T2D, 11 T2D-

related traits, and 522 traits measured in the UK Biobank (Table S3) with eQTLs

from FUSION skeletal muscle and 48 GTEx tissues, and mQTLs from FUSION

DNAme. EPIC methylation array blacklist probes and summary statistics of

physiological trait associations, eQTMs, eQTLs, mQTLs, and disease/quantita-

tive trait MR associations are publicly available at https://fusion.sph.umich.edu/

public/tissue_biopsy/share/2018_muscle.
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