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Alzheimer’s disease (AD) is a neurodegenerative disorder contributing to rapid decline

in cognitive function and ultimately dementia. Most cases of AD occur in elderly and

later years. There is a growing need for understanding the relationship between aging

and AD to identify shared and unique hallmarks associated with the disease in a region

and cell-type specific manner. Although genomic studies on AD have been performed

extensively, the molecular mechanism of disease progression is still not clear. The

major objective of our study is to obtain a higher-order network-level understanding

of aging and AD, and their relationship using the hippocampal gene expression

profiles of young (20–50 years), aging (70–99 years), and AD (70–99 years). The

hippocampus is vulnerable to damage at early stages of AD and altered neurogenesis

in the hippocampus is linked to the onset of AD. We combined the weighted

gene co-expression network and weighted protein–protein interaction network-level

approaches to study the transition from young to aging to AD. The network analysis

revealed the organization of co-expression network into functional modules that are

cell-type specific in aging and AD. We found that modules associated with astrocytes,

endothelial cells and microglial cells are upregulated and significantly correlate with both

aging and AD. The modules associated with neurons, mitochondria and endoplasmic

reticulum are downregulated and significantly correlate with AD than aging. The

oligodendrocytes module does not show significant correlation with neither aging nor

disease. Further, we identified aging- and AD-specific interactions/subnetworks by

integrating the gene expression with a human protein–protein interaction network.

We found dysregulation of genes encoding protein kinases (FYN, SYK, SRC, PKC,

MAPK1, ephrin receptors) and transcription factors (FOS, STAT3, CEBPB, MYC, NFKβ,

and EGR1) in AD. Further, we found genes that encode proteins with neuroprotective

function (14-3-3 proteins, PIN1, ATXN1, BDNF, VEGFA) to be part of the downregulated

AD subnetwork. Our study highlights that simultaneously analyzing aging and AD will

help to understand the pre-clinical and clinical phase of AD and aid in developing the

treatment strategies.

Keywords: neurodegenerative disease, aging, hippocampus, glial cells, co-expression network, PPI network,

graph theory

Abbreviations: AD, Alzheimer’s disease; DAVID, Database for Annotation, Visualization and Integrated Discovery; DEG,
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INTRODUCTION

Aging is associated with decline in cognitive abilities, including
memory and executive function supported by prefrontal cortex
and hippocampus (Yankner et al., 2008). The age-related
cognitive decline is characterized by synaptic changes/loss of
synapses in the absence of significant neuron loss and microglial
dysfunction (Morrison and Hof, 1997; Von Bernhardi et al.,
2015b). AD is a neurodegenerative disorder that in most
cases occur in elderly and later years (Herrup, 2010). AD is
characterized by the progressive loss of neurons contributing to
the rapid decline in cognitive function and ultimately dementia.
AD is linked to the accumulation of amyloid plaques and
neurofibrillary tangles (NFTs), which are aggregates of amyloid
β (Aβ) and hyperphosphorylated Tau protein, respectively
(Ballatore et al., 2007; Selkoe and Hardy, 2016). Both aging and
AD affect different regions of the brain and specific regions are
more vulnerable than others (Braak and Braak, 1995; Morrison
and Hof, 1997; Wang et al., 2016). Hippocampus is especially
vulnerable to damage at early stages of AD (Mu and Gage, 2011).
Further, emerging evidence suggests that altered neurogenesis
in the adult hippocampus might play a role in the onset of
AD (Ertaylan et al., 2014; Hollands et al., 2016). There is a
growing need for understanding the relationship between aging
and neurodegenerative disease to identify shared and unique
hallmarks associated with the disease progression in a region and
cell-type specific manner.

Genome-wide expression profiling of hippocampus have
been widely used to investigate the aging and pathogenesis
of AD in human post-mortem brain tissues (Colangelo et al.,
2002; Blalock et al., 2004, 2011; Liang et al., 2007, 2008;
Berchtold et al., 2008; Miller et al., 2013; Hokama et al.,
2014; Wang et al., 2016). Berchtold et al. (2008) showed
that gene expression changes in aging are sexually dimorphic
with hippocampus showing minimal changes compared to
superior-frontal gyrus, entorhinal cortex, and postcentral gyrus.
Transcriptional studies on AD show dysfunction of synaptic
signaling, energy metabolism, inflammation, protein misfolding,
glutamate-mediated excitotoxicity, dysregulation of intracellular
calcium, cell proliferation, myelin–axon interactions, cytoskeletal
dynamics and lipid metabolism (Colangelo et al., 2002; Blalock
et al., 2004; Lin and Beal, 2006; Miller et al., 2008; Bamburg
and Bloom, 2009; Supnet and Bezprozvanny, 2010; Talantova
et al., 2013). Further, network-level analysis have been used to
identify local and global alterations from high-throughput gene
expression datasets (Miller et al., 2008, 2013; Liang et al., 2012;
Kikuchi et al., 2013; Talwar et al., 2014; Wang et al., 2016). Miller
et al. (2008) identified two functional modules related to energy
metabolism and synaptic plasticity that are conserved between
aging and AD by comparing the samples obtained from frontal
cortex and hippocampus. However, these studies focused on
analyzing aging (young vs. aging) and AD (aging vs. AD) datasets
individually.

On the other hand, few studies have compared the gene
expression profiles in young, aging, and AD (Cribbs et al.,
2012; Berchtold et al., 2013). The gene expression profiling
of immune/inflammation-specific genes has shown that major

changes occur in aging compared to AD with majority of genes
significantly upregulated in hippocampus, superior-frontal gyrus
and postcentral gyrus. A subset of genes changes progressively
across aging and AD in hippocampus and superior-frontal gyrus.
The synaptic genes were downregulated in aging with most
genes showing progressive downregulation across aging and AD.
Further, genes associated with neuronal loss, glial activation, and
lipid metabolism are shown to increase with chronological age
(Podtelezhnikov et al., 2011). However, in AD, these genes are
reported to be prematurely expressed along with genes related to
the protein folding and cell adhesion. A comparison of expression
profiles of genes encoding respiratory oxidative phosphorylation
(OXPHOS) complexes (I-V) in the hippocampus of young
(20–59), aging (69–99), MCI and AD groups has shown that
aging contributes to the decline of nuclear OXPHOS genes in
AD (Mastroeni et al., 2017). These overlapping features between
aging and AD suggest that a combined network analysis of both
will help to understand the relationship between them and to
generate insights on the mechanism(s) that promote disease
progression.

The major objective of our study is to obtain a higher-
order network-level understanding of aging and AD, and their
relationship using the hippocampal gene expression profiles
of young (20–50 years), aging (70–99 years), and AD (70–
99 years). We combined the weighted gene co-expression
network and weighted PPI network-level approaches to study
the transition from young to aging to AD. The co-expression
network analysis clusters genes into functional modules based
on the gene expression profiles and helps to identify core
biological processes and pathways associated with the sample
group. The weighted PPI network uses the expression data to
calculate edge weights in the network and helps to identify
edges and subnetworks that are significantly affected between
groups. We found modules associated with neuron, glial and
endothelial cells in the co-expression network of young, aging,
and AD. These modules significantly correlate with both aging
and AD. We also show the preservation of these modules in
five different hippocampus datasets of AD. Mapping the gene
expression to PPI network helped to identify the upregulated and
downregulated subnetworks of aging and AD.

MATERIALS AND METHODS

Microarray Data Acquisition and
Pre-processing
Gene expression data of different age groups and AD samples
with accession no: GSE48350 was downloaded from Gene
Expression Omnibus (GEO)1. This dataset is obtained using
Affymetrix Human Genome U133 Plus 2.0 Array and includes
62 samples obtained from the hippocampus. We processed the
data using robust multichip average (RMA) algorithm, which
performs background correction, quartile normalization and
summarization of microarray dataset (Irizarry et al., 2003). The
hippocampal data was divided into three groups depending on

1https://www.ncbi.nlm.nih.gov/geo/
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age and disease – Young (17 samples – 20–50 years), Aged (21
samples – 70–99 years), and AD (18 samples – 70–99 years). The
probes were annotated using hgu133plus2.db package and probes
with no annotation and multiple gene annotations were removed
from the analysis. In case of multiple probes for the same gene,
probe with high Interquartile Range (IQR) values was retained
for further analysis. The workflow used in this study is shown in
Figure 1.

Weighted Gene Co-expression Network
Analysis (WGCNA)
The WGCNA package in R was used to construct a signed
co-expression network from the expression data (Langfelder and
Horvath, 2008). WGCNA was performed using 18,754 varying
genes (IQR > 0.2) across conditions to simplify computation
and to eliminate non-varying genes (Zhang and Horvath, 2005;
Oldham et al., 2006). Pearson correlations between all gene pairs
were calculated to form the correlation matrix. To retain the
sign of correlation, a linear transformation of correlation was
performed using the Eq. (1).

Sij =
1 + cor|xi, xj|

2

The correlation matrix was converted to adjacency matrix using

the function, aij = S
β
ij (Zhang and Horvath, 2005). A scale free

topology criterion was used to choose power β. The square of the
correlation (R2) between log(p(k)) and log(k) is used to measure
howwell a network satisfies a scale free topology (Horvath, 2011).
p(k) is the frequency distribution of the connectivity k. The
relationship between R2 and β is characterized by a saturation
curve. The lowest power β = 18 (where the saturation is reached)
was considered for the analysis (Supplementary Figure S1).

The resultant adjacency matrix was transformed into
topological overlap matrix (TOM) and a dendrogram was
constructed using 1-TOM as a distance measure (Zhang and
Horvath, 2005). The genes were clustered into modules using
a dynamic tree-cut algorithm with a minimum module size of
150 (Langfelder et al., 2008). Singular Value Decomposition
(SVD) was used to obtain the ME, which represents the
maximum amount of variation of module genes (Langfelder
and Horvath, 2007). The ME expression value was correlated
with age, group stages (Young – 0; Aging – 1; AD – 2), and
AD (Young and Aging-0, AD-1) to identify modules associated
with aging and disease. The hub genes were identified based
on the intramodular connectivity (kIM) (Horvath, 2011).
The GO terms and KEGG pathways associated with each
module were obtained using DAVID version 6.8 (Dennis
et al., 2003). Benjamini–Hochberg corrected p-value (adj
p-value < 0.05) was used to find the significant GO terms and
KEGG pathways.

In addition, cell-type specific gene lists obtained from Wang
et al. (2016) was used to determine modules enriched for
specific cell-type (astrocytes, endothelial, neurons, microglial,
and oligodendrocytes). The overlap between module and cell-
type gene lists was tested using Fisher’s exact test and a p-value
cut off< 0.05 was used to identify cell-type specific modules. This

was performed using the GeneOverlap package in R (Shen and
Sinai, 2013). We also checked the overlap between modules and
differential expressed genes (DEGs). We performed empirical
Bayes statistical analysis using LIMMA R-package (Ritchie et al.,
2015) to obtain DEGs between young vs. aging, aging vs. AD,
and young vs. AD. The genes with fold change ≥1.5 and
Benjamini–Hochberg corrected p-value <0.05 were considered
as DEGs.

The reliability of the identified modules was checked by
performing module preservation analysis using hippocampal
test datasets of whole tissue: GSE1297, GSE36980, GSE84422,
GSE29378 (both CA1 and CA3) and neuron enriched samples:
GSE28146, GSE5281. These datasets were independently proces-
sed depending on the platform (Supplementary Table S1) and
module genes were used as an input to quantify the extent of
preservation in each datasets. A Zsummary statistics proposed
by Langfelder et al. (2011) was used to find the extent of
preservation. The following thresholds for Zsummary were used:
no preservation (Zsummary < 2), weak to moderate evidence
of preservation (2 < Zsummary < 10), and strong evidence
of module preservation (Zsummary > 10) (Langfelder et al.,
2011).

Weighted PPI Network Analysis
A comprehensive human PPI network constructed by Sambarey
et al. (2017) was used for the network analysis. This PPI network
comprises of 17,062 proteins (nodes) and 168,237 directed
interactions (edges) based on their functional annotations and
40,522 bidirectional interactions representing the formation of
structural complexes (Sambarey et al., 2017). We overlapped our
gene list with PPI network and removed the non-interacting
edges. The resultant network consists of 13,273 nodes/genes
and 175,886 edges/interactions. A weighted PPI network was
constructed by mapping the gene expression to PPI network.
The normalized signal intensity of a gene was used as condition-
specific (young, aging, and disease) node weight (Ni). The edge
weight (Wij) between two nodes (Ni and Nj) was calculated using
the Eq. (2) (Sambarey et al., 2017).

Wij = Inverse
√

Ni × Nj

Graph Theory Approach
The edge betweenness centrality measure was computed using
igraph R package (Girvan and Newman, 2002). It is defined
as total number of shortest paths that go through an edge in
the given network and highlights the importance of certain
edges in establishing connection between many pairs of nodes.
Each edge of the network is associated with edge betweenness
score and can be compared across different networks. The
edge betweenness scores were used to identify the differential
connected edges between young vs. aging, aging vs. AD, and
young vs. AD by performing paired t-tests and multiple testing
correction with Benjamini–Hochberg method (Benjamini and
Hochberg, 1995). An edge betweenness score difference of
2000 (adj p-value < 0.05) was considered as differentially
connected.
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FIGURE 1 | Workflow used to study young, aging, and AD.

RESULTS

Co-expression Network Analysis of
Progression Network: Young to
Aging to AD
We performed WGCNA using 18,754 genes to identify and
characterize modules that are related to aging and AD.
A co-expression network was constructed independent of clinical
information, age and gender using all the samples. We found 15
modules of co-expressed genes (Supplementary Figure S2). The
ME expression values of M2 (yellow), M3 (green yellow), M4
(magenta), and M5 (pink) show positive correlation with both
aging and AD (Figure 2). M4 and M5 modules have a strong
correlation with respect to aging while M2 and M3 modules
have a strong correlation with respect to AD. Further, the ME
expression values ofM9 (brown),M10 (turquoise), andM12 (tan)
show negative correlation with both aging and AD. However, M9
and M10 modules have a strong correlation with respect to AD
compared to aging. Figure 3 shows the ME expression value for
individual samples, which are grouped into young, aging, and
AD. This grouping shows that there are inter-group differences
in the ME expression value. The ME expression value indicates
that genes of module M2, M3, M4, and M5 are upregulated
while genes of modules M9, M10 and M12 are downregulated
in the transition from young to aging to AD. We found DEGs
and mapped it to the modules. There are 569, 687 and 1980
DEGs between young vs. aging, aging vs. AD, and young vs.
AD, respectively. Figure 4 shows the number of overlapping
and age/disease-specific upregulated and downregulated DEGs

in these paired comparisons. These DEGs are distributed among
the modules that significantly correlate with aging and AD
(Supplementary Table S2).

We also grouped samples into male and female, and explored
the correlation of modules to aging and AD in a gender-
specific manner. The ME expression values of M4, M5, and
M7 show difference between young and aging depending on
the gender (Supplementary Figure S3). We observed that the
extent of correlation differs slightly due to the gender effect for
the modules M4 (female correlation = 0.77, p-value = 1E-04;
male correlation = 0.63, p-value = 0.004) and M5 (female
correlation = 0.72, p-value = 5E-04; male correlation = 0.5,
p-value = 0.03) while the module M7 correlated with aging in
the female group only (correlation = 0.46, p-value = 0.05). The
module M8 also shows differences between female and male of
younger group (Supplementary Figure S3). These differences in
themodulesM7 andM8make them to significantly correlate with
AD only (Figure 2).

We analyzed the overlap of cell-type specific genes with
modules (Table 1). This analysis showed that modules M3 and
M11 (black) are linked to astrocytes, modules M8, M9, and
M12 are linked to neurons, the module M5 is linked mostly
to endothelial cells, the module M4 is linked to microglia,
and the module M1 (red) is related to oligodendrocytes.
On the other hand, modules M10 and M2 show less
significance with the cell-type. Further, the module-specific to
oligodendrocytes does not show significant correlation with
neither aging nor AD (Figure 2). We also performed module
preservation analysis with independent datasets of hippocampus
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FIGURE 2 | Correlation between module eigengene (ME) expression value and age, stage (0-young, 1-aging, 2-AD), AD (young and aging-0, AD-1) for each module.

Pearson correlation is reported with the p-value given inside the bracket.

whole tissue: GSE1297, GSE36980, GSE84422, GSE29378 (both
CA1 and CA3) and neuron enriched samples (GSE28146,
GSE5281). We observed that most of the aging- and AD-
related modules identified in our study show moderate to
high preservation (Figure 5). The modules M1, M8, M9,
M10 and M12 show a high preservation compared to other
modules. The modules-specific to neurons (M8, M9 and
M12), microglia (M4), endothelial cells (M5) and astrocytes
(M3) are preserved in multiple datasets. Since both neuron
and glial cells are affected together in AD, we suggest that
neuron-glial interactions might be affected in AD. Further, the
module M10, which shows less significance with the cell-type
(Table 1), is also preserved in the neuron enriched datasets
(Figure 5).

We characterized the biological processes and KEGG
pathways associated with modules using DAVID for the
functional enrichment analysis. We found that microglia module
M4 is associated with the biological process inflammatory
response and KEGG pathways phagosome, Toll-like receptor
signaling and cytokine-cytokine receptor interactions. Further,

it is associated with the cellular component MHC class II
protein complex (Table 2). The hub genes of the module
M4 include: TYROBP, TREM2, ITGB2, MYO1F, C1QA,
C1QB, C1QC, and TGFB1. The endothelial cell module
M5 is also associated with the inflammatory response and
KEGG pathways TNF signaling, complement and coagulation
cascades, and HIF-1 signaling pathway. It is associated with
the cellular component MHC class I protein complex and
extracellular matrix (ECM) protein complex. The hub genes
of the module M5 include: TNFRSF1A, MSN, CLIC1, and
IFITM2.

The astrocyte module M3 is associated with the biological
process cell adhesion and KEGG pathways fatty acid degradation
and HIPPO signaling pathway (Table 2). The genes related to
actin cytoskeleton (EZR, CDC42EP4, ARHGEF26, ARHGEF6)
are the hub genes. Further, we found two transcriptional factors
TCF7L1 and SOX9 as hubs genes. SOX9 is highly expressed
in astrocytes and plays a role in glial fate specification (Sun
et al., 2017). The upregulated module M2 is associated with the
biological process RNA splicing and KEGG pathways ribosome,
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FIGURE 3 | Module eigengene (ME) expression values (y-axis) across samples (x-axis). The samples are grouped into young (green), aging (yellow) and AD (blue).

FIGURE 4 | The overlap of upregulated and downregulated DEGs between young vs. aging, young vs. AD and aging vs. AD.

spliceosome, and RNA transport. A key hub gene of the module
M2 is TFEB, PAN2, and ARHGAP17.

The neuron module M9 is associated with biological
processes chemical synaptic transmission, neurotransmitter
secretion and nervous system development, and KEGG pathways
synaptic vesicle, chemical synapses (glutamatergic, cholinergic,
GABAergic, serotonergic, and dopaminergic) and long-term
potentiation (Table 2). The key cellular components include

neuron projection, dendrite (dendrite morphogenesis), axon
(axongenesis/axon guidance) and post synaptic density. The
hub genes of the neuron module M9 include SYN1, STMN2,
SYT5, SNAP91, PAK3, UCHL1, and UBE2K. Interestingly, these
hub genes are significantly downregulated in AD compared to
aging. The downregulation of glutamatergic synapse together
with inhibitory GABAergic synapse suggests that there is an
alteration in the excitation and inhibition (E/I) balance in the
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TABLE 1 | The overlap between cell-type specific genes and modules.

Module Astrocytes Endothelial Microglia Neurons Oligodendrocytes

M1 1.0 0.998 1.0 1.0 1.56E-74

M2 0.99 0.667 1.0 1.0 0.95

M3 1.75E-81 0.244 1.0 1.0 1.0

M4 0.998 0.489 1.17E-109 1.0 1.0

M5 4.64E-03 5.60E-31 0.489 1.0 0.989

M6 0.723 0.292 0.496 0.99 1.0

M7 0.949 1.0 1.0 0.897 1.0

M8 0.947 0.929 0.983 1.73E-25 0.98

M9 1.0 1.0 1.0 3.42E-248 1.0

M10 1.0 1.0 1.0 0.998 1.0

M11 2.25E-06 0.18 1.0 1.0 0.077

M12 0.995 1.0 1.0 1.39E-09 1.0

M13 1.0 1.0 1.0 1.0 1.0

M14 1.0 0.96 1.0 1.0 1.0

p-values are obtained using Fisher’s exact test. The significant values are shows in

bold.

progression of AD. The neuron module M12 is also related to
chemical synapses and post synaptic density. The genes within
this module show gradual downregulation with aging and AD.
We found that the neuron module M12 hub genes GADP1,
YWHAZ, SYNJ1, and MAPK9, decrease significantly with aging
while the hub genes G3BP2 and ATP6AP2 decrease significantly
with AD. The neuron module M8 also includes more genes
involved in the axon guidance and post synaptic density. The

overlapping biological processes between modules M8, M9, and
M12 suggests that different patterns of downregulation of genes
within same biological processes.

Further, the module M10 is another downregulated module
related to AD and it is associated with mitochondria, ribosome,
and protein folding (Table 2). The KEGG pathways include
oxidative phosphorylation, proteasome, spliceosome, aminoacyl
tRNA biosynthesis and protein processing in endoplasmic
reticulum (ER) involving protein targeting, ER-associated
degradation and ubiquitin ligase complex. This suggests that
mitochondria and ER functions are affected in AD. The hub
genes include NDUFAB1, VDAC3, ATP5G3, COPS4, RTCA, and
POP4. This downregulated module is also associated with the
RNA transport, translation, and splicing. Similarly, the module
M2 is also associated with ribosome and RNA splicing, but it
shows positive correlation with aging and AD (Figure 2 and
Table 2) suggesting a complex pattern of gene expression related
to these cellular processes.

In the oligodendrocyte module M1, we note that most
genes are downregulated with aging but in AD the extent of
downregulation decrease and in some patients this module
is upregulated (Supplementary Figure S4). In this module,
the myelin associated proteins (MBP, MOB, and MOG) are
downregulated in aging together with negative regulators
(LINGO1) of myelination and oligodendrocytes precursor
differentiation. This suggests a dynamic homeostasis of myelin
damage and repair, which canmask its consequences in aging and
pathogenesis of AD.

FIGURE 5 | Module preservation analysis with hippocampal datasets.
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TABLE 2 | Enrichment of Gene Ontology (GO) terms and KEGG pathways associated with aging and AD-specific modules.

Module (genes) KEGG pathway Biological process Cellular components Hub genes

M2 (2072) Ribosome (1.7E-10), Spliceosome

(1.2E-2), RNA transport (2.4E-4∗)

rRNA processing (2.4E-13), mRNA

splicing (3.6E-5), mRNA processing

(1.1E-4)

Nucleolus (1.6E-10), Ribosome

(4.1E-6)

TFEB, PAN2,

ARHGAP17

M3 (675) Fatty acid degradation (8.2E-3),

Hippo signaling (2.7E-2), PPAR

signaling (9.7E-4∗)

Cell adhesion (4.1E-2),

Oxidation–reduction process

(3.0E-4∗), Fatty acid beta-oxidation

(8.5E-4∗)

Extracellular exosome (1.5E-2),

Focal adhesion (3.9E-4∗),

Extracellular space (8.9E-4∗)

CDC42EP4, EZR,

ARHGEF26, TCF7L1,

SOX9, ARHGEF6

M4 (701) Phagosome (4.3E-8), Toll-like

receptor signaling (3.1E-6),

Cytokine–cytokine receptor

interaction (2.7E-4)

Inflammatory response (1.4E-18),

Signal transduction (4.0E-12),

Toll-like receptor signaling (7.6E-8)

MHC class II protein complex

(1.8E-6), Integral component of

membrane (2.6E-3), Phagocytic

vesicle membrane (4.3E-3)

TYROBP, TREM2,

ITGB2, MYO1F, C1Qs,

TGFB1

M5 (798) TNF signaling (1.9E-6),

Complement and coagulation

cascades (5.6E-5), HIF-1

signaling (4.1E-4)

Inflammatory response (4.8E-16),

Response to LPS (1.5E-8), Cellular

response to TNF (2.2E-8)

Extracellular matrix (3.5E-7),

Extracellular exosome (5.8E-7),

MHC class 1 complex (1.4E-4)

TNFRSF1A, MSN,

CLIC1, IFITM2

M7 (333) ECM-receptor interaction (6.4E-3∗),

Focal adhesion (3.6E-2∗)

Outer dynein arm assembly

(6.4E-12), Inner dynein arm

assembly (3.8E-9), Cilium

morphogenesis (9.0E-9)

Axoneme (1.3E-18), Motile

cilium (5.5E-17)

ZMYND10, ARMC3,

CFAP43

M8 (695) Axon guidance (5.9E-3), Oxytocin

signaling (1.6E-3∗), Rap1 signaling

(4.8E-3∗)

Calcium ion transport (8.1E-3∗),

Potassium ion transport (9.9E-3∗),

Dendritic spine morphogenesis

(1.1E-2∗)

Cell junction (9.7E-9),

Postsynaptic density (6.4E-8),

Dendritic spine (9.1E-5)

ICAM5, PRKCG, JPH3,

SPTBN2

M9 (2377) Synaptic vesicle (8.3E-10),

Glutamatergic synapse (3.8E-5),

Long term potentiation (4.2E-3)

Chemical synaptic transmission

(2.3E-16), Neurotransmitter

secretion (1.5E-6), Nervous system

development (5.8E-5)

Neuron projection (2.5E-10),

Dendrite (1.9E-10), Axon

(4.9E-9)

UCHL1, STMN2,

SYN1, SYT5, SNAP91,

PAK3

M10 (2660) Oxidative phosphorylation

(1.8E-19), Proteasome (6.6E-11),

Spliceosome (7.5E-7), Protein

processing in ER (3.8E-5)

Mitochondria electron transport

(1.4E-12), Protein folding (9.3E-9)

Mitochondrion (2.4E-62),

Mitochondrial matrix (2.4E-19),

Proteasome complex (3.4E-9),

Ribosome (2.5E-8)

NDUFAB1, VDAC3,

ATP5G3, COPS4,

RTCA, POP4

M12 (584) Retrograde endocannabinoid

signaling (4.8E-4), Circadian

entrainment (7.1E-3), Glutamatergic

synapse (7.2E-3), GABAergic

synapse (2.9E-2)

Peptidyl-serine phosphorylation

(2.9E-4∗), Neuron cell–cell adhesion

(2.1E-3∗)

Postsynaptic density (3.5E-2),

Postsynaptic membrane

(2.9E-2)

YWHAZ, GADP1,

SYNJ1, MAPK9,

G3BP2, ATP6AP2

Benjamini-Hochberg corrected p-values are given inside the bracket. ∗Represents uncorrected p-value.

Mapping Gene Expression to Human
Protein–Protein Interaction Network:
Graph Theoretical Study
We integrated the gene expression of young, aging, and AD with
the PPI network to obtain weighted PPI networks. The integrated
PPI networks were used to identify active/inactive interactions

between young vs. aging and young vs. AD using the edge
betweenness network measure. Only those interactions with an

edge betweenness value difference of 2000 and adj p-value < 0.05
were considered to be altered interactions. These interactions

formed the upregulated and downregulated subnetworks of aging

and AD (Supplementary Figures S5, S6). In AD, the number
of nodes and interactions increased (Supplementary Figure S7

and Data Sheet S1). However, we observed that most of these

alterations in AD increase the degree of existing nodes of aging

subnetwork, which lead to an increase in the number of hubs.
This suggests that common process/nodes are dysregulated to

different extent in aging and AD. Based on the node degree, we
identified hub genes and their interactions in aging and AD PPI
subnetworks.

We found nodes CD44, VEGFA, HIF1A, VIM, FOS, CEBPB,
CDKN1A, SHC1, TGFβ1, and SYK as hub genes of the
upregulated aging subnetwork. CD44 is expressed in both
glial and neuronal cells and it is associated with astrocytes
migration and differentiation, astrogliosis, oligodendrocytes
differentiation, inflammatory response, dendritic arborization,
actin polymerization, and synaptic transmission (Dzwonek and
Wilczynski, 2015). Similarly, another identified gene Vimentin
(VIM) is also highly expressed in astrocytes (Ferrer, 2017).
Consistently, we also observe an increase in the expression
of astrocyte markers, GFAP, S100A8, ALDH1L1, and CHI3L1
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FIGURE 6 | Expression profiles of genes associated with aging and AD. The fold changes of (A) astrocytes markers, (B) neuroprotective genes (VEGFA, HIF1A,

PIN1, BDNF, and ATXN1), (C) 14-3-3 proteins, (D) PRKC isoforms, (E) ephrin receptors, and (F) synapses and actin cytoskeleton genes (EGR1, CDC42, RAC1,

SNAP25, and SST) are shown. Fold changes are calculated with respect to the expression of young group.

with aging (Figure 6A). Specifically, CHI3L is identified as a
biomarker for reactive astrocytes linked to the inflammation.

VEGFA interaction with HIF1A is upregulated in aging. We
also found key interactions betweenHIF1A, PFKFB3, and LDHA,
which regulate the metabolic switch toward aerobic glycolysis.
This is also further supported by the upregulation of hexokinase
2 (HK2) and pyruvate dehydrogenase kinase 1 (PDK1) genes
with aging compared to the young. DNA damage responsive
gene CDKN1A is upregulated in aging along with its interacting
partner GADD45B. Further, the upregulated aging subnetwork
also includes hub genes related to immune and inflammatory

response (CEBPB, FOS, STAT3, TGFβ1, and SYK). In young vs.
AD, we found that the upregulated subnetwork expands with
newer interactions and hub genes also include RXRA, ACTB,
RELA, NFKBIA, FYN, MYC, and YBX1. NFKβ subunit, RELA
interactions increase compared to the aging subnetwork and is
related to the immune response. We found interactions involving

YBX1, MYC, MAX, MXI1, SGK1, and FOXO3 in AD that

are linked to cell proliferation and cell death decision-making.
The repressor element 1-silencing transcription factor (REST)
interactions are also part of the upregulated subnetwork. REST
is linked to the stress resistance in aging and AD (Lu et al., 2014).
Further, in the AD subnetwork, VEGFA is not a hub gene since

the number of interactions decrease significantly compared to the
aging subnetwork. We observed that the expression of VEGFA

increase in aging but decrease in AD (Figure 6B), which suggests
the possibility of vascular dysfunction in the hippocampus of AD.

The hub genes of downregulated aging subnetwork include
MAPK1, RAD21, YWHAZ, ATXN1, SRC, CTCF, CALM1,
and PRKCZ. In AD, the node degree of MAPK1, CALM1,
YWHAZ, PRKCZ, SRC, and CTCF increases while that of
RAD21 decreases. Further, we also found hub genes PIN1,

YWHAH, YWHAG, YWHAQ, EGR1, CDC42, DNM1, SST, and
SNAP25 that are specific for AD. YWHAZ, YWHAH, YWHAG,
and YWHAQ encode proteins of the 14-3-3 family that are
highly expressed in the brain tissue and are involved in the
brain development, memory and learning (Qiao et al., 2014).
We observed that genes of 14-3-3 family are downregulated
in AD compared to aging (Figure 6C). Similarly, PIN1 is
downregulated in AD, which is required for healthy aging and
its deficiency leads to an early aging phenotype (Liou et al.,
2003). In AD, we also observed that members of PKC family
of serine/threonine kinase are downregulated together with
genes encoding kinases, sarcoma tyrosine kinase (SRC) and
ephrin receptors (Figures 6D,E). Recent evidence shows that
these protein kinase activities decrease with the stages of AD
(Rosenberger et al., 2016).

CDC42 interaction with GRB2 is downregulated, which has
a preventive role in the cytoskeleton disassembly. Further,
SNAP25 encoding a SNARE complex protein and DNM1
encoding a dynamin subfamily of GTP-binding protein, are
downregulated affecting the synaptic vesicle exocytosis and
endocytosis, respectively. The neuropeptide somatostatin (SST)
gene is also downregulated, which suggest that the SST group of
GABAergic interneurons are affected (Figure 6F). Furthermore,
an interaction involving BDNF and a GABA related gene GAD2
is downregulated in the AD subnetwork.

DISCUSSION

In this study, we extend the work of Cribbs et al. (2012)
and Berchtold et al. (2013) by performing large-scale network
analyses of aging and AD using the gene expression profiles
obtained from the post-mortem hippocampus samples. Earlier
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TABLE 3 | Module hub genes in aging and AD.

Gene Role/function Reference

TFEB Involved in Aβ-induced pathogenesis of AD

by regulating the autophagy-lysosome

pathway

Zhang and Zhao,

2015

EZR Role in immune synapse along with MSN Ivetic and Ridley,

2004

TCF7L1 Mediates Wnt signaling pathway; Altered in

AD patients in the hippocampus

Riise et al., 2015

SOX9 Glial fate specification Sun et al., 2017

TYROBP Activates immune response; genetic

variants are risk factor for AD

Wang et al., 2016

TREM2 Activates immune response; genetic

variants are risk factor for AD

Guerreiro et al.,

2013

C1Qs Associated with early synaptic loss in AD

mice models

Stephan et al.,

2013

TGFB1 Major role in the activation of microglia Von Bernhardi

et al., 2015a

ITGB2 Identified as one of key inflammatory gene

in AD mice models

Wes et al., 2014

MSN Role in immune synapse along with EZR;

identified as highly expressed in the AD

brain using proteomic analysis

Ivetic and Ridley,

2004; Begcevic

et al., 2013

CLIC1 Identified as highly expressed in the AD

brain using proteomic analysis; involved in

Aβ induced generation of ROS

Milton et al., 2008;

Begcevic et al.,

2013

IFITM2 Identified as part of microglial sensome in

aging with neuroprotective role

Hickman et al.,

2013

TNFRSF1A Identified as AD associated gene using

genome wide haplotype association study

Shang et al., 2015

UCHL1 Regulates the production of Aβ by

interacting with APP

Zhang et al., 2014

SNAP91 Role in vesicle mediated transport;

downregulated in AD patients and AD

mice models

Cao et al., 2010

PAK3 Reduced activity in AD patients and AD

mice models

Zhao et al., 2006

NDUFAB1 Role in energy metabolism; downregulated

in AD

Liang et al., 2008

YWHAZ Identified as AD biomarker using

proteomic analysis; reported as hub gene

in aging and AD

Miller et al., 2008;

Ho Kim et al., 2015

SYNJ1 Accelerate Aβ clearance and attenuates

cognitive deterioration

Zhu et al., 2013

ATP6AP2 Downregulation induces

neurodegeneration

Dubos et al., 2015

studies have shown that genes related to immune, energy
metabolism and synapses are altered in aging and AD. Here,
the network analysis revealed the organization of co-expression
network into functional modules that are cell-type specific in
aging and AD. We showed that the module associated with
neurons, glial cells and endothelial cells are affected by both
aging and AD (Figure 2 and Table 1). The modules associated
with neurons, mitochondria and ER are downregulated while
modules associated with glial cells (microglial and astrocytes)
and endothelial cells are upregulated (Figure 3). Both microglial
and endothelial cell modules are upregulated to different extent
in male and female (Supplementary Figure S3). Further, two
modules (one of them is the neuron module M8) showed gender

differences suggesting sexual dimorphism in the hippocampus as
reported previously (Berchtold et al., 2008; Guebel and Torres,
2016). Further, some of the hub genes of these modules are
implicated in aging and AD (Table 3).

The upregulation of glial cells-associated modules in aging
is consistent with the study by Cribbs et al. (2012) and Soreq
et al. (2017). We found that the microglial module genes are
significantly upregulated in young vs. aging than aging vs. AD
(Figures 2, 3). This suggests that the neuroinflammation is
significantly associated with aging and precedes the development
of AD. The upregulation of astrocyte module genes in aging and
AD can reflect the neuroprotective role to relieve the stress on
the aging neurons or deleterious processes in AD. This finding
is consistent with a previous study that shows an increase in the
expression of astrocyte genes in human aging and aging mouse
models in the hippocampus (Hayakawa et al., 2007).

An increase in the expression of the endothelial cell module
genes and VEGFA are also observed in aging. On the other hand,
the expression of VEGFA decreased in AD (Figure 6B). Emerging
evidences show vascular dysfunction in the development and
progression of AD (De Strooper and Karran, 2016). The brain
tissue of AD patients shows elevated apoptotic vascular cells.
It is also shown that expressing VEGF in neurons restored the
impaired memory in AD mice suggesting that VEGF is required
to protect the integrity of the vasculature in aging (Religa et al.,
2013). We also found evidence for aerobic glycolysis (HIF1A
and its interactions) in aging using the PPI network analysis
(Supplementary Figure S5). High brain lactate is shown to be the
hallmark of aging, however, its role in maintaining the neuronal
function during aging is not clear (Ross et al., 2010). Interestingly,
studies have shown that Aβ resistance is mediated by aerobic
glycolysis (Soucek et al., 2003; Newington et al., 2011).

Further, two neuron modules M8 and M9 are significantly
downregulated with AD than aging and another neurons module
M12 is downregulated as continuum of aging (Figures 2, 3).
We observed that both glutamatergic synapse and inhibitory
GABAergic synapse are downregulated in AD. Previous studies
have shown hyperexcitability in the early stage of AD (MCI),
which can be due to the effect of losing the inhibitory synapse.
This might lead to hyper- to hypo- excitability with the
progression of AD (Berchtold et al., 2014; Saura et al., 2015).
These results suggest that neurons-specific changes characterize
disease state while glial cells-specific changes characterize aging.
This is consistent with the observation that glial cells-specific
genes predict the age than neurons-specific genes (Soreq et al.,
2017). The complex interaction between glial cells in aging might
form the early cellular phase of AD followed by the alteration in
the E/I balance at the level of neurons.

We found genes that encode protein kinases as hubs of
upregulated (FYN and SYK) and downregulated (SRC, MAPK1,
PRKCZ) PPI subnetworks. FYN is a tyrosine kinase that is
implicated in AD and its known targets are PTK2B and Tau
(Kaufman et al., 2015). Its inhibition is shown to rescue
the memory loss in the AD mice. SYK overexpression leads
to Aβ accumulation and Tau hyperphosphorylation in AD
(Paris et al., 2014). PRKCZ function is linked to memory
consolidation and maintenance (Bonini et al., 2007). MAPK1 is
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involved in long-term potentiation and memory consolidation
in the hippocampus. Increased levels of Aβ suppress the
expression of MAPK1 (Liu et al., 2013). We also found the
transcriptional dysregulation in both aging and AD. FOS (a
subunit of transcriptional factor AP-1), STAT3 and CEBPB,
which are involved in the immune response, are hub genes of
the upregulated aging subnetwork. In the AD subnetwork, the
degree of these nodes increases and more hub genes emerge,
which include transcriptional activator MYC and regulators of
NFKβ (RELA, NFKBIA). An increase in the expression of MYC
is associated with neuronal cell death (Lee et al., 2011). EGR1 is
part of downregulated AD subnetwork and it encodes a member
of the immediate early gene (IEG) family of transcription factors
involved in the regulation of synaptic plasticity (Duclot and
Kabbaj, 2017).

Further, we found more proteins (14-3-3 proteins, PIN1,
ATXN1, and BDNF) with neuroprotective function in aging to
be part of the downregulated AD subnetwork (Figure 6). PIN1-
dependent protein isomerization protects against NFTs and Aβ

accumulation (Liou et al., 2003; Balastik et al., 2007). BDNF
levels decrease in the serum and brain of AD, and it has a
protective role against Aβ- and Tau-related neurodegeneration
(Jiao et al., 2016). The loss of ATXN1 potentiates β-secretase
cleavage of APP, which leads to an increase in Aβ levels (Zhang
et al., 2010). This subnetwork also includes hub genes (CDC42)
that are involved in the regulation of actin cytoskeleton. The
downregulation of Rho family GTPases (CDC42 and RAC1)
genes leads to synaptic loss in AD (Konietzny et al., 2017). We
found both axon guidance and dendrite morphogenesis, which
are dependent on the dynamics of cytoskeleton, to be affected
(the neuron module M9). These processes are implicated in AD
and evidences suggest that Tau might disrupt the dynamics of
cytoskeleton leading to the synaptic loss in AD (Bamburg and
Bloom, 2009).

In summary, our study provides network-level insights into
the complex relationship between aging and AD. The co-
expression network of young, aging, and AD helped to identify
modules, pathways and genes that are stage-specific, cell-type
specific and continuum in the hippocampus, which were unclear
in the previous studies that focused on either aging or AD. We
identified the genes and their interactions that protect aging
brain from AD and that make it susceptible to AD. We also
demonstrated the validity of our study by identifying pathways
and genes that are previously implicated in aging and AD. Our
study highlights that simultaneously analyzing aging and AD will
help to understand the pre-clinical and clinical phase of AD and
aid in developing treatment strategies. This study can be further
extended to characterize the global and local alterations in the
other areas of the brain in young, aging, and AD.
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DATA SHEET S1 | Up-regulated and down-regulated interactions of young vs.

aging, aging vs. AD and young vs. AD.

FIGURE S1 | Scale free topology fit showing the relation between R2 and power

(β) for the co-expression network. The curve saturates at β = 18.

FIGURE S2 | Modular organization of the co-expression network. The modules

are shown in different colors below the dendrogram. The gray module consists of

genes not assigned to any module.

FIGURE S3 | Module eigengene (ME) expression values (y-axis) across samples

(x-axis). The female and male samples are separately grouped into young (green),

aging (yellow) and AD (blue). Female group is shown on the left and male group is

shown on the right.

FIGURE S4 | Oligodendrocyte module eigengene (ME) expression values (y-axis)

across samples (x-axis). The samples are grouped into young (green), aging

(yellow) and AD (blue).

FIGURE S5 | The upregulated (A) aging and (B) AD subnetworks. The significant

interactions of young vs. aging, and young vs. AD obtained using edge

betweenness network measure are shown. Genes/nodes with significant

interactions are shown in green color.

FIGURE S6 | The downregulated (A) aging and (B) AD subnetworks. The

significant interactions of young vs. aging, and young vs. AD obtained using edge

betweenness network measure are shown. Genes/nodes with significant

interactions are shown in green color.

FIGURE S7 | The overlap of upregulated and downregulated nodes and

interactions between aging and AD subnetworks.

TABLE S1 | Datasets used for the module preservation analysis.

TABLE S2 | The distribution of DEGs in the different modules of co-expression

network.

REFERENCES

Balastik, M., Lim, J., Pastorino, L., and Lu, K. P. (2007). Pin1 in

Alzheimer’s disease: multiple substrates, one regulatory mechanism?

Biochim. Biophys. Acta 1772, 422–429. doi: 10.1016/j.bbadis.2007.

01.006

Ballatore, C., Lee, V. M., and Trojanowski, J. Q. (2007). Tau-mediated

neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev.

Neurosci. 8, 663–672. doi: 10.1038/nrn2194

Bamburg, J. R., and Bloom, G. S. (2009). Cytoskeletal pathologies of

Alzheimer disease. Cell Motil. Cytoskeleton 66, 635–649. doi: 10.1002/cm.

20388

Frontiers in Aging Neuroscience | www.frontiersin.org 11 May 2018 | Volume 10 | Article 153

https://www.frontiersin.org/articles/10.3389/fnagi.2018.00153/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2018.00153/full#supplementary-material
https://doi.org/10.1016/j.bbadis.2007.01.006
https://doi.org/10.1016/j.bbadis.2007.01.006
https://doi.org/10.1038/nrn2194
https://doi.org/10.1002/cm.20388
https://doi.org/10.1002/cm.20388
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


Lanke et al. Relationship Between Aging and Alzheimer’s Disease

Begcevic, I., Kosanam, H., Martinez-Morillo, E., Dimitromanolakis, A.,

Diamandis, P., Kuzmanov, U., et al. (2013). Semiquantitative proteomic

analysis of human hippocampal tissues from Alzheimer’s disease and

age-matched control brains. Clin. Proteomics 10:5. doi: 10.1186/1559-02

75-10-5

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57,

289–300.

Berchtold, N. C., Coleman, P. D., Cribbs, D. H., Rogers, J., Gillen, D. L., and

Cotman, C. W. (2013). Synaptic genes are extensively downregulated across

multiple brain regions in normal human aging and Alzheimer’s disease.

Neurobiol. Aging 34, 1653–1661. doi: 10.1016/j.neurobiolaging.2012.11.024

Berchtold, N. C., Cribbs, D. H., Coleman, P. D., Rogers, J., Head, E., Kim, R.,

et al. (2008). Gene expression changes in the course of normal brain aging

are sexually dimorphic. Proc. Natl. Acad. Sci. U.S.A. 105, 15605–15610.

doi: 10.1073/pnas.0806883105

Berchtold, N. C., Sabbagh, M. N., Beach, T. G., Kim, R. C., Cribbs, D. H.,

and Cotman, C. W. (2014). Brain gene expression patterns differentiate mild

cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol.

Aging 35, 1961–1972. doi: 10.1016/j.neurobiolaging.2014.03.031

Blalock, E. M., Buechel, H. M., Popovic, J., Geddes, J. W., and Landfield,

P. W. (2011). Microarray analyses of laser-captured hippocampus reveal

distinct gray and white matter signatures associated with incipient Alzheimer’s

disease. J. Chem. Neuroanat. 42, 118–126. doi: 10.1016/j.jchemneu.2011.

06.007

Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., and

Landfield, P. W. (2004). Incipient Alzheimer’s disease: microarray correlation

analyses reveal major transcriptional and tumor suppressor responses. Proc.

Natl. Acad. Sci. U.S.A. 101, 2173–2178. doi: 10.1073/pnas.0308512100

Bonini, J. S., Da Silva, W. C., Bevilaqua, L. R., Medina, J. H., Izquierdo, I.,

and Cammarota, M. (2007). On the participation of hippocampal PKC in

acquisition, consolidation and reconsolidation of spatial memory.Neuroscience

147, 37–45. doi: 10.1016/j.neuroscience.2007.04.013

Braak, H., and Braak, E. (1995). Staging of Alzheimer’s disease-related

neurofibrillary changes. Neurobiol. Aging 16, 271–278. doi: 10.1016/0197-

4580(95)00021-6

Cao, Y., Xiao, Y., Ravid, R., and Guan, Z. Z. (2010). Changed clathrin regulatory

proteins in the brains of Alzheimer’s disease patients and animal models.

J. Alzheimers Dis. 22, 329–342. doi: 10.3233/JAD-2010-100162

Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J.

(2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal

CA1: transcription and neurotrophic factor down-regulation and up-regulation

of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70, 462–473.

doi: 10.1002/jnr.10351

Cribbs, D. H., Berchtold, N. C., Perreau, V., Coleman, P. D., Rogers, J., Tenner,

A. J., et al. (2012). Extensive innate immune gene activation accompanies brain

aging, increasing vulnerability to cognitive decline and neurodegeneration: a

microarray study. J. Neuroinflammation 9:179. doi: 10.1186/1742-2094-9-179

Dennis, G. Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., et al. (2003).

DAVID: database for annotation, visualization, and integrated discovery.

Genome Biol. 4:P3. doi: 10.1186/gb-2003-4-5-p3

De Strooper, B., and Karran, E. (2016). The cellular phase of Alzheimer’s disease.

Cell 164, 603–615. doi: 10.1016/j.cell.2015.12.056

Dubos, A., Castells-Nobau, A., Meziane, H., Oortveld, M. A., Houbaert, X.,

Iacono, G., et al. (2015). Conditional depletion of intellectual disability and

Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive

impairment and neurodegeneration. Hum. Mol. Genet. 24, 6736–6755.

doi: 10.1093/hmg/ddv380

Duclot, F., and Kabbaj, M. (2017). The role of early growth response 1 (EGR1) in

brain plasticity and neuropsychiatric disorders. Front. Behav. Neurosci. 11:35.

doi: 10.3389/fnbeh.2017.00035

Dzwonek, J., andWilczynski, G.M. (2015). CD44:molecular interactions, signaling

and functions in the nervous system. Front. Cell. Neurosci. 9:175. doi: 10.3389/

fncel.2015.00175

Ertaylan, G., Okawa, S., Schwamborn, J. C., and Del Sol, A. (2014). Gene regulatory

network analysis reveals differences in site-specific cell fate determination

in mammalian brain. Front. Cell. Neurosci. 8:437. doi: 10.3389/fncel.2014.

00437

Ferrer, I. (2017). Diversity of astroglial responses across human neurodegenerative

disorders and brain aging. Brain Pathol. 27, 645–674. doi: 10.1111/bpa.

12538

Girvan, M., and Newman, M. E. (2002). Community structure in social and

biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826. doi: 10.1073/

pnas.122653799

Guebel, D. V., and Torres, N. V. (2016). Sexual dimorphism and aging in the

human hyppocampus: identification, validation, and impact of differentially

expressed genes by factorial microarray and network analysis. Front. Aging

Neurosci. 8:229. doi: 10.3389/fnagi.2016.00229

Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., et al.

(2013). TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127.

doi: 10.1056/NEJMoa1211851

Hayakawa, N., Kato, H., and Araki, T. (2007). Age-related changes of astorocytes,

oligodendrocytes and microglia in the mouse hippocampal CA1 sector. Mech.

Ageing Dev. 128, 311–316. doi: 10.1016/j.mad.2007.01.005

Herrup, K. (2010). Reimagining Alzheimer’s disease–an age-based

hypothesis. J. Neurosci. 30, 16755–16762. doi: 10.1523/JNEUROSCI.4521-

10.2010

Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang, L. C.,

Means, T. K., et al. (2013). The microglial sensome revealed by direct RNA

sequencing. Nat. Neurosci. 16, 1896–1905. doi: 10.1038/nn.3554

Hokama, M., Oka, S., Leon, J., Ninomiya, T., Honda, H., Sasaki, K., et al.

(2014). Altered expression of diabetes-related genes in Alzheimer’s disease

brains: the Hisayama study. Cereb. Cortex 24, 2476–2488. doi: 10.1093/cercor/

bht101

Ho Kim, J., Franck, J., Kang, T., Heinsen, H., Ravid, R., Ferrer, I., et al. (2015).

Proteome-wide characterization of signalling interactions in the hippocampal

CA4/DG subfield of patients with Alzheimer’s disease. Sci. Rep. 5:11138.

doi: 10.1038/srep11138

Hollands, C., Bartolotti, N., and Lazarov, O. (2016). Alzheimer’s disease

and hippocampal adult neurogenesis: exploring shared mechanisms. Front.

Neurosci. 10:178. doi: 10.3389/fnins.2016.00178

Horvath, S. (2011). Weighted Network Analysis: Applications in Genomics and

Systems Biology. New York, NY: Springer-Verlag. doi: 10.1007/978-1-4419-

8819-5

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J.,

Scherf, U., et al. (2003). Exploration, normalization, and summaries of

high density oligonucleotide array probe level data. Biostatistics 4, 249–264.

doi: 10.1093/biostatistics/4.2.249

Ivetic, A., and Ridley, A. J. (2004). Ezrin/radixin/moesin proteins and Rho GTPase

signalling in leucocytes. Immunology 112, 165–176. doi: 10.1111/j.1365-2567.

2004.01882.x

Jiao, S. S., Shen, L. L., Zhu, C., Bu, X. L., Liu, Y. H., Liu, C. H., et al. (2016). Brain-

derived neurotrophic factor protects against tau-related neurodegeneration of

Alzheimer’s disease. Transl. Psychiatry 6:e907. doi: 10.1038/tp.2016.186

Kaufman, A. C., Salazar, S. V., Haas, L. T., Yang, J., Kostylev, M. A., Jeng, A. T.,

et al. (2015). Fyn inhibition rescues established memory and synapse loss in

Alzheimer mice. Ann. Neurol. 77, 953–971. doi: 10.1002/ana.24394

Kikuchi, M., Ogishima, S., Miyamoto, T., Miyashita, A., Kuwano, R., Nakaya, J.,

et al. (2013). Identification of unstable network modules reveals disease

modules associated with the progression of Alzheimer’s disease. PLoS One

8:e76162. doi: 10.1371/journal.pone.0076162

Konietzny, A., Bar, J., and Mikhaylova, M. (2017). Dendritic actin cytoskeleton:

structure, functions, and regulations. Front Cell. Neurosci. 11:147. doi: 10.3389/

fncel.2017.00147

Langfelder, P., and Horvath, S. (2007). Eigengene networks for studying

the relationships between co-expression modules. BMC Syst. Biol. 1:54.

doi: 10.1186/1752-0509-1-54

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-

2105-9-559

Langfelder, P., Luo, R., Oldham, M. C., and Horvath, S. (2011). Is my

network module preserved and reproducible? PLoS Comput. Biol. 7:e1001057.

doi: 10.1371/journal.pcbi.1001057

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a

hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24,

719–720. doi: 10.1093/bioinformatics/btm563

Frontiers in Aging Neuroscience | www.frontiersin.org 12 May 2018 | Volume 10 | Article 153

https://doi.org/10.1186/1559-0275-10-5
https://doi.org/10.1186/1559-0275-10-5
https://doi.org/10.1016/j.neurobiolaging.2012.11.024
https://doi.org/10.1073/pnas.0806883105
https://doi.org/10.1016/j.neurobiolaging.2014.03.031
https://doi.org/10.1016/j.jchemneu.2011.06.007
https://doi.org/10.1016/j.jchemneu.2011.06.007
https://doi.org/10.1073/pnas.0308512100
https://doi.org/10.1016/j.neuroscience.2007.04.013
https://doi.org/10.1016/0197-4580(95)00021-6
https://doi.org/10.1016/0197-4580(95)00021-6
https://doi.org/10.3233/JAD-2010-100162
https://doi.org/10.1002/jnr.10351
https://doi.org/10.1186/1742-2094-9-179
https://doi.org/10.1186/gb-2003-4-5-p3
https://doi.org/10.1016/j.cell.2015.12.056
https://doi.org/10.1093/hmg/ddv380
https://doi.org/10.3389/fnbeh.2017.00035
https://doi.org/10.3389/fncel.2015.00175
https://doi.org/10.3389/fncel.2015.00175
https://doi.org/10.3389/fncel.2014.00437
https://doi.org/10.3389/fncel.2014.00437
https://doi.org/10.1111/bpa.12538
https://doi.org/10.1111/bpa.12538
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.3389/fnagi.2016.00229
https://doi.org/10.1056/NEJMoa1211851
https://doi.org/10.1016/j.mad.2007.01.005
https://doi.org/10.1523/JNEUROSCI.4521-10.2010
https://doi.org/10.1523/JNEUROSCI.4521-10.2010
https://doi.org/10.1038/nn.3554
https://doi.org/10.1093/cercor/bht101
https://doi.org/10.1093/cercor/bht101
https://doi.org/10.1038/srep11138
https://doi.org/10.3389/fnins.2016.00178
https://doi.org/10.1007/978-1-4419-8819-5
https://doi.org/10.1007/978-1-4419-8819-5
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1111/j.1365-2567.2004.01882.x
https://doi.org/10.1111/j.1365-2567.2004.01882.x
https://doi.org/10.1038/tp.2016.186
https://doi.org/10.1002/ana.24394
https://doi.org/10.1371/journal.pone.0076162
https://doi.org/10.3389/fncel.2017.00147
https://doi.org/10.3389/fncel.2017.00147
https://doi.org/10.1186/1752-0509-1-54
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1371/journal.pcbi.1001057
https://doi.org/10.1093/bioinformatics/btm563
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


Lanke et al. Relationship Between Aging and Alzheimer’s Disease

Lee, H. P., Kudo, W., Zhu, X., Smith, M. A., and Lee, H. G. (2011). Early induction

of c-Myc is associated with neuronal cell death. Neurosci. Lett. 505, 124–127.

doi: 10.1016/j.neulet.2011.10.004

Liang, D., Han, G., Feng, X., Sun, J., Duan, Y., and Lei, H. (2012). Concerted

perturbation observed in a hub network in Alzheimer’s disease. PLoS One

7:e40498. doi: 10.1371/journal.pone.0040498

Liang, W. S., Dunckley, T., Beach, T. G., Grover, A., Mastroeni, D., Walker, D. G.,

et al. (2007). Gene expression profiles in anatomically and functionally distinct

regions of the normal aged human brain. Physiol. Genomics 28, 311–322.

doi: 10.1152/physiolgenomics.00208.2006

Liang, W. S., Reiman, E. M., Valla, J., Dunckley, T., Beach, T. G., Grover, A.,

et al. (2008). Alzheimer’s disease is associated with reduced expression of energy

metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. U.S.A.

105, 4441–4446. doi: 10.1073/pnas.0709259105

Lin, M. T., and Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress

in neurodegenerative diseases. Nature 443, 787–795. doi: 10.1038/nature05292

Liou, Y. C., Sun, A., Ryo, A., Zhou, X. Z., Yu, Z. X., Huang, H. K.,

et al. (2003). Role of the prolyl isomerase Pin1 in protecting against age-

dependent neurodegeneration. Nature 424, 556–561. doi: 10.1038/nature

01832

Liu, T., Ren, D., Zhu, X., Yin, Z., Jin, G., Zhao, Z., et al. (2013). Transcriptional

signaling pathways inversely regulated in Alzheimer’s disease and glioblastoma

multiform. Sci. Rep. 3:3467. doi: 10.1038/srep03467

Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., et al. (2014). REST

and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–454.

doi: 10.1038/nature13163

Mastroeni, D., Khdour, O. M., Delvaux, E., Nolz, J., Olsen, G., Berchtold, N., et al.

(2017). Nuclear but not mitochondrial-encoded oxidative phosphorylation

genes are altered in aging, mild cognitive impairment, and Alzheimer’s disease.

Alzheimers Dement. 13, 510–519. doi: 10.1016/j.jalz.2016.09.003

Miller, J. A., Oldham, M. C., and Geschwind, D. H. (2008). A systems level analysis

of transcriptional changes in Alzheimer’s disease and normal aging. J. Neurosci.

28, 1410–1420. doi: 10.1523/JNEUROSCI.4098-07.2008

Miller, J. A., Woltjer, R. L., Goodenbour, J. M., Horvath, S., and Geschwind,

D. H. (2013). Genes and pathways underlying regional and cell type changes

in Alzheimer’s disease. Genome Med. 5:48. doi: 10.1186/gm452

Milton, R. H., Abeti, R., Averaimo, S., Debiasi, S., Vitellaro, L., Jiang, L., et al.

(2008). CLIC1 function is required for beta-amyloid-induced generation of

reactive oxygen species bymicroglia. J. Neurosci. 28, 11488–11499. doi: 10.1523/

JNEUROSCI.2431-08.2008

Morrison, J. H., and Hof, P. R. (1997). Life and death of neurons in the aging brain.

Science 278, 412–419. doi: 10.1126/science.278.5337.412

Mu, Y., and Gage, F. H. (2011). Adult hippocampal neurogenesis and its role in

Alzheimer’s disease.Mol. Neurodegener. 6:85. doi: 10.1186/1750-1326-6-85

Newington, J. T., Pitts, A., Chien, A., Arseneault, R., Schubert, D., and Cumming,

R. C. (2011). Amyloid beta resistance in nerve cell lines is mediated by the

Warburg effect. PLoS One 6:e19191. doi: 10.1371/journal.pone.0019191

Oldham, M. C., Horvath, S., and Geschwind, D. H. (2006). Conservation and

evolution of gene coexpression networks in human and chimpanzee brains.

Proc. Natl. Acad. Sci. U.S.A. 103, 17973–17978. doi: 10.1073/pnas.0605938103

Paris, D., Ait-Ghezala, G., Bachmeier, C., Laco, G., Beaulieu-Abdelahad, D., Lin, Y.,

et al. (2014). The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-beta

production and Tau hyperphosphorylation. J. Biol. Chem. 289, 33927–33944.

doi: 10.1074/jbc.M114.608091

Podtelezhnikov, A. A., Tanis, K. Q., Nebozhyn, M., Ray, W. J., Stone, D. J., and

Loboda, A. P. (2011). Molecular insights into the pathogenesis of Alzheimer’s

disease and its relationship to normal aging. PLoS One 6:e29610. doi: 10.1371/

journal.pone.0029610

Qiao, H., Foote, M., Graham, K., Wu, Y., and Zhou, Y. (2014). 14-3-3 proteins

are required for hippocampal long-term potentiation and associative learning

and memory. J. Neurosci. 34, 4801–4808. doi: 10.1523/JNEUROSCI.4393-

13.2014

Religa, P., Cao, R., Religa, D., Xue, Y., Bogdanovic, N., Westaway, D., et al. (2013).

VEGF significantly restores impaired memory behavior in Alzheimer’s mice by

improvement of vascular survival. Sci. Rep. 3:2053. doi: 10.1038/srep02053

Riise, J., Plath, N., Pakkenberg, B., and Parachikova, A. (2015). Aberrant Wnt

signaling pathway in medial temporal lobe structures of Alzheimer’s disease.

J. Neural Transm. 122, 1303–1318. doi: 10.1007/s00702-015-1375-7

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). limma

powers differential expression analyses for RNA-sequencing and microarray

studies. Nucleic Acids Res. 43, e47. doi: 10.1093/nar/gkv007

Rosenberger, A. F., Hilhorst, R., Coart, E., Garcia Barrado, L., Naji, F., Rozemuller,

A. J., et al. (2016). Protein kinase activity decreases with higher Braak stages

of Alzheimer’s disease pathology. J. Alzheimers Dis. 49, 927–943. doi: 10.3233/

JAD-150429

Ross, J. M., Oberg, J., Brene, S., Coppotelli, G., Terzioglu, M., Pernold, K., et al.

(2010). High brain lactate is a hallmark of aging and caused by a shift in the

lactate dehydrogenase A/B ratio. Proc. Natl. Acad. Sci. U.S.A. 107, 20087–20092.

doi: 10.1073/pnas.1008189107

Sambarey, A., Devaprasad, A., Baloni, P., Mishra, M., Mohan, A., Tyagi, P.,

et al. (2017). Meta-analysis of host response networks identifies a common

core in tuberculosis. NPJ Syst. Biol. Appl. 3:4. doi: 10.1038/s41540-017-

0005-4

Saura, C. A., Parra-Damas, A., and Enriquez-Barreto, L. (2015). Gene

expression parallels synaptic excitability and plasticity changes in

Alzheimer’s disease. Front. Cell. Neurosci. 9:318. doi: 10.3389/fncel.2015.

00318

Selkoe, D. J., and Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease

at 25 years. EMBOMol. Med. 8, 595–608. doi: 10.15252/emmm.201606210

Shang, Z., Lv, H., Zhang, M., Duan, L., Wang, S., Li, J., et al. (2015). Genome-

wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1

and TG genes associated with Alzheimer’s disease in Caribbean Hispanic

individuals. Oncotarget 6, 42504–42514. doi: 10.18632/oncotarget.6391

Shen, L., and Sinai, M. (2013). GeneOverlap: Test and Visualize Gene Overlaps.

R Package Version 1.14.0. Available at: http://shenlab-sinai.github.io/shenlab-

sinai/

Soreq, L., Rose, J., Soreq, E., Hardy, J., Trabzuni, D., Cookson, M. R., et al. (2017).

Major shifts in glial regional identity are a transcriptional hallmark of human

brain aging. Cell Rep. 18, 557–570. doi: 10.1016/j.celrep.2016.12.011

Soucek, T., Cumming, R., Dargusch, R., Maher, P., and Schubert, D. (2003). The

regulation of glucosemetabolism byHIF-1mediates a neuroprotective response

to amyloid beta peptide. Neuron 39, 43–56. doi: 10.1016/S0896-6273(03)00367-

2

Stephan, A. H., Madison, D. V., Mateos, J. M., Fraser, D. A., Lovelett, E. A.,

Coutellier, L., et al. (2013). A dramatic increase of C1q protein in the CNS

during normal aging. J. Neurosci. 33, 13460–13474. doi: 10.1523/JNEUROSCI.

1333-13.2013

Sun, W., Cornwell, A., Li, J., Peng, S., Osorio, M. J., Aalling, N., et al. (2017). SOX9

is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic

regions. J. Neurosci. 37, 4493–4507. doi: 10.1523/JNEUROSCI.3199-16.2017

Supnet, C., and Bezprozvanny, I. (2010). The dysregulation of intracellular calcium

in Alzheimer disease. Cell Calcium 47, 183–189. doi: 10.1016/j.ceca.2009.12.014

Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M. W., Okamoto, S.,

et al. (2013). Abeta induces astrocytic glutamate release, extrasynaptic NMDA

receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. U.S.A. 110,

E2518–E2527. doi: 10.1073/pnas.1306832110

Talwar, P., Silla, Y., Grover, S., Gupta, M., Agarwal, R., Kushwaha, S., et al. (2014).

Genomic convergence and network analysis approach to identify candidate

genes in Alzheimer’s disease. BMC Genomics 15:199. doi: 10.1186/1471-2164-

15-199

Von Bernhardi, R., Cornejo, F., Parada, G. E., and Eugenin, J. (2015a). Role

of TGFbeta signaling in the pathogenesis of Alzheimer’s disease. Front. Cell.

Neurosci. 9:426. doi: 10.3389/fncel.2015.00426

Von Bernhardi, R., Eugenin-Von Bernhardi, L., and Eugenin, J. (2015b). Microglial

cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci.

7:124. doi: 10.3389/fnagi.2015.00124

Wang, M., Roussos, P., Mckenzie, A., Zhou, X., Kajiwara, Y., Brennand, K. J.,

et al. (2016). Integrative network analysis of nineteen brain regions identifies

molecular signatures and networks underlying selective regional vulnerability

to Alzheimer’s disease. Genome Med. 8:104. doi: 10.1186/s13073-016-0355-3

Wes, P. D., Easton, A., Corradi, J., Barten, D. M., Devidze, N., Decarr, L. B.,

et al. (2014). Tau overexpression impacts a neuroinflammation gene expression

network perturbed in Alzheimer’s disease. PLoS One 9:e106050. doi: 10.1371/

journal.pone.0106050

Yankner, B. A., Lu, T., and Loerch, P. (2008). The aging brain. Annu. Rev. Pathol. 3,

41–66. doi: 10.1146/annurev.pathmechdis.2.010506.092044

Frontiers in Aging Neuroscience | www.frontiersin.org 13 May 2018 | Volume 10 | Article 153

https://doi.org/10.1016/j.neulet.2011.10.004
https://doi.org/10.1371/journal.pone.0040498
https://doi.org/10.1152/physiolgenomics.00208.2006
https://doi.org/10.1073/pnas.0709259105
https://doi.org/10.1038/nature05292
https://doi.org/10.1038/nature01832
https://doi.org/10.1038/nature01832
https://doi.org/10.1038/srep03467
https://doi.org/10.1038/nature13163
https://doi.org/10.1016/j.jalz.2016.09.003
https://doi.org/10.1523/JNEUROSCI.4098-07.2008
https://doi.org/10.1186/gm452
https://doi.org/10.1523/JNEUROSCI.2431-08.2008
https://doi.org/10.1523/JNEUROSCI.2431-08.2008
https://doi.org/10.1126/science.278.5337.412
https://doi.org/10.1186/1750-1326-6-85
https://doi.org/10.1371/journal.pone.0019191
https://doi.org/10.1073/pnas.0605938103
https://doi.org/10.1074/jbc.M114.608091
https://doi.org/10.1371/journal.pone.0029610
https://doi.org/10.1371/journal.pone.0029610
https://doi.org/10.1523/JNEUROSCI.4393-13.2014
https://doi.org/10.1523/JNEUROSCI.4393-13.2014
https://doi.org/10.1038/srep02053
https://doi.org/10.1007/s00702-015-1375-7
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.3233/JAD-150429
https://doi.org/10.3233/JAD-150429
https://doi.org/10.1073/pnas.1008189107
https://doi.org/10.1038/s41540-017-0005-4
https://doi.org/10.1038/s41540-017-0005-4
https://doi.org/10.3389/fncel.2015.00318
https://doi.org/10.3389/fncel.2015.00318
https://doi.org/10.15252/emmm.201606210
https://doi.org/10.18632/oncotarget.6391
http://shenlab-sinai.github.io/shenlab-sinai/
http://shenlab-sinai.github.io/shenlab-sinai/
https://doi.org/10.1016/j.celrep.2016.12.011
https://doi.org/10.1016/S0896-6273(03)00367-2
https://doi.org/10.1016/S0896-6273(03)00367-2
https://doi.org/10.1523/JNEUROSCI.1333-13.2013
https://doi.org/10.1523/JNEUROSCI.1333-13.2013
https://doi.org/10.1523/JNEUROSCI.3199-16.2017
https://doi.org/10.1016/j.ceca.2009.12.014
https://doi.org/10.1073/pnas.1306832110
https://doi.org/10.1186/1471-2164-15-199
https://doi.org/10.1186/1471-2164-15-199
https://doi.org/10.3389/fncel.2015.00426
https://doi.org/10.3389/fnagi.2015.00124
https://doi.org/10.1186/s13073-016-0355-3
https://doi.org/10.1371/journal.pone.0106050
https://doi.org/10.1371/journal.pone.0106050
https://doi.org/10.1146/annurev.pathmechdis.2.010506.092044
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


Lanke et al. Relationship Between Aging and Alzheimer’s Disease

Zhang, B., and Horvath, S. (2005). A general framework for weighted gene

co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4:Article17.

Zhang, C., Browne, A., Child, D., Divito, J. R., Stevenson, J. A., and Tanzi,

R. E. (2010). Loss of function of ATXN1 increases amyloid beta-protein levels

by potentiating beta-secretase processing of beta-amyloid precursor protein.

J. Biol. Chem. 285, 8515–8526. doi: 10.1074/jbc.M109.079079

Zhang, M., Cai, F., Zhang, S., and Song, W. (2014). Overexpression of ubiquitin

carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression

in vivo. Sci. Rep. 4:7298. doi: 10.1038/srep07298

Zhang, Y. D., and Zhao, J. J. (2015). TFEB participates in the Abeta-

induced pathogenesis of Alzheimer’s disease by regulating the autophagy-

lysosome pathway. DNA Cell Biol. 34, 661–668. doi: 10.1089/dna.2014.

2738

Zhao, L., Ma, Q. L., Calon, F., Harris-White, M. E., Yang, F., Lim, G. P., et al.

(2006). Role of p21-activated kinase pathway defects in the cognitive deficits

of Alzheimer disease. Nat. Neurosci. 9, 234–242. doi: 10.1038/nn1630

Zhu, L., Zhong, M., Zhao, J., Rhee, H., Caesar, I., Knight, E. M., et al. (2013).

Reduction of synaptojanin 1 accelerates Abeta clearance and attenuates

cognitive deterioration in an Alzheimer mouse model. J. Biol. Chem. 288,

32050–32063. doi: 10.1074/jbc.M113.504365

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Lanke, Moolamalla, Roy and Vinod. This is an open-access

article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 14 May 2018 | Volume 10 | Article 153

https://doi.org/10.1074/jbc.M109.079079
https://doi.org/10.1038/srep07298
https://doi.org/10.1089/dna.2014.2738
https://doi.org/10.1089/dna.2014.2738
https://doi.org/10.1038/nn1630
https://doi.org/10.1074/jbc.M113.504365
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease
	Introduction
	Materials and Methods
	Microarray Data Acquisition and Pre-processing
	Weighted Gene Co-expression Network Analysis (WGCNA)
	Weighted PPI Network Analysis
	Graph Theory Approach

	Results
	Co-expression Network Analysis of Progression Network: Young to Aging to AD
	Mapping Gene Expression to Human Protein–Protein Interaction Network: Graph Theoretical Study

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


