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Abstract: The integrative personal omics profile (iPOP) is a pioneering study that combines

genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a

single individual over a 14-month period. The observation period includes two episodes

of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies

give an informative snapshot into the biological functioning of an organism. We hypothesize

that pathway expression levels are associated with disease status. To test this hypothesis, we

use biological pathways to integrate metabolomics and proteomics iPOP data. The approach

computes the pathways’ differential expression levels at each time point, while taking into

account the pathway structure and the longitudinal design. The resulting pathway levels

show strong association with the disease status. Further, we identify temporal patterns in

metabolite expression levels. The changes in metabolite expression levels also appear to
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be consistent with the disease status. The results of the integrative analysis suggest that

changes in biological pathways may be used to predict and monitor the disease. The iPOP

experimental design, data acquisition and analysis issues are discussed within the broader

context of personal profiling.

Keywords: metabolomics; integrative pathway analysis; DEAP; dendrogram sharpening;

DELSA; iPOP; longitudinal design; multi-omics data; single linkage.

1. Introduction

Modern high-throughput technologies enable rapid and efficient simultaneous acquisition of

multi-omics data in the course of a single experiment. The combination of genomics, transcriptomics,

proteomics, lipidomics and metabolomics data provides a snapshot of biological processes in an

organism. As such, multi-omics studies are essential to advance the knowledge of biological

systems [1,2], understand, predict, diagnose and monitor diseases [1–3], discover biomarkers [4] and

identify drug targets [3].

Compared to single omics approaches, multi-omics data provide a comprehensive view of

biochemical, biophysical, genetic and epigenetic processes in an organism. However, data vary

considerably between each different omics, not only with respect to the biological processes the data

represent, but also the associated noise levels, identification accuracy, coverage and temporal resolution

of the data. These differences complicate integration and joint modeling of multi-omics data.

Effectively identifying underlying factors and estimating their effects on the system requires advanced

analysis tools capable of integrating multi-omics data. Currently, multi-omics studies rarely utilize

integrative approaches. Instead, each omics dataset is analyzed separately, and the outcomes are merged

together for joint interpretation. A number of integrative multi-omics analysis approaches were recently

proposed, including: iCluster [5], PARADIGM (Pathway Recognition Algorithm using Data Integration

on Genomic Models) [6] and factor analysis [1]. Both iCluster and factor analysis use a latent-variable

approach to identify grouping structure in the data. In contrast, PARADIGM uses integrated omics data

to infer the pathways activities.

Integrated multi-omics studies are becoming increasingly important in the context of personalized

medicine, where treatment decisions are based on patients’ omics, demographic, clinical and

environmental data [7–11]. The recently released integrative personal omics profile (iPOP) study

is a pioneering work in the field of personalized omics profiling. The study sampled genomics,

transcriptomics, proteomics, metabolomics and autoantibody profiles of a single individual (Dr. Michael

Snyder) over a 14-month period. The study revealed a number of medical risks, dynamic changes

in multi-omics components over time and an association between the multi-omics expressions and

disease status [12].

The iPOP study revealed the potential merits and advantages over conventional clinical methods of

extensive multi-omics profiling in a patient for monitoring, forecasting and diagnosing. As the first

in-depth investigation, the iPOP experiment highlighted the importance of a comprehensive experimental
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design and the necessity of advanced analytic tools applicable to large-scale multi-omics data. The

iPOP study collected more than 30 TB of data. Storage, annotation, analysis and sharing of these data

requires an array of skills and expertise, large compute power, access to a variety of resources and

databases, pre-determined formats, sophisticated software, advanced analytic tools and visualization

capabilities [13–21]. The scope of the iPOP study and the breadth of the acquired data are unparalleled

in their complexity and richness. As such, the iPOP represents a unique and extensive resource for

multi-omics integration, clinical application of personalized profiling, tool development, data formatting

and sharing.

Due to its novelty, uniqueness and diversity, the iPOP study was selected as one of the two landmark

experiments in the Quantified Human Initiative launched by DELSA Global (Data-Enabled Life Sciences

Alliance; delsaglobal.org) [22]. The goal of the initiative is to model the underlying biological dynamics

of the human organism on the micro- and macro-scales through collective innovation [22–24].

This study is focused primarily on the metabolomics data from the iPOP study. Metabolomics data are

a principal component of the multi-omics profiling. As compared to genomics and transcriptomics data,

metabolomics is a dynamic reflection of the functional state of an organism, as well as environmental

factors [25]. Understanding the diversity of and changes in metabolomics data and their interactions

with other omics is essential to advancing personalized diagnostics and medicine.

In the iPOP study, the observation period included two episodes of viral infection: a human rhinovirus

(HRV) and a respiratory syncytial virus (RSV). We hypothesize that pathway expression levels are

associated with the disease status. To test this hypothesis, we use biological pathways as a primary

model to integrate metabolomics and proteomics data [26]. From multi-omics expression data, we

compute the pathways’ differential expression levels over time. The resulting pathway scores take into

account expression data, pathway structure and the longitudinal design of the study. We also implement

an enhanced unsupervised clustering technique to identify groups of metabolites exhibiting coherent

temporal changes.

In what follows, we provide a brief overview of the data and methods. We then give a detailed

description of the results. We discuss the patterns and dependencies identified in the data, the merits

of the applied analysis methods, the value of the multi-omics personal profiling and the benefits and

challenges of the longitudinal multi-omics studies. We conclude with a summary of the results and a list

of recommendations and open questions.

2. Data and Methods

2.1. Data Collection and Pre-Processing

Tissue samples were collected, processed and analyzed using metabolomics and proteomics methods,

as detailed in [12]. Detailed phenotypic data can also be found in [12]. Figure 1 shows the timeline of the

study. During the observation period, the subject experienced two viral infections: a human rhinovirus

(HRV) and a respiratory syncytial virus (RSV). The onsets of the infections are labeled as day 0 and

289, respectively.
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Figure 1. The timeline of the study. The subject was monitored for 726 days. Days of

human rhinovirus (HRV) and respiratory syncytial virus (RSV) infections are marked in

red and green, respectively. The red and green bars represent the onset of the infections.

The light blue bar shows the period of high glucose levels, and the dark blue one indicates

lifestyle changes, including (1) increased exercise, (2) ingestion of 81 mg of acetylsalicylic

acid and ibuprofen each day (the latter only during the first six weeks of this period) and (3)

substantially reduced sugar intake. Circled days indicate fasted time points.
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2.2. Metabolomics Data

Metabolome data were acquired throughout the study, as marked in Figure 1 with the exception of

days 21, 186, 329 and 400. The samples were run in two batches. The first batch included days -123, 0,

4, 21, 116 and 185, and the second batch included samples from days 255 onward.

During the HRV infection, metabolites were measured twice (days 0 and 4). Consequently, 7,361

distinct serum metabolite m/z intensities were measured at least once and 7,019 were measured

consistently over time. During the RSV infection (days 255–400), metabolomics data were collected

eight times with 5,131 distinct serum metabolite m/z intensities tracked consistently, including 4,217

observed at every time instance and 1,098 measured in the HRV period. Further, we extracted ChEBI

identifiers for 198 of these metabolic compounds [27].

2.3. Proteomics Data

Relative expression levels of serum proteins were acquired for days 0, 4 and 21. The levels were

calculated relative to day 116. Overall, 664 proteins were consistently quantified, and their UniProt

identifiers were recovered [28].

For the peripheral blood mononuclear cell (PBMC) proteome, spectra were obtained from three

Tandem Mass Tag-labeled samples with three technical replicates each. The data were collected from

day 186 onward, except for day 329. Relative expressions were calculated with respect to a healthy time

point at day 255. Within each sample, the ratios were normalized to have a unit mean. For quality control

and reproducibility assessment, the 131/126 intensity ratio was replicated for 126 and 131 amumass tags

corresponding to days 255 and 301. The replicated ratio was averaged across samples and rescaled to

have a unit mean. Overall relative expression levels for 7,041 proteins were quantified, out of which

3,066 were observed consistently across the 14 time points. For more details on data acquisition and

pre-processing, see [12].
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2.4. Cluster Analysis

We applied agglomerative hierarchical single linkage clustering (SLC) to identify clusters of

compounds with similar temporal profiles. The dissimilarity between two compounds, x and y, is

given by 1− ρxy, where ρxy is the correlation coefficient between the time courses of the corresponding

compounds. The hierarchy is then built from the bottom up, i.e., each compound initially represents

a cluster and, at each step, the two closest clusters are merged together into a binary tree, also called

a dendrogram. In SLC, the distance between two clusters is defined as the minimum of all pairwise

distances between points in the clusters [29,30].

The single linkage was shown to be fractionally consistent, i.e., in the presence of two disjoint

population groups, there will be two distinct single linkage clusters containing a positive fraction of

the sample points from the corresponding groups. Hence, the single linkage is conservative, in the sense

that it will identify sufficiently separated modal regions [31]. In turn, complete and average linkage

methods produce accurate clustering only for data constituted of well-separated groups. In the presence

of noise, the complete and average linkage methods fail to correctly identify the grouping structure.

It has been shown that the clusters produced by these algorithms depend on the range, but not on the

density, of data [29].

In the presence of noise, SLC exhibits a chaining effect, with dendrogram top nodes having one very

small and one very large child. Although the chaining correctly indicates the lack of spatial separation

between clusters, it hinders the grouping structure. Sharpening methods allow for effectively reducing

the size of data and making the structure more apparent [32]. The dendrogram sharpening prunes the

linkage tree to reduce noise and increase the contrast between the modal regions. More specifically,

child nodes of a size less than n are discarded, if the size of the corresponding parent node exceeds N .

The recursive algorithm is applied directly to the tree and is simple to implement (see Figure 2). The

sharpening uses two parameters, n and N . Parameter N defines whether or not the subtree of a given

node should be filtered. For high noise levels, multiple passes of the algorithm are advantageous.

In the sharpened tree, the cluster cores are identified recursively, starting from the root node.

Conventional methods threshold the tree at a pre-specified global cut-off value. In contrast, to identify

cluster groups, we compute a robust statistic using the distribution of similarity measures within each

qualifying subtree. More specifically, the left child is defined to be a cluster if the distance between the

left and right children exceeds M + IQR, where M and IQR are the median and interquartile range of

the left subtree. Similarly, for the right child. The single-linkage clustering with dendrogram sharpening

was shown to correctly identify the multimodal structure of the data in the simulation studies and was

applied to neuroimaging and gene expression data [33,34].

Here, we applied the dendrogram sharpening twice. The first filtering with (n,N) = (2, 30)

effectively eliminates isolated data points. The second iteration with (n,N) = (10, 30) filters relatively

small clusters spuriously formed in the sharpened data.

Data filtered in sharpening are reassigned to the identified cluster cores. For example, one can reassign

filtered data using the nearest neighbor approach. Here, we used the nearest centroid to classify the

filtered values. For that, for each identified cluster, we compute its mean time course. We then calculate

pairwise correlations between the mean time course and filtered data. The filtered data are assigned to



Metabolites 2013, 3 746

the cluster with the highest correlation, provided the correlation coefficient is above a certain threshold.

This avoids contaminating clusters with noisy observations, hence preserving the quality of the signal.

Here, we used the threshold of 0.5 to reassigned filtered data. This threshold is considerably lower

than the intracluster correlation. This ensures an increase in cluster heterogeneity, while preserving the

signal quality.

Figure 2. The dendrogram sharpening algorithm.

2.5. Pathway Mapping

We employed Reactome to map metabolites and proteins to pathways [17]. Reactome stores

information on biological pathways, including the proteins, metabolites and their regulation patterns.

To extract the information on structure and content of metabolic pathways, we used a simplified pathway

file format, where each line represents an individual reactions in a pathway. The file format enables easy

parsing and manipulation [21]. A full database dump was downloaded from Reactome, version April 5,

2013 [17]. Using Protege, we determined the database representations of the pathway information [35].

From Reactome, we identified inputs, regulators and outputs of each reaction. The Reactome database

was processed using a combination of custom Python and SQLscripts. For metabolites and proteins, we

extracted ChEBI and UniProt identifiers, respectively [27,28].

2.6. Integrative Pathway Analysis

To integrate metabolomics and proteomics data, we extended the Differential Expression Analysis for

Pathways (DEAP) to include multi-omics measurements and to account for the longitudinal design. In

DEAP, each pathway is viewed as a union of distinct subpaths. The representation is not unique, and the
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subpaths are not mutually exclusive. The score for each identified subpath is computed as a weighted

sum of the expression levels of its components, where weights are either +1 or −1 when the reaction is

catalytic or inhibitory, respectively. The DEAP pathway score is then given by the maximum score of

the constituting subpaths. Consequently, the DEAP score takes into account the structure of the pathway

and was shown to have more sensitivity and power as compared to other pathway statistics and analysis

approaches. For more details, see [21].

To account for the longitudinal design, for each identified compound, we used the

following algorithm.

Let i index pathways, let t = 1, . . . , T index the time points and let j = 1, . . . , Ni index the molecules

in pathway i. Denote by e a log-relative expression of molecular compounds.

For each pathway, i, compute temporal scores, λit, as follows:

1. For each molecule, j, in pathway i, calculate the average log-relative expression, mij , across the

time points: mij = T−1
∑T

t=1 eijt.

2. From mij, j = 1, . . . , Ni, use DEAP to identify the maximally scoring subpath and its constituting

components: Si = {j1, . . . , jM(i)}.

3. Given Si, at each time point, compute the score, λit =
∑M(i)

k=1 wkeijkt, where weights, wk,

correspond to +1 and −1, respectively.

For each pathway, this algorithm produces a series of scores, {λi1, . . . , λiT}. The scores take into

account both the relative expressions of the constituting compounds, as well as the pathway structure.

As such, they can be thought of as proxy measures of pathway expression levels over time.

3. Results

3.1. Cluster Analysis

We applied dendrogram sharpening to the complete metabolomics data set containing 1,088

compounds. Figure 3 demonstrates how the data structure becomes more pronounced with each path

of the sharpening algorithm. From the twice-sharpened data, we identified eight metabolic cluster cores

containing 136 metabolites. The similarity of the individual time courses within each cluster core was of

note, with mean/median correlation coefficient of 0.87/0.91. After reassigning filtered data, the expanded

clusters contained 724 metabolites.

The clusters showed distinct temporal patterns (Figure 4). For example, expression levels for

metabolites in Cluster 3 are suppressed at the onset of both HRV and RSV, but elevated at the end

of the infection. Clusters 5 and 6 represent metabolites whose levels are elevated at the beginning of the

infection, but return to (presumably) basal levels as the subject recovers. Clusters 3 and 4 also show a

brief increase in expression levels at the end of RSV.

The features of the metabolite patterns during the HRV infection are less pronounced, due to a lack

of data acquired in that period. However, the patterns show the discordance of expression levels at the

end of the infection relative to the onset; see Clusters 3, 4–8 (Figure 4). The identified metabolites were

implicated in estrogen and androgen metabolism, metabolism of lipids and lipoproteins, bile secretion,
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steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, purine and lysine metabolism and

urate biosynthesis pathways. The networks of over-represented pathways in Clusters 2, 3, 6, 7 and 8

are shown in the supplementary figure. The identified metabolite clusters are not pathway-specific. The

pathway mapping and over-representation analysis was done using ConsensusPathDB [33,36]

Figure 3. (Left to right) dendrogram trees for the full, once- and twice-sharpened data

containing 1,098, 545 and 293 complete data points on metabolic compounds.
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Figure 4. Eight distinct clusters of the metabolome profiles in the personal omics profile

(iPOP) study showing individual (grey) and mean (blue) metabolite time courses for each

cluster. Also marked are periods of HRV and RSV infections.
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Figure 4. Cont.
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3.2. Integrative Pathway Analysis

For the integrated pathway analysis, the iPOP PBMC and serum proteomics and serum metabolomics

data were mapped to pathways, as described earlier. For serum metabolomics, relative expressions were

computed for each time point relative to a healthy time point at day 255. For the RSV period, 877

pathways contained only proteins, eight contained proteins and metabolites and eight contained only

metabolites. For the HRV period, the corresponding numbers were 376, six and 11.

Figure 5 shows the trajectories of the pathway scores for the eight overlapping pathways containing

serum metabolites and PBMC proteins. There appears to be an increase in pathway scores over time for

the metabolism (black) and GPCRligand-binding (maroon) pathways.

Figure 5. Changes in functional pathway scores over time. Each pathway contained both

measured metabolites and proteins. The pathways are color-coded according to the legend.
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To explore the pathway patterns, we considered 533 metabolic pathways with unique scores that

contained serum metabolic and/or PBMC proteomic compounds. The pathway scores were computed

for each time point. Applying the clustering algorithm, we identified eight clusters, three of which are

shown in Figure 6. The changes in the pathway scores over time appear to correlate with the disease

status. In all three clusters, the scores increase in magnitude as the disease progresses.

Cluster 3 contains 16 pathways, including virus assembly and release, SMAC-mediated apoptosis

response, NEF (Negative Regulatory Factor) and signal transduction, collagen biosynthesis and

modifying enzymes and insulin processing. Cluster 6 contains 39 pathways, including TLR3 and TLR4

(Toll Like Receptor) cascades, Interleukin 2 (IL2) signaling, SOS-mediated signaling, signaling by

EGFR and FGFR (epidermal and fibroblast growth factor receptors, respectively) in disease and ERBB4



Metabolites 2013, 3 751

signaling. Cluster 8 contains 19 pathways, including mTOR (mammalian target of rapamycin) signaling,

TCR (T-cell receptor) signaling, generation of second messenger molecules, fibronectin matrix formation

and interferon gamma signaling.

Figure 6. Three out of eight clusters showing distinct temporal patterns of the pathway

scores for serum metabolome and PBMC proteome. Individual pathway scores are shown in

grey; mean scores are in blue.
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Many of the identified pathways are known to be activated in response to viral infection. In particular,

previous studies showed signaling receptors, TLRs and IL2, to be the important components in the

immune response to RSV. Both IL2 and TLR4 are known to contribute to cytokine secretion and

activation, respectively [37–39]. FGFR is involved in mucin production, while both EGFR and FGFR

stimulate differentiation and proliferation of cells, processes that are crucial in tissue repair and response

to injury [40,41]. EGFR activation by RSV was shown to be associated with inflammation and cell

survival [42]. mTOR serves as a central regulator for cellular metabolism, growth and survival [43].

Further, SMAC and NEF are associated with apoptosis.

Pathway trajectories in Cluster 6 spike at days 301 and 307. The spike at 301 was also observed

in cytokines levels [12]. The spikes in pathway scores may be associated with medication ingestion,

possibly anti-inflammatory drugs. Furthermore, from the mean time course in Cluster 3, we observed

that an upward trend in the pathway score started after day 301, coinciding with the beginning of the

elevated glucose levels in the subject (see [12], Figure 2D). A steady increase in pathway scores could

be attributed to the disease etiology, as the virus may be present for as long as six weeks after the

infection occurs.

4. Discussion

Personal multi-omics profiles are poised to become instrumental in personalized medicine [12,44–51].

The iPOP study pioneered extensive personal multi-omics profiling as a monitoring and predicting tool.

The study collected a large volume of rich and complex data that contain information on biological

processes, organism functioning and environmental effects. These multi-omics data can be leveraged

to identify medical risks, dynamic changes in omics components over time and the association between

expression levels and disease status.
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Currently, genetic testing is widely used to identify genetic disease risk or to diagnose a genetic

condition. More recently, peripheral blood gene expression data were shown to correctly discriminate

between HRV, RSV or influenza A and bacterial infection [52]. Another study showed that miR-451 was

differentially expressed in influenza infection [53].

In this work, we used an integrative analysis approach to identify distinct temporal patterns in pathway

and metabolite differential expression levels. The temporal changes appear to be associated with the

disease status. Due to a lack of measures of disease severity and progression, we were not able to

establish the strength of the association. Nevertheless, these findings suggest that changes in pathway

expression levels may be used to predict the disease, identify disease etiology and differentiate responses

to medication. This may be accomplished through deeper integration of genomics, transcriptomics,

metabolomics and proteomics data, together with clinical measurements and environmental variables.

Integrating these diverse data would enable comprehensive modeling of the interactions between the

biological components and systems.

The iPOP study not only opened new horizons for multi-omics application in personalized medicine

and medical sciences, but also highlighted the complexities of personal omics profiling when it comes to

design, data collection and analysis. As a newly emerging trend in data-enabled life sciences [54], more

quantified self multi-omics studies are certain to come out. To enhance the quality of future research and

to drive methodological and experimental developments, we discuss the main findings, the applicability

of the proposed analysis methods and the challenges and advantages of longitudinal iPOP studies.

Study Design. The study was observational in nature and spanned a period of nearly 14 months. The

longitudinal design allowed the collection of a large volume of data under a variety of conditions, thus

enabling investigation of the dynamics of omics expressions. As such, the data contain unprecedented

insight and represent a detailed view into the functioning of the organism. On the analytic side, the

longitudinal acquisition considerably increased the volume of data to be analyzed and introduced a

temporal component that is absent in a typical cross-sectional omics study.

During the study, the subject had two different viral infections. Both infection periods were

approximately 20 days long; however, the metabolomics data were acquired twice during the HRV

infection and eight times during the RSV infection. The higher rate of data acquisition during the RSV

enabled identification of distinct temporal changes in metabolic profiles as the infection progressed. The

sparse coverage during the HRV infection only allowed very general observations.

From the design perspective, the infection periods demonstrate the difficulty of maintaining the

consistency of data sampling throughout the course of the study. In the iPOP study, investigators were

aiming to acquire as comprehensive a data set as possible within a certain time frame. In future personal

omics profiles, the design and planning should be tailored to the goal of the study. For example, the goal

of profiling an individual in a healthy state would imply that acquisition during the infection periods

should be avoided or excluded if collected. Another important issue is to correctly estimate the onset of

the disease, as biological changes may happen before symptoms become apparent.

Longitudinal studies should also maintain consistent tissue sampling and processing protocols. This is

important from the design perspective and especially relevant to metabolomics studies, where short-term

effects of exogenous factors are more likely to occur. In the iPOP study, fasting did not seem to affect
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the number or the expression values of the identified compounds. However, this cannot be definitively

ascertained, given the small number of fasting samples.

During the course of the study, the subject underwent a number of lifestyle and dietary changes,

including increased exercise, medication uptake and reduced sugar intake. Given the dynamic nature of

metabolomics, life-style factors are most likely to impact the metabolome profiling. Hence, it is prudent

to maintain detailed records throughout the study, including basic physiological measurements and a

wellness diary. In practice, acquiring regular detailed assessment without overwhelming the participant

is challenging. A standardized daily survey may be an effective way to collect the relevant information.

The volume and complexity of the data implies that care should be taken when acquiring and

pre-processing the data. For the iPOP metabolome, tissue samples were run in two batches. The number

of metabolites identified in the first batch was larger by about 2,000 compounds, as compared to the

second batch. Since the samples were grouped sequentially, it cannot be reliably determined whether

the difference in the number of identifications is due to the technical component (sample preparation and

instrumental run) or a subject factor (e.g., lifestyle changes). In addition, the infection factor was also

confounded with the batch number. These uncertainties underscore the importance of randomization

during sample preparation, instrumental analysis and data pre-processing.

Cluster Analysis. The longitudinal component of the study drastically increased the amount of data

acquired for the analysis. We utilized clustering methods to study the patterns of temporal trajectories in

metabolomics data and their association with the disease status.

In the original paper, the authors grouped the data into three classes, categorized as the spike maxima,

spike minima and autocorrelation class, which were subsequently clustered within each class. However,

because the data were acquired over time on the same subject, we would expect them to exhibit a

certain degree of autocorrelation. Hence, the original paper analysis included removal of autocorrelated

components prior to spike maxima/minima classification, to minimize spike class overlaps with the

autocorrelation class. The SLC used here was shown to correctly identify sufficiently separated modal

regions [29]. The dendrogram sharpening removes noisy observations and makes the data structure

more apparent. As such, SLC with dendrogram sharpening is well-suited for the analysis of large,

noisy data [33].

The identified temporal patterns in metabolic profiles indicate that the metabolite expression may

correlate with the disease status. The metabolite expression profiles appear to fall into two categories:

elevated at the onset and slowly declining during disease progression and the inverse. Based on the

available data, we cannot determine whether the observed metabolic changes over time are specific to

particular medication and/or dietary interventions and/or biological response to the infection. Similarly,

since the metabolomics data were sampled considerably less frequently during the HRV infection as

compared to RSV, it cannot be reliably determined whether the observed patterns are specific to the type

of the infection.

Integrative Omics Analysis. In this study, we also applied a pathway-centric integration approach

to multi-omics data analysis [26]. Frequently, different omics acquired in a single experiment are

analyzed separately, and the results of the omic-specific analyses are then interpreted in some integrated
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fashion [55,56]. However, integrative analysis methods are more advantageous than single omics

methods, as the acquired omics data are driven by the same underlying biological mechanisms; therefore,

integrating the interdependent omics data increases the statistical power of the analysis and the accuracy

of the model estimates. Hence, taken together, multi-omics data provide a more comprehensive view of

biological processes.

Current integrative approaches are discriminative in nature, as they attempt to classify the data into

groups based on multi-omics observations [1,5]. These approaches are not applicable to the longitudinal

multi-omics studies, like the iPOP study. In this paper, we introduce a pathway-centric integrative

approach to analyze longitudinal multi-omics data. The method is an extension of the recently developed

DEAP analysis [21]. The method effectively combines metabolite and protein expression data, while

taking into account the pathway structure and longitudinal design. The resulting score series reflect

the function of a given pathway at each time point. The scores can be interpreted separately for each

pathway or analyzed jointly to identify pathway groups exhibiting similar temporal patterns. Currently,

the method integrates metabolomics and proteomics data at each time point separately. The method could

be extended and enhanced to include gene expression data, the temporal dependence and covariates. This

alteration would require a higher data sampling rate.

From the integrative analysis of the iPOP proteomics and metabolomics data, differential expression

levels of pathways appear to correlate with disease state. This suggests that integrative multi-omics

pathway functional scores reflect the ongoing biological processes in the organism. These early results

provide evidence for the advantages of multi-omics data integration.

Missing Data. The missing data problem is ubiquitous in high-throughput experiments. A number of

methods for data imputation have been proposed in the literature [57–59]. The iPOP study represents

a particular challenge with its longitudinal layout, an array of explanatory variables and confounding

factors. Given the complexity of the design and data, imputing missing data would have introduced

sizable error. Hence, we abstained from imputing or otherwise inferring the missing data. The

missing data problem in the context of high-throughput personalized multi-omics studies merits careful

investigation that was beyond the scope of this paper.

5. Conclusions

We have performed a detailed integrative analysis of the metabolomics and proteomics data acquired

in the pioneering iPOP study. In this study, we used a pathway-centric approach to integrate the

metabolomics and proteomics data, while taking into accoung the longitudinal design of the study.

From integrated data, we identified temporal patterns in pathway expression levels that were consistent

with disease status and progression. The iPOP study showcased both the promise and challenge of the

personal multi-omics profile studies. Based on our analysis, we discussed specific recommendations

for multi-omics profile studies, including consistent protocols for data acquisition, the need for

randomization in sample preparation and instrumental data collection and the choice of appropriate

analysis tools.
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6. Data Dissemination

The location and details of the raw data repository for the iPOP experiment is described

in [12]. Pre-processed metabolomics and proteomics data, mapped pathways and other supplementary

material currently accessible through the complete list of the pathways in each cluster will be made

available at , Dryad Digital Repository. In the near future, metabolomics and proteomics data

will be accessible through MOPEDunder the experiment name, snyder personal omics -

profiling [60].

Acknowledgments

We are grateful to the reviewers for their valuable feedback that helped to improve the quality of

this manuscript. We sincerely appreciate the stimulating discussions with Sihoun Hahn, Natali kolker,

Courtney MacNealy-Koch, Philip Morgan, Larry Smarr, Arnold Smith, Charles Smith, Elizabeth Stewart

and Gregory Yandl. We thank Elizabeth Stewart and Maggie Lackey for their critical reading. Research

reported in this study was supported by the National Science Foundation under the Division of Biological

Infrastructure award 0969929, National Institute of Diabetes and Digestive and Kidney Diseases of the

National Institutes of Health under awards U01-DK-089571 and U01-DK-072473, Seattle Childrens

Research Institute award, The Robert B. McMillen Foundation award and The Gordon and Betty Moore

Foundation award to E.K.; the National Human Genome Research Institute of the National Institutes of

Health under Award Number K99HG007065 to G.I.M.; and the Stanford Genetics Department and the

National Institutes of Health for support through grant P50HG02357 to M.S. This support is very much

appreciated. The content is solely the responsibility of the authors and does not necessarily represent

the official views of the National Science Foundation, National Institutes of Health, Seattle Childrens

Research Institute, Stanford University, The McMillen Foundation or The Moore Foundation.

Conflicts of Interest

M.S. serves as founder and consultant for Personalis, is a member of the scientific advisory board

of GenapSys and a consultant for Illumina. Larissa Stanberry, George Mias, Winston Haynes, Roger

Higdon, and Eugene Kolker declare no conflict of interest.

References

1. Liu, Y.; Devescovi, V.; Chen, S.; Nardini, C. Multilevel omic data integration in cancer cell

lines: Advanced annotation and emergent properties. BMC Syst. Biol. 2013, 7, 14, doi:10.1186/

1752-0509-7-14.

2. Liu, Q.; Halvey, P.J.; Shyr, Y.; Slebos, R.J.C.; Liebler, D.C.; Zhang, B. Integrative omics analysis

reveals the importance and scope of translational repression in microRNA-mediated regulation.

Mol. Cell. Proteomics: MCP 2013, 12, 1900–1911.

3. Kurland, I.J.; Accili, D.; Burant, C.; Fischer, S.M.; Kahn, B.B.; Newgard, C.B.; Ramagiri, S.;

Ronnett, G.V.; Ryals, J.A.; Sanders, M.; et al. Application of combined omics platforms to

accelerate biomedical discovery in diabesity. Ann. N.Y. Acad. Sci. 2013, 1287, 1–16.

http://datadryad.org/


Metabolites 2013, 3 756

4. Blanchet, L.; Smolinska, A.; Attali, A.; Stoop, M.P.; Ampt, K.A.M.; van Aken, H.; Suidgeest, E.;

Tuinstra, T.; Wijmenga, S.S.; et al. Fusion of metabolomics and proteomics data for biomarkers

discovery: Case study on the experimental autoimmune encephalomyelitis. BMC Bioinforma.

2011, 12, 254, doi:10.1186/1471-2105-12-254.

5. Shen, R.; Olshen, A.B.; Ladanyi, M. Integrative clustering of multiple genomic data types

using a joint latent variable model with application to breast and lung cancer subtype analysis.

Bioinformatics 2009, 25, 2906–2912.

6. Vaske, C.J.; Benz, S.C.; Sanborn, J.Z.; Earl, D.; Szeto, C.; Zhu, J.; Haussler, D.; Stuart, J.M.

Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using

PARADIGM. Bioinformatics 2010, 26, i237–i245.

7. Vignot, S.; Soria, J.C. Discrepancies between primary tumor and metastasis: Impact on

personalized medicine. Bull. Cancer 2013, 100, 561–568.

8. Law, G.L.; Korth, M.J.; Benecke, A.G.; Katze, M.G. Systems virology: Host-directed approaches

to viral pathogenesis and drug targeting. Nat. Rev. Microbiol. 2013, 11, 455–466.
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Supplementary Materials

Figure S1. Pathway networks for Clusters 2,3,6,7,8 (counterclockwise from the left top

corner). The node size reflects the total number of components in a pathway; the node

color reflects the p-value of the pathway representation analysis (a darker color corresponds

to lower p-values); the edge width corresponds to a relative number of shared compounds

between the pathways; and the edge color reflects the absolute number in the overlap.



Metabolites 2013, 3 760

Figure S1. Cont.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Data and Methods
	Data Collection and Pre-Processing
	Metabolomics Data
	Proteomics Data
	Cluster Analysis
	Pathway Mapping
	Integrative Pathway Analysis

	Results
	Cluster Analysis
	Integrative Pathway Analysis

	Discussion
	Conclusions
	Data Dissemination
	Supplementary Materials

