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Abstract

Numerous genetic studies have established a role for rare genomic variants in Congenital

Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level.

To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis

of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic

aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and per-

formed a gene-wise analysis of the burden of rare genomic deletions in cases versus con-

trols. In addition, we performed variation rate testing for DNVs identified in 2,489 parent-

offspring trios. Our analysis revealed 21 genes which were significantly affected by rare

CNVs and/or DNVs in probands. Fourteen of these genes have previously been associated

with CHD while the remaining genes (FEZ1,MYO16, ARID1B, NALCN,WAC, KDM5B and

WHSC1) have only been associated in small cases series or show new associations with

CHD. In addition, a systems level analysis revealed affected protein-protein interaction net-

works involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/cen-

trosome function. Taken together, this approach highlights the importance of re-analyzing

existing datasets to strengthen disease association and identify novel disease genes and

pathways.

Author summary

Congenital heart disease (CHD) is the most common congenital anomaly and represents

a major global health burden. Multiple studies have identified a key genetic component

contributing to the aetiology of CHD. However, despite the advances in the field of CHD

within the last three decades, the genetic causes underlying CHD are still not fully under-

stood. Herein we have assembled a large patient CHD cohort and performed a data-

driven meta-analysis of genomic variants in CHD. This analysis has allowed us to

strengthen the disease association of known CHD genes, as well as identifying novel hap-

loinsufficient CHD candidate genes.
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been already published. The reference for each

individual study is shown in S2 and S3 Tables. The

assembled DNV dataset used in this study is

provided in the S14 Table. In addition, we have
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Table).
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Introduction

Congenital Heart Disease (CHD) accounts for a large fraction of foetal and infant deaths, with

incidence rates ranging from 7–9 per 1000 live births [1]. Within the last 30 years, survival

rates have substantially increased due to improvements in surgical, interventional and clinical

intensive care resulting in a rapidly growing number of CHD survivors reaching adulthood

[2]. Nevertheless, there is still increased morbidity and mortality in individuals with CHD,

resource utilization is high especially among severely affected patients, and importantly, the

underlying etiology remains unclear for the majority of cases.

CHD is multifactorial, with both environmental and genetic risk factors [3,4]. Familial

aggregation of CHD including Thoracic aortic aneurysm (TAA), as well as a large proportion

of genomic copy number variants (CNVs) and de novo intragenic variations (DNVs) in pro-

bands with CHD suggest a strong genetic component. An estimated 4–20% of CHD cases are

due to rare CNVs, suggesting that a significant part of CHD is caused by gene-dosage defects

[5]. Recently, exome sequencing in large cohorts has been used to identify novel disease genes

and strengthen known disease associations through the demonstration of an excess of de novo

protein truncating variants (PTV) and rare inherited loss-of-function (LOF) variants in pro-

bands with CHD [6,7].

Overlaying both CNVs and PTVs has been used to define novel CHD relevant disease

genes in contiguous gene disorders [8,9]. Following this principle, we have performed a

genome-wide integrative meta-analysis of published and publicly available datasets of CNVs

and DNVs identified in probands with CHD. This analysis, which is one of the larger meta-

analyses of genomic variants in CHD so far, strengthens the disease association of known

CHD genes and identifies novel haploinsufficient CHD candidate genes.

Results

Cohort description and workflow

We assembled a cohort with 7,958 cases (comprising both non-syndromic CHD, syndromic

CHD and TAA cases) and 14,082 controls (S1 Table). Of the total of cases, 777 (~10%) were

diagnosed with Thoracic Aortic Aneurysm (TAA). An overview of the sources used to assem-

ble the present cohort is listed in S2 Table (for CHD cases) and S3 Table (for controls). We

applied a set of quality control filters to our assembled CNV data before performing case-con-

trol association tests (Materials and Methods). In addition, common CNVs (minor allele fre-

quency (MAF) in controls> 0.01) were excluded from the analysis. After filtering, 6,746 cases

and 14,024 controls remained for further downstream analysis. Furthermore, we built a dataset

of de novo variations (DNVs) identified in 2,489 probands with CHD from parent-offspring

trios [6,7].

CNV burden test of known CHD genes

Haploinsufficiency has been shown to cause a reasonable proportion of CHD [5]. Thus, genes

known to be associated with CHD and genes which are intolerant for LOF variations should

be deleted more often in probands with CHD than in controls. To test this hypothesis, we per-

formed a CNV burden test using sets of genes known to be involved in CHD. In addition, we

included genes known to be associated with developmental disorders, a curated list of known

haploinsufficient disease genes, autosomal recessive disease genes and genes predicted to be

intolerant to LOF variations (based on the observed/expected LOF ratio from gnomAD [10]).

The burden test was performed using a logistic regression framework [11] (implemented in

PLOS GENETICS Integrative analysis of genomic variants in CHD
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PLINK v1.7). Fig 1 and S4 Table summarize the results from the burden test on the different

gene sets: known CHD genes (grouped in syndromic, non-syndromic, monoallelic and bialle-

lic), developmental disorder genes, haploinsufficiency disease genes, autosomal recessive genes

and all protein-coding genes. We tested all protein-coding genes to address the possibility that

the analyses could be biased by differences in the CNV rate within the case and control groups,

since we have assembled our cohort from different datasets. We did not observe genome-wide

(all tested protein-coding genes) enrichment (P = 0.39, OR = 0.99) nor enrichment in the auto-

somal recessive gene set (P = 0.52, OR = 1.03) when comparing rare CNV deletions in cases vs

controls. In contrast, the analysis revealed significant differences in the burden of CNV dele-

tions between cases and controls for the set of haploinsufficiency genes (P = 8.29 x 10−13,

OR = 2.27). As expected, our analysis revealed significant enrichment for the set of known

Fig 1. CNV burden test on known gene sets. The forest plot shows the odds ratio (dots), the 95% confidence intervals
indicating the certainty about the OR (interrupted line) and the P-value in the indicated gene sets.

https://doi.org/10.1371/journal.pgen.1009679.g001
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CHD genes, which is mainly explained by the contribution of monoallelic CHD genes

(P = 2.04 x 10−31, OR = 4.13) and syndromic CHD gene set (P = 1.66 x 10−33, OR = 4.06).

Unlike the monoallelic and syndromic CHD gene sets, no significant enrichment was found

for the nonsyndromic (P = 0.75, OR = 1.16) and biallelic (P = 0.08, OR = 1.87) CHD gene sets.

Our analysis revealed a moderate enrichment of rare CNVs in the developmental disorder

gene set (P = 6.90 x 10−11, OR = 1.75).

When the regression-based analysis was performed at different levels of the observed/

expected LOF ratio (oeLOF) constraint metric (Fig 2 and S5 Table), we observed the higher

enrichment toward the most LOF constrained genes (oeLOF < 0.01, P = 9.55 x 10−18,

OR = 1.40) and still a moderate enrichment for genes with oeLOF < 0.1 (P = 0.002,

OR = 1.09). No enrichment was observed in the set with oeLOF ratio > = 0.1 (P = 0.03,

OR = 0.99). Based on these results we conclude that haploinsufficiency causes a significant

component of CHD.

Fig 2. CNV burden test on constraint LOF genes at different observed/expected LOF ratio thresholds. The forest
plot shows the odds ratio (dots), the 95% confidence intervals indicating the certainty about the OR (interrupted line)
and the P-value in the indicated gene sets.

https://doi.org/10.1371/journal.pgen.1009679.g002
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Genome-wide identification of haploinsufficiency candidate disease genes
for CHD

To perform a systematic, genome-wide identification of potential haploinsufficient CHD dis-

ease genes and loci, we analysed the CNV burden of 19,969 protein-coding genes (GENCODE

v19). To this end, we compared the number of rare CNV deletions (MAF< 0.01) among cases

and controls for each gene, and identified genes with significant CNV burden using a permu-

tation test (significance level of adjusted P< 0.05, see Materials and Methods). If a CNV

spanned two or more genes, all affected protein-coding genes were considered in the analysis.

The distributions of rare CNV deletions in CHD cases across all 22 human autosomes is

shown in Fig 3. Significant candidate genes had a median number of 12 overlapping CNVs in

cases, compared to a median of 0 overlapping CNVs in controls (S1A Fig). Because CNVs can

be large chromosomal aberrations, multiple genes were affected by some of the CNVs. In total,

528 genes (Sheet A in S6 Table) reached significance (Permutation test, P adjusted< 0.05).

These 528 genes encompass a total of 63 loci (Sheet B in S6 Table, highlighted in magenta in

Fig 3. CNV deletion distribution across the 22 autosomes. The plot shows the distribution of rare CNV deletions
(green track) in CHD cases, the differences between the overlapping CNV deletions in cases and controls (black track)
and highlight the location of the 63 significant loci discovered (in magenta).

https://doi.org/10.1371/journal.pgen.1009679.g003
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Fig 3). The sizes of these loci range from 558 bp to 10.5 Mbp, with a median value of 243 Kbp

(S1B Fig). The number of genes per locus ranged from 1 to 48, with a median value of 3 (S1C

Fig). Only 16 loci contained a single gene (Sheet B in S6 Table).

In addition, we tested previously described CNV deletion syndrome regions (https://

decipher.sanger.ac.uk/disorders#syndromes/overview) associated with developmental disor-

ders and/or CHD for enrichment in our analysis (Materials and Methods). We found eight of

these regions enriched in the dataset (S7 Table), with the 16p11.2-p12.2 locus being the region

with the largest number of deletions in cases (n = 230).

Shared genetic architecture of CHD and TAA

We independently performed a genome-wide test without the TAA cases to evaluate its impact

on CHD. As expected, most of the genes (447 out of 528) remained significant after removing

the contribution of TAA cases, since ~90% of the cases in the analyzed CNV cohort were

CHD. Ten genes were significantly enriched independently when analyzing CHD and TAA

cases, while 61 were significantly enriched only in TAA cases (S8 Table).

De novo variation analysis

To identify an independent set of haploinsufficient CHD candidate genes, we combined de

novo variations identified in two large-scale CHD case-control studies [6,7] and performed a

gene-based de novo variation (DNV) burden test [12]. We analysed a total of 4,195 rare DNVs

within 2,534 genes in the patient cohort. After classifying every variant into functional groups

(Materials and Methods) 526 of these variants were predicted to be protein-truncating and

2,647 were missense. We evaluated for potential differences of the DNV rates between cohorts

(see Materials and Methods). Comparison of the rate of each variant type across the groups

was non-significant (P> 0.05, Poisson test, S9 Table).

We used two available statistical methods, Mupit [12] and DeNovoWEST [13], which test

the significance of observed DNV at gene level, by comparing the number of observed varia-

tions with the number of expected variations (based on a sequence-dependent variation recur-

rence rate, see Materials and Methods). While Mupit focuses on enrichment of protein-

truncating DNVs specifically, the DeNovoWEST test incorporates missense constraint infor-

mation at variant level and applies a unified severity scale at variant level based on the empiri-

cally-estimated positive predictive value of being pathogenic. Based on the complementary

results of both tests [13], we reported the minimal observed DNV p-value (Pdnv) per gene.

We identified 14 genes significantly enriched in the DNV analysis (P< 0.05 after Bonfer-

roni correction for multiple testing, S10 Table). All of these genes were affected by at least two

constrained non-synonymous DNV (nsDNV) and show significant overlap with 11/14

(78.6%) of the genes being known CHD disease genes. CHD7 (OMIM 214800) was the most

significant haploinsufficient gene (P = 2.84 x 10−26) with 18 nsDNVs identified in the patient

cohort. Other highly enriched genes for nsDNV—KMT2D (OMIM 147920), KMT2A (OMIM

605130), NSD1 (OMIM 117550), TAB2 (OMIM 614980), and ADNP (OMIM 615873)—have

been previously associated with different types of neurodevelopmental disorders with co-

occurrence of CHD. In the case of KDM5B (OMIM 618109), it has only been described in the

context of a recessive neurodevelopmental phenotype with cases presenting ASD (Atrial septal

defects) [14,15].

We next evaluated the distribution of o/e LOF ratio at different levels of DNV enrichment

(genes were split based on Pdnv). Since the o/e ratio of LOF variation in each gene is strongly

affected by its length, we instead used the 90% upper bound of its confidence interval (termed

LOEUF), which keeps the direct estimate of the o/e ratio and allows to distinguish small genes
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from large genes, as suggested by Karczewski et al [10]. We observed that the genes with higher

enrichment for nsDNV (lower Pdnv) show a significant decreased LOEUF compared to the

mean of all protein-coding genes (Fig 4).

Integration of DNV and CNV results

To identify high confidence haploinsufficient CHD disease genes, we performed a joint analy-

sis integrating the results from the CNV and the DNV analysis. We combined the results from

both analyses (Pdnv and Pcnv) using the Fisher combine method. We demonstrated that both

enriched genes for DNV and CNV deletions are significantly represented among LOF con-

straint genes (measured by the o/e LOF ratio). Therefore, we applied a Bonferroni multiple

testing correction using independent hypothesis weighting [16] (IHW) by incorporating the

gene o/e LOF ratio, as a measure of haploinsufficiency (S2 Fig). Our analysis revealed 21 genes

that were significantly enriched for CNV deletions and/or non-synonymous DNV (Table 1).

Fig 4. Comparison of the distribution of LOEUFmetric at different level of significance of nsDNV-enriched genes. X-axis denotes the P-values from the DNV
analysis (binned). Y-axis denotes the o/e LOF ratio upper bound fraction (LOEUF). All groups were compared against the LOEUF distribution of all protein-coding genes
(purple). Differences between the distributions were tested using a two-sidedWilcoxon rank sum test. ����: P<0.0001, ns: non-significant.

https://doi.org/10.1371/journal.pgen.1009679.g004
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A gene was included in the final set of haploinsufficient CHD disease genes if it reached a sig-

nificant correctedmetaP< 0.05 (after Bonferroni adjustment with IHW).

Subclassification of CHD phenotypes

We performed a further analysis based on specific CHD subtypes in addition to the collective

analysis of all CHD phenotypes. The analysis focused on simplex CHD cases, within two main

categories: Conotruncal (NCNV = 873, NDNV = 234) and LVOTO (NCNV = 594, NDNV = 351).

We only included cases with a clear phenotypic description and without any overlapping phe-

notypic features between the two categories (LVOTO/Conotruncal). The conotruncal group

consisted mostly of Tetralogy of Fallot (TOF), Truncus arteriosus and Transposition of great

arteries (TGA), whereas LVOTOmainly constituted Aortic stenosis (AS) including Bicuspid

aortic valve disease (BAV), Coarctation and Hypoplastic left heart syndrome (HLHS).

As described above, we performed the same integrative approach for the LVOTO and cono-

truncal groups to identify CHD subtype-specific genes. Our analysis showed four significant

genes (S11 Table). Three are observed in LVOTO (KMT2D, KMT2A and TAB2) and a single

gene showed significant enrichment in the conotruncal subtype (NSD1).

Significant CHD genes are highly and/or differentially expressed in the heart

We next evaluated the expression pattern of the 21 significant genes (Bonferroni corrected

metaP< 0.05) in the heart using RNA-Seq data from human tissues at different developmental

Table 1. Top 21 significant genes arising from both the permutation-based test and the DNV rate-based test. Cases/Controls: Number of cases and controls carrying
CNV deletions overlapping the gene in the CNV analysis. Pcnv: p-value from the CNV permutation test. nsDNV: Number of constrained non-synonymous variations in
the de novo analysis. Pdnv: p-value from the DNV analysis. Significant: The analysis where the gene was significant (dnv: DNV analysis, cnv: CNV analysis, both: Both anal-
ysis, none: Non-significant neither DNV nor CNV analysis).metaP: combined p-value (Pdnv and Pcnv) using the Fisher method. Pihw: Bonferroni corrected p-value using
independent hypothesis weighting (IHW) and LOEUFmetric as covariate. LOEUF: o/e LOF ratio upper bound fraction from gnomAD. �All the 21 genes were significant
after combining their p-values and applying Bonferroni correction. 1Evidence is frommouse models [24,62].

CNV DNV Combined

Gene case control Pcnv nsDNV Pdnv
�Significant metaP Pihw LOEUF Known CHD

CHD7 6 1 6.80E-03 18 2.84E-26 dnv 1.25E-26 8.05E-23 0.076 Yes

KMT2D 0 0 1.00E+00 18 1.32E-25 dnv 7.67E-24 4.93E-20 0.103 Yes

NSD1 1 1 5.63E-01 12 1.00E-14 dnv 1.90E-13 2.14E-09 0.095 Yes

KMT2A 0 0 1.00E+00 7 1.00E-14 dnv 3.32E-13 1.86E-09 0.065 Yes

NOTCH1 10 24 1.00E+00 7 1.00E-14 dnv 3.32E-13 2.14E-09 0.097 Yes

TAB2 12 0 1.00E-04 5 3.46E-09 both 1.03E-11 5.75E-08 0.098 Yes

ANKRD11 13 0 1.00E-04 3 2.32E-05 cnv 4.85E-08 2.72E-04 0.107 Yes

WHSC1 11 0 1.00E-04 3 8.73E-05 cnv 1.71E-07 9.96E-04 0.119 No1

ADNP 0 0 1.00E+00 4 9.94E-09 dnv 1.93E-07 1.13E-03 0.123 Yes

DYRK1A 4 0 1.43E-02 4 9.46E-07 dnv 2.59E-07 1.64E-03 0.214 Yes

NALCN 10 1 1.00E-04 3 1.76E-04 cnv 3.32E-07 6.83E-03 0.522 No

ELN 30 0 1.00E-04 2 1.77E-04 cnv 3.34E-07 7.50E-03 0.871 Yes

WAC 7 0 4.00E-04 3 1.31E-04 none 9.33E-07 5.44E-03 0.084 No

RBFOX2 1 0 3.45E-01 4 1.59E-07 dnv 9.72E-07 6.25E-03 0.194 Yes

KANSL1 94 110 2.00E-04 2 3.38E-04 none 1.19E-06 6.92E-03 0.238 Yes

MYO16 13 2 1.00E-04 2 8.38E-04 cnv 1.45E-06 1.74E-02 0.272 No

MED13L 2 1 2.70E-01 4 4.58E-07 dnv 2.09E-06 1.22E-02 0.064 Yes

KDM5B 0 0 1.00E+00 4 1.45E-07 dnv 2.43E-06 4.97E-02 0.572 No

GATA6 0 0 1.00E+00 5 1.80E-07 dnv 2.98E-06 1.92E-02 0.174 Yes

ARID1B 4 0 1.31E-02 4 1.48E-05 none 3.20E-06 1.87E-02 0.102 No

FEZ1 10 0 1.00E-04 2 2.22E-03 cnv 3.62E-06 4.30E-02 0.414 No

https://doi.org/10.1371/journal.pgen.1009679.t001
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time points [17]. We stratified the analysis based on stages of heart development (see Materials

and Methods). Our analysis revealed that the most significant genes (metaP< 1 x 10e-5) show

significantly increased mean expression in the heart (P< 0.0001, Wilcox test) at different

developmental stages (development, maturation and infant/adult), compared to all protein-

coding genes (Fig 5). Moreover, 18 out of 21 genes fall in the in the top quartile of heart

expression in both developmental and maturation stages (S3 Fig). To complement our expres-

sion analysis, we compared gene expression during human heart development with expression

in two other mesodermal organs: kidney and liver. This allowed identification of genes with

significant changes in its expression levels during crucial heart developmental stages, which

would have not been possible when focusing on expression levels alone (Materials and Meth-

ods). We found that 17 out of 21 CHD candidate genes are differentially expressed in the heart

(R2> 0.50, Bonferroni corrected P< 0.01) when compared to its expression levels in kidney

and/or liver. Interestingly, the three genes (FEZ1, NALCN andMYO16) which are not among

the highly expressed genes, were found to be significantly differentially expressed during heart

development compared to kidney and/or liver (S12 Table).

CNV/DNVs burden of specific protein complexes

CNVs and DNVs can affect heart development either through haploinsufficiency of a single

gene, or through its combined impact on the function of several genes. Indeed, oligogenic

models have been implicated in CHD, and proteins acting in the same complex or pathway are

known to be encoded in genomic clusters [18,19]. We therefore conducted a systems-level

analysis to identify global mechanisms by which haploinsufficiency might promote CHD. In

Fig 5. Comparison of the mean expression (heart) distribution at differentmetaP cut-offs. Panels show three different heart development stages: early development,
maturation and infant/adult. X-axis denotes the combined p-value from DNV and CNV analysis (metaP, at different cut-offs). Y-axis denotes the genes’ mean expression
in the heart (log scale). The 21 significant candidate CHD genes (Table 1) are contained in the fraction with the higher expression (red box). Differences between the
distributions were tested using a two-sidedWilcoxon rank sum test (reference group: all genes). ����: P<0.0001, ���: P<0.001, ��: P<0.01, �: P<0.05, ns: non-significant.

https://doi.org/10.1371/journal.pgen.1009679.g005
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particular, we assessed the combined effect of CNVs and DNVs with respect to human pro-

tein-protein interactions (PPIs). The InWeb and ConsesusPathDB databases provides ranked

information about experimentally determined physical interactions and, therefore, serves as a

proxy to understand the functional effects of CNV/DNVs on human protein complexes (Mate-

rials and Methods). The genes with Benjamini–Hochberg adjustedmetaP< 0.05 (n = 492

genes) were used as seeds to build a PPI network from the data available in InWEb and Con-

sessusPathDB. No additional interections were considered. The final network consisted of 164

proteins and 290 interactions (S4 Fig). A total of 10 overlapping sub-clusters within this net-

work were identified using the in-built clustering algorithm implemented in GeNets [20]

(Materials and Methods). Gene-ontology (GO) enrichment analysis suggested that four out of

these ten sub-clusters are enriched for genes involved in Notch signaling pathway, cardiocyte

differentiation, DNA repair and centrosome function (Fig 6). All the four clusters accommo-

date more CNV deletions in CHD cases compared to controls. Six out of the ten sub-clusters

did not show significant enrichment for any particular biological process.

Discussion

We performed a meta-analysis of rare genomic variants in a cohort of 10,447 CHD probands,

which provides a useful resource for interpreting CNVs and DNVs identified in patients with

CHD. We implemented a statistical approach which allows the integration of different types of

genomic variants to discover novel genes associated with CHD. Our data-driven integrative

analysis took into account three major criteria at the genomic level: a) gene enrichment for

DNVs, b) gene enrichment for CNV deletions and c) gene intolerance for LOF variations. Our

analysis identified 21 significant haploinsufficient CHD genes. Fourteen of these are known

CHD genes, and the remaining seven genes have not previously been associated with CHD

(Table 1).

To further strengthen associations, we made use of a newly published human transcriptome

atlas covering different developmental, maturation and adult stages in numerous organs [17].

Similar to previous results [7], our analysis highlights that the majority of the 21 significant

genes are highly expressed during critical stages of heart development. Unlike earlier studies

[7,21] which did not address the importance of expression changes over time, we evaluated the

differential expression patterns of genes by comparing levels of expression in the heart, kidney

and liver at different time points in development. This analysis allowed us to strengthen dis-

ease association for genes not falling under the high expression group and highlight the critical

importance of all 21 genes independently of the genomic approach. This aspect is comple-

mented by the fact that the majority of genes (14/21) were already known to cause CHD. To

further strengthen disease associations, spatiotemporal expression at single-cell resolution dur-

ing critical cardiac developmental timepoints and analyses of animal models with targeted

mutation in the candidate disease genes is warranted. This could strengthen disease associa-

tion further and provide pathophysiological information.

Among the 21 likely haploinsufficient disease genes for which the combined analyses

showed enrichment (Bonferroni correctedmetaP< 0.05), 14 genes (CHD7, KMT2D, KMT2A,

NOTCH1, NSD1, TAB2, ANKRD11, ADNP, DYRK1A, RBFOX2, KANSL1, ELN,MED13L and

GATA6) are well-established CHD genes, and our data confirms this association. To the best

of our knowledge, association between CHD and seven genes (KDM5B,WHSC1,WAC,

NALCN, ARID1B, FEZ1 andMYO16) had either not been established, or had been reported in

small cases studies or a single individual only.

KDM5B is not an established CHD gene thus far, although one patient with compound het-

erozygous frameshift variants had an ASD [14]. While some have argued against the
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Fig 6. Identification of functional networks enriched for proteins encoded by genes affected by CNVs and/or DNVs associated
with CHD. The protein-protein interaction networks (a-d, for clusters 1, 3, 8 and 9 respectively) were identified using GeNets (S4
Fig). Proteins are shown as nodes, interactions as edges. Enrichment for CNVs (blue) and DNVs (green) are highlighted. Proteins
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haploinsufficiency of the gene [22], our analysis suggests KDM5B as a plausible haploinsuffi-

cient CHD gene. Additional functional studies are warranted to confirm its role in CHD.

A recent CNVmeta-analysis [23] based on non-syndromic CHD patients found that dupli-

cation ofWHSC1 (also known as NSD2) is a possible cause of CHD. However, haploinsuffi-

ciency ofWHSC1 has not previously been associated with CHD. In support of its role in CHD,

Whsc1 has been reported to cause heart malformations in mouse models [24]. In addition,

WHSC1 is known to interact with NKX2.5 [24]. In spite of this, the low incidence of CHD in

individuals with Wolf-Hirschhorn syndrome suggests that haploinsufficiency ofWHSC1 alone

does not cause CHD.

Heterozygous truncating variations inWAC, as well as CNV deletions involving this gene,

have been recently associated with the DeSanto-Shinawi syndrome, a rare neurodevelopmental

disorder characterized by global developmental delay [25,26]. Furthermore, in two non-con-

sanguineous unrelated individuals with heart malformations, among other disorders [27],

microdeletions at 10p11.23-p12.1 (overlapping ARMC4,MPP7, BAMBI andWAC) were iden-

tified. Despite these isolated reports, no definite association betweenWAC and CHD has been

established.

DNVs in NALCN have been reported to cause a dominant condition characterized by mul-

tiple features including developmental delay, congenital contractures of the limbs and face and

hypotonia [28,29]. However, among the phenotypes observed, CHD have been not described

thus far.

Heterozygous variation of ARID1B is a frequent cause of intellectual disability [30,31]. A

recent analysis of 143 patients with ARID1B variations showed that individuals display a spec-

trum of clinical characteristics. Congenital heart defects were observed in 19.5% of the patients

[32].

FEZ1 is a neurodevelopmental gene, which has been associated with schizophrenia [33].

Fez1 has been reported to be regulated by Nkx2-5 in heart progenitors in mice, suggesting a

possible role in heart development [34].

MYO16 (NYAP3) encodes an unconventional myosin protein, involved in regulation of

neuronal morphogenesis [35]. We have not found an association betweenMYO16 and heart

development in the literature.

Although, several genes have been shown to be altered in syndromic and non-syndromic

cases with CHD and TAA (e.g.HEY2 [36],MYH11 and NOTCH1 [37]), among the 10 genes

significant in our analysis for TAA, CHD and the combined scenario, none has been reported

previously to be associated with either CHD or TAA. Given the limited data size and only

accessing CNV calls from TAA cases, future studies looking at CNV and DNV in both pheno-

types are required to establish stronger genotype-phenotype correlation to better understand a

possibly shared genetic architecture for the two disease entities.

Also, our study did not identify strong signals associated with specific CHD subtypes. We

identified four genes with significant enrichment (adjustedmetaP< 0.05) within the two eval-

uated CHD subtypes (LVOTO and conotruncal defects). Three were associated with LVOTO,

and the contribution was mainly from DNV. KMT2D was enriched in LVOTO, which is

with no specific enrichment for CNV and/or DNVs but with B-H adjustedmetaP< 0.05 are highlighted in red. The size of the
circles denotes if the genes was found significantly highly and/or differentially expressed in the heart (large circles: significant
expression; small circles: non-significant). The distribution of CHD case-CNVs and control-CNVs are shown for each cluster.
Significant difference in the CNV distribution was calculated using a Wilcox rank sum test. The horizontal bar plots show the top ten
GO enriched terms for each cluster (output from Enrichr tool). X-axis in the horizontal bar plot denotes the combined score from
Enrichr, which is computed by multiplying the log-transformed p-value and the z-score. Bar color encoded the GO biological
process significant level (dark blue: FDR< 5%, light blue: FDR 5–10%, grey: FDR> 10%).

https://doi.org/10.1371/journal.pgen.1009679.g006
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consistent with the reported spectrum of CHD in patients with Kabuki syndrome, where a

large proportion of individuals have LVOTO type CHD [38,39]. PDA and septal defects pre-

dominate in Wiedemann-Steiner Syndrome (KMT2A). However, aortic insufficiency and

BAV have all been reported [40] suggesting that LVOTOmight form part of the phenotypic

spectrum. TAB2 was also enriched in LVOTO. Mutations in TAB2 are associated with a wide

range of cardiac phenotypes [41–43]. Deletions at 6q24 causing haploinsufficiency of TAB2

have been associated with outflow tract abnormalities, including LVOTO [44,45], which might

point to a role of TAB2 LVOTO pathogenesis. NSD1 was the only gene identified as significant

among conotruncal defects. The significance of this is unclear as septal defects predominate in

Sotos Syndrome. However, patients in previous studies were ascertained focusing on Sotos

syndrome (OMIM 117550) rather than CHD. Given the current size of each CHD subgroup

and the low number of CNV and DNV events in these genes, these results cannot be consid-

ered conclusive. More precise phenotypic descriptions for each individual are necessary to

increase the genotype-phenotype correlation for individual genes and improve the identifica-

tion of genetic subnetworks, along with larger sample sizes.

In addition to the gene-centered analysis, we also applied a systems-level analysis in order

to identify potential novel pathophysiological mechanisms affected by haploinsufficiency. In

this approach, we took advantage of GeNets [20], a computational framework for the analysis

of protein-protein interactions, developed for the interpretation of genomic data. Our analysis

allowed us to identify PPI clusters enriched for genes affected by CNVs and/or DNV in

patients. Furthermore, GO enrichment analysis suggested distinct biological functions for four

of these clusters.

Cluster 1 (Fig 6A) contains proteins involved in the Notch signaling pathway. Our data cor-

roborate previous studies that confirm the central role of Notch pathway in the pathophysiol-

ogy of CHD [46] and highlights the shared contribution of CNVs and DNVs within the

cluster. Cluster 3 (Fig 6B) contains proteins driving essentials processes in the development of

the heart such as atrial septum and cardiac right ventricle morphogenesis as well as proteins

playing significant role in the positive regulation of gene expression. These mechanisms has

been well studied elsewhere [47]. Interestingly, three out of the seven candidate novel CHD

genes (WAC, ARID1B and KDMB5) were found to be contributing to these two clusters. Clus-

ter 8 (Fig 6C) showed enrichment for processes related with chromosome organization and

DNA repair. Association between DNA repair and CHD is not well established thus far. Clus-

ter 9 (Fig 6D) was found to be associated with microtubule organizing function. This biologi-

cal process has been not described in the context of CHD, although an earlier report [48]

describes complex CHD among the phenotypes in individuals with 15q11.2 deletion syn-

drome, which involves the tubulin gamma complex protein 5.

Given the heterogenous data sources and the complex inheritance patterns often observed

in patients with CHD, our study has limitations. Firstly, the patient data was collected from

almost 200 different published sources, and in many cases it was only possible to obtain data

from CNV calls which had already been suggested to be pathogenic. Thus, we are aware that

our patient data are incomplete because genome-wide CNV data are missing from a large part

of the patient cohort and re-emphasizes already established associations. This is not the case

for controls, for which genome-wide data was used. As a direct consequence, even though the

difference between the rates of CNV deletions in controls and cases decreased dramatically

after applying a quality control filtering step, a slight difference remained between both

cohorts. The lack of collected CNV data spanning sex chromosomes limited the analysis only

to autosomal chromosomes. In addition, the distribution of CNVs that overlap known micro-

deletion syndromes such as DiGeorge syndrome andWilliams syndrome is overrepresented

in the dataset. Similarly, the degree of phenotyping varied across the different studies, and
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often only basic phenotypic terms relating to CHD were available. This made it impossible to

refine the diagnosis to a precise phenotypic class of CHD in many individuals.

Previous research has shown that the chances of finding a genetic cause of CHD is higher in

syndromic, rather than non-syndromic CHD [6,7]. Therefore, it is not surprising that known

CHD genes were enriched in this cohort. To identify non-syndromic causes of CHD, it is

important to take into account previous findings, which have shown a significant excess of

apparently deleterious inherited PTVs in unaffected parents [6]. To help address the challenges

of identifying non-syndromic CHD genes, we have used an integrative approach, which has

allowed us to look for novel CHD associations in a larger sample size, in a binary fashion. This

will help to facilitate future studies.

Variable expression and reduced penetrance are common features in CHD, including in

even well-established conditions such as Noonan Syndrome [49]. Most cases of CHD occur as

a one off in the family and when recurrences do happen, CHD subtypes are more likely to be

discordant than concordant [50]. This suggests that other modifying factors may be at play,

including genetic, or environmental factors, or both. This presents a further challenge in iden-

tifying genetic causes of CHD. Moving forward, detailed phenotypic descriptions using a stan-

dardized system, and better data sharing strategies (including primary data), will facilitate

further gene discovery and improved genotype-phenotype correlation in CHD subgroups.

In summary, we have performed an integrative analysis of CNVs, DNVs, o/e LOF ratio and

expression during heart development amongst more than 10,000 CHD patients. Our analyses

identify seven potential disease genes and mechanisms with novel association with CHD and

strengthen previously reported associations.

Materials andmethods

Ethics statement

This project was based on unidentifiable data and did not require approval by science ethics

committees in Denmark or Christian-Albrechts-Universität in Kiel.

Cohort description

Our cohort contains 7,958 CHD cases and 14,082 controls (see summary at S1 Table). Data from

both affected and unaffected individuals were collected from 190 different CNV studies (S2

Table). Most of the CNV data included in the present study were assembled from public reposito-

ries, data available from literature as well as clinical data (see S2 and S3 Tables for a more detailed

description). We sampled all available and accessible studies as of February 2018 cited in PubMed.

We have focused on studies incorporating Caucasian samples (the larger sampled population) to

decrease population effects. Given no primary data were available for most of the studies, we can-

not exclude the possibility that non-Caucasian samples were included. Both non-syndromic and

syndromic CHD cases were included and CNVs were mapped to the human genome build

NCBI37/hg19. Phenotype information was reviewed and if possible standardised across studies,

to ensure consistency and accuracy. We used as controls re-analysed samples from theWellcome

Trust Case Control Consortium 2, the Genetic Association Network (GAIN) and the Ottawa

Heart Institute (S3 Table). In addition, we built a dataset from the two largest DNV studies in

CHD published thus far, which include a total of 2,489 parent-offspring trios [6,7].

Determining the gene sets

The compiled highly confident CHD gene list consisted of genes with plausible disease-causing

mutations in an interpretable functional region of a gene reported in association with CHD in

PLOS GENETICS Integrative analysis of genomic variants in CHD

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009679 July 29, 2021 15 / 24

https://doi.org/10.1371/journal.pgen.1009679


three or more unrelated individuals. Genes, where fewer than three reports of CHD exist, were

also considered if there was available solid functional evidence, such as a mouse model that

displays CHD or in silico evidence. CHD genes were then coded as either non-syndromic (iso-

lated CHD), or syndromic based on published phenotypes. The list of genes associated with

developmental disorders was derived from the Developmental Disorder Genotype to Pheno-

type (DDG2P) list maintained by Decipher and the European bioinformatics Institute [51]. All

genes were annotated with either monoallelic or biallelic as appropriate, based on the pub-

lished literature (S13 Table).

CNV analysis

Only autosomal CNVs were included in the analysis. All the CNV boundaries were deter-

mined using genome build NCBI37/hg19. For the CNVs provided in hg18, we used the

Assembly Converter (https://www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter)

build on CrossMap (http://crossmap.sourceforge.net/) to convert samples to NCBI37/hg19.

Also, an extra validation step of all CNV boundaries was performed using the R-package BSge-

nome.Hsapiens.UCSC.hg19. Smaller and longer CNVs were filtered out by applying a size cut-

off of 5 Kb and 20 Mb as lower and upper limit, respectively. It has been demonstrated before

that smaller and larger CNV calls tend to have a high rate of false positives [52,53]. We

removed CNVs overlapping more than 50% of telomeres, centromeres and segmental duplica-

tion regions. In addition, we computed the internal CNV frequencies by counting the number

of relative overlaps (>50% reciprocal overlap) on the CNVs control subset divided by the total

number of controls. The internal MAF was computed for deletions and duplications subsets

separately. Only CNVs with a minor allele frequency (MAF)< 0.01 in controls and overlap-

ping ten or more CNV platform calling probes (Affymetrix Array 6.0 and Illumina

Human660W-Quad) were considered for downstream analysis. Our analysis was focused only

on CNV deletions. The distributions of the number of CNV deletions per individual within

the case and control groups were compared (two-sided Wilcoxon rank sum test) to evaluate

the impact of the quality control filtering step (S5 Fig). After filtering, 6,746 cases (3, 929 har-

bouring CNV deletions) and 14,024 controls (12,585 harbouring CNV deletions) remained for

further analysis. A region-based permutation test (using PLINK version 1.07, test ‘—cnv-test-

region—mperm 10000’) was used on the filtered set to perform a case-control association anal-

ysis. For the gene-based permutation analysis, we reported both the ‘point-wise’ empirical p-

value (EMP1) and the empirical adjusted p-value (EMP2), which controls the family-wise

error rate (FWER) (http://zzz.bwh.harvard.edu/plink/perm.shtml). In addition to the gene-

centered permutation testing, a similar region-based permutation analysis was performed to

access enrichment in known CNV deletion syndromes. All CNVs deletions passing QC filter-

ing overlapping these regions were considered in the analysis. The region genomic coordinates

and syndrome descriptions were downloaded from the Database of genomic variation and phe-

notype in humans using Ensembl resources (Decipher, https://decipher.sanger.ac.uk/

disorders#syndromes/overview).

CNV burden test on gene sets

A logistic regression-based burden test (‘cnv-enrichment-test’ in PLINK v1.7) [11] was per-

formed on different gene sets (known CHD genes (non-syndromic/syndromic/biallelic/mono-

allelic), developmental disorder genes, known haploinsufficient disease genes [54], autosomal

recessive disease genes [55,56] and low observed/expected LOF ratio genes, S13 Table) using

the rare CNV deletions passing the quality control and filtering stage. For every gene set exam-

ined, the binary phenotype (CHD case or control) was regressed on the number of genes
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disrupted by one or more CNVs. The averaged CNV size and the number of segments per

individual were used as covariates into the model to control for potential differences between

cases and controls as suggested by Raychaudhuri et al [11]. In addition, the PLINK implemen-

tation of this test was slightly modified by including a third (categorical) covariate, the sample

study ID, since we have assembled the CNV data from different sources.

DNV analysis

The assembled DNV dataset (Sheet A in S14 Table) was re-annotated using the Variant Effect

Predictor (VEP version 90) tool. All the DNVs included in this study were validated with the

VariantValidator tool [57] (Sheet B in S14 Table). Based on the VEP annotation, we classified

every variation into three major functional groups as follows: a) Protein truncation variant

(stop_gained, splice_acceptor, splice_donor, frameshift, initiator_codon, start_lost, conserve-

d_exon_terminus), b) missense variant (stop_lost, missense, inframe_deletion, inframe_inser-

tion, coding_sequence, protein_altering) and c) silent variant (synonymous). Variants with

minor allelic frequency (MAF)> 0.01 in gnomAD database were excluded from the analysis.

The rates of rare DNVs (MAF< 0.01) in both DNV studies [6,7] were compared (Poisson

test) for different variant consequence groups (PTV, missense and synonymous). No signifi-

cant differences were found between the DNV rates for any of the evaluated groups (S9

Table). De novo variation recurrence significance testing was performed to evaluate the impact

of DNVs at gene level using the Mupit tool [12]. By default, Mupit uses the sequence-specific

variation rate published by Samocha et al [58]. A second test, DeNovoWEST [13], was used to

assess gene-wise de novo variation enrichment. DeNovoWEST assigns a variation severity

score (based on the variant consequences and the CADD score) to all classes of variants as a

proxy of its deleteriousness. For each tested gene, the minimal p-value obtained fromMupit

and DeNovoWEST was reported (Pdnv). The corrected P value was computed using the Bon-

ferroni method with n = 18,272.

Inferring differentially and highly expressed genes

Differentially expressed genes (DEGs) were identified by comparing the gene expression pro-

file in heart to kidney and liver at matched time points. We used maSigPro R-package [59] for

inferring genes with dynamic temporal profiles from time-course transcriptomic data as previ-

ously described by Cardoso-Moreira et al [17]. As the input for maSigPro, we used the count

per million matrix (CPM, output from EdgeR package) hosted in ArrayExpress (E-MTAB-

6814). Genes which did not reach a CPM> 0.5 in at least five samples were excluded from the

analysis. We ran maSigPro on the time scale measured in days post-conception using defaults

parameters and only included time points with at least two biological replicates. A gene was

selected as DEG if the R2 (goodness-of-fit) parameter was higher than 0.50 and Bonferroni cor-

rected P< 0.01. The R2 parameter distinguish genes with clear expression trends from genes

with ‘flat’ expression profile. S12 Table lists the final DEGs identified in the heart (R2> 0.50).

To assess the gene expression levels in the heart, the RPKMmatrix was used. Gene expression

levels were averaged among samples in the different development stages of the heart as follow:

early development (4wpc-8wpc), maturation (9wpc-20wpc), infant/adult (newborn-adult-

hood). Genes were ranked based on the computed mean expression.

Identification of CNV/DNV enriched PPI sub-clusters

A protein-protein interaction network was constructed using the GeNets framework [20] and

the information from InWeb [60] and ConsensusPathDB [61] protein-protein interaction

databases. Nodes in the network correspond to proteins whereas edges represent their physical
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interactions. The network was strictly seeded with 492 candidate genes, those with a significant

adjustedmetaP< 0.05 (Benjamini-Hochberg’s false discovery rate, FDR). The PPI network

was partitioned into overlapping sub-clusters using the in-built clustering method described

in GeNets [20]. Only statistically significant sub-clusters (p-value< 0.05, permutation test)

with at least 5 proteins were considered for further analysis. Finally, Gene Ontology enrich-

ment analysis (Biological Process database 2018) of each identified sub-cluster was performed

using the enrichr tool (https://maayanlab.cloud/Enrichr/).

Supporting information

S1 Fig. Distribution of overlapping CNVs, size and genes in 63 CHD loci. A) CNVs per

gene.Overlapping CNVs for each of the 528 significant candidate genes are shown as box-

and-whiskers plots. Statistically significant difference was observed between the two distribu-

tions (Mann-Whitney test, ���: P<0.001). B) Size of loci in kilobase-pairs (kbp). C) Number of

genes per locus. Median values are shown above each box.

(TIF)

S2 Fig. Statistical framework to discover novel candidate CHD genes by integrating DNV

and CNV deletions. The workflow follows four major steps: 1) Data aggregation and quality

control of both DNV data and CNV data, 2) DNV rate-based enrichment testing and CNV

deletions case/control association analysis at gene level are performed independently, 3) the

results are combined using the Fisher method and 4) P-values are Bonferroni corrected using

the Independent Hypothesis Weighting method (IHW). As independent covariate for the

IHWmethod, the o/e LOF ratio upper bound fraction (LOEUF) was used.

(TIF)

S3 Fig. Heart expression pattern of the 21 significant genes at different heart development

stages. Panels show three different heart development stages: early development (red), matura-

tion (green) and infant/adult (blue). The x-axis denotes the percentile rank of heart expression

in the heart. The y-axis denotes the o/e LOF ratio upper bound fraction (LOEUF) from gno-

mAD. Dashed lines denote the threshold for highly expressed genes (expression rank> =

0.75) and highly LOF constrained genes (LOEUF< = 0.30).

(TIF)

S4 Fig. The functional network enriched for proteins encoded by genes affected by CNVs

and/or DNVs associated with CHD. Ten sub-clusters were identified using GeNets. Proteins

are shown as nodes, interactions as edges. Enrichment for CNVs (blue), DNVs (green) or both

independently (purple) are highlighted. Proteins with no specific enrichment for CNV and/or

DNVs but with B-H adjustedmetaP< 0.05 are highlighted in red. The size of the circles

denotes if the gene was found significantly highly and/or differentially expressed in the heart

(large circles: significant expression; small circles: non-significant).

(TIF)

S5 Fig. Distribution of the number of CNV deletions per individual in both control and CHD

case cohorts before (A) and after (B) applying the quality control filtering approach. Differ-

ences between the distributions were tested using a two-sided Wilcoxon rank sum test. ����:

P<0.0001.

(TIF)

S1 Table. Number of probands in the CNV cohort. Stratified by CHD cases/controls and

CNV type (deletion/duplication).

(XLSX)

PLOS GENETICS Integrative analysis of genomic variants in CHD

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009679 July 29, 2021 18 / 24

https://maayanlab.cloud/Enrichr/
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009679.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009679.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009679.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009679.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009679.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009679.s006
https://doi.org/10.1371/journal.pgen.1009679


S2 Table. Sources of the CNV-case cohorts used in this study.

(XLSX)

S3 Table. Sources of the CNV-control cohorts used in this study.

(XLSX)

S4 Table. Gene set-based logistical regression enrichment CNV analysis.

(XLSX)

S5 Table. Gene set-based logistical regression enrichment CNV analysis stratified by

observed/expected LOF ratio (from gnomAD).

(XLSX)

S6 Table. Sheet A) Gene-based case/control CNV-deletions permutation testing (PLINK

results). Sheet B) Significant locus (Locus ID and contributing genes).

(XLSX)

S7 Table. Case/control CNV permutation testing on known deletion syndrome (PLINK

results).

(XLSX)

S8 Table. CNV case/control permuatation testing output from PLINK. The table shows the

528 significant genes combining both CHD and TAA cases (CHD+TAA), the contribution of

only CHD cases (only CHD) and the contribution of only TAA cases (only TAA).

(XLSX)

S9 Table. Comparision of the DNV rates, stratified by variant consequences, between two

independent cohorts.

(XLSX)

S10 Table. Gene-based DNV analysis.

(XLSX)

S11 Table. Meta-analysis of CNV/DNV stratified by CHD sub-types (Conotruncal and

LVOTO). Table shows the four genes with Bonferroni corrected metaP< 0.05. Cases/Con-

trols: Number of cases and controls carrying CNV deletions overlapping the gene in the CNV

analysis. p_cnv: p-value from the CNV permutation test. nsDNV: Number of constrained non-

synonymous variations in the de novo analysis. p_dnv: p-value from the DNV analysis.metaP:

combined p-value (Pdnv and Pcnv) using the Fisher method. adj metaP: Bonferroni corrected p-

value using independent hypothesis weighting (IHW) and LOEUF metric from gnomad as

covariate.

(XLSX)

S12 Table. Differentially expressed genes in the heart compared to kidney and liver.

(XLSX)

S13 Table. List of gene sets used in the CNV enrichment analysis.

(XLSX)

S14 Table. Sheet A) List of the de novo variants analized in this study. Sheet B) Validation

results of the DNVs from the VarinatValidator tool.

(XLSX)
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S15 Table. Rare CNV deletions (MAF 0.01) used in this study. CNVs bounderies are deter-

minated in genome build hg19.

(XLSX)
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