
Integrative Annotation of Variants from 1092 Humans:

Application to Cancer Genomics

Ekta Khurana#1,2, Yao Fu#1, Vincenza Colonna#3,4, Xinmeng Jasmine Mu#1, Hyun Min
Kang5, Tuuli Lappalainen6,7,8, Andrea Sboner9,10, Lucas Lochovsky1, Jieming Chen1,11,

Arif Harmanci1,2, Jishnu Das12,13, Alexej Abyzov1,2, Suganthi Balasubramanian1,2, Kathryn
Beal14, Dimple Chakravarty9, Daniel Challis15, Yuan Chen3, Declan Clarke16, Laura
Clarke14, Fiona Cunningham14, Uday S. Evani15, Paul Flicek14, Robert Fragoza13,17, Erik
Garrison18, Richard Gibbs15, Zeynep H. Gümüş10,19, Javier Herrero14, Naoki Kitabayashi9,

Yong Kong2,20, Kasper Lage21,22,23,24,25, Vaja Liluashvili10,19, Steven M. Lipkin26, Daniel G.
MacArthur22,27, Gabor Marth18, Donna Muzny15, Tune H. Pers24,28,29, Graham R. S.
Ritchie14, Jeffrey A. Rosenfeld30,31,32, Cristina Sisu1,2, Xiaomu Wei13,26, Michael Wilson1,33,

Yali Xue3, Fuli Yu15, 1000 Genomes Project Consortium†, Emmanouil T. Dermitzakis6,7,8,

Haiyuan Yu12,13, Mark A. Rubin9, Chris Tyler-Smith3,‡, and Mark Gerstein1,2,34,‡

1Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520,

USA

2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520,

USA

3Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK

4Institute of Genetics and Biophysics, National Research Council (CNR), 80131 Naples, Italy

5Center for Statistical Genetics, Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

6Department of Genetic Medicine and Development, University of Geneva Medical School, 1211

Geneva, Switzerland

7Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva,

Switzerland

8Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland

9Institute for Precision Medicine and the Department of Pathology and Laboratory Medicine, Weill

Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065, USA

10The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational

Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA

11Integrated Graduate Program in Physical and Engineering Biology, Yale University, New

Haven, CT 06520, USA

Copyright 2013 by the American Association for the Advancement of Science; all rights reserved.
‡Corresponding author. cts@sanger.ac.uk (C.T.-S.); mark.gerstein@yale.edu (M.G.).
†A full list of participants and institutions is available in the supplementary materials.

Supplementary Materials www.sciencemag.org/content/342/6154/1235587/suppl/DC1

Materials and Methods

Supplementary Text

Fig. S1 to S29

Tables S1 to S12

References (49-90)

Data S1 to S7

NIH Public Access
Author Manuscript
Science. Author manuscript; available in PMC 2014 March 09.

Published in final edited form as:

Science. 2013 October 4; 342(6154): 1235587. doi:10.1126/science.1235587.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.sciencemag.org/content/342/6154/1235587/suppl/DC1


12Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY

14853, USA

13Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA

14European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust

Genome Campus, Hinxton, Cambridge CB10 1SD, UK

15Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX 77030, USA

16Department of Chemistry, Yale University, New Haven, CT 06520, USA

17Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA

18Department of Biology, Boston College, Chestnut Hill, MA 02467, USA

19Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY,

10065, USA

20Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT 06511, USA

21Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts

General Hospital, Boston, MA 02114, USA

22Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA

02114, USA

23Harvard Medical School, Boston, MA 02115, USA

24Center for Biological Sequence Analysis, Department of Systems Biology, Technical University

of Denmark, Lyngby, Denmark

25Center for Protein Research, University of Copenhagen, Copenhagen, Denmark

26Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA

27Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts

Institute of Technology (MIT), Cambridge, MA 02142, USA

28Division of Endocrinology and Center for Basic and Translational Obesity Research, Children’s

Hospital, Boston, MA 02115, USA

29Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

30Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA

31IST/High Performance and Research Computing, Rutgers University Newark, NJ 07101, USA

32Sackler Institute for Comparative Genomics, American Museum of Natural History, New York,

NY 10024, USA

33Child Study Center, Yale University, New Haven, CT 06520, USA

34Department of Computer Science, Yale University, New Haven, CT 06520, USA

# These authors contributed equally to this work.

Abstract

Interpreting variants, especially noncoding ones, in the increasing number of personal genomes is

challenging. We used patterns of polymorphisms in functionally annotated regions in 1092

humans to identify deleterious variants; then we experimentally validated candidates. We analyzed

both coding and noncoding regions, with the former corroborating the latter. We found regions

particularly sensitive to mutations (“ultrasensitive”) and variants that are disruptive because of

mechanistic effects on transcription-factor binding (that is, “motif-breakers”). We also found
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variants in regions with higher network centrality tend to be deleterious. Insertions and deletions

followed a similar pattern to single-nucleotide variants, with some notable exceptions (e.g., certain

deletions and enhancers). On the basis of these patterns, we developed a computational tool

(FunSeq), whose application to ~90 cancer genomes reveals nearly a hundred candidate noncoding

drivers.

Whole-genome sequencing has revealed millions of variants per individual. However, the

functional implications of the vast majority of these variants remain poorly understood (1).

It is well established that variants in protein-coding genes play a crucial role in human

disease. Although it is known that noncoding regions are under negative selection and that

variants in them have been linked to disease, their role is generally less well understood

(2-9).

In particular, whereas some studies have demonstrated a link between common variants

from genome-wide association studies (GWASs) and regulatory regions (2, 3), the

deleterious effects of rare inherited variants and somatic cancer mutations in noncoding

regions have not been explored in a genome-wide fashion. Recently, three studies reported

noncoding driver mutations in the TERT promoter in multiple tumor types, including

melanomas and gliomas (10-12). In light of these studies and the growing availability of

whole-genome cancer sequencing (13-20), an integrated framework facilitating functional

interpretation of noncoding variants would be useful.

One may think to identify noncoding regions under strong selection purely through

mammalian sequence conservation, and ultraconserved elements have been found in this

fashion (21). However, signatures of purifying selection identified by using population-

variation data could provide better insights into the importance of a genomic region in

humans than evolutionary conservation. This is because many regions of the genome show

human-specific purifying selection, whereas other regions conserved across mammals show

a lack of functional activity and selection in humans (7). Thus, identifying the specific

elements under particularly strong purifying selection among humans could provide novel

insights.

Besides single-nucleotide polymorphisms (SNPs), the human genome also contains other

variants, including small insertions and deletions (indels) and larger structural variants (SVs)

(22). They account for more nucleotide differences among humans than SNPs; hence, an

understanding of their relationship with functional elements is crucial (23).

We used the full range of sequence polymorphisms (ranging from SNPs to SVs) from 1092

humans to study patterns of selection in various functional categories, especially noncoding

regulatory regions (24). We identified specific genomic regions where variants are more

likely to have strong phenotypic impact. The list of these regions includes groups of coding

genes and specific sites within them and, importantly, particular noncoding elements. By

further comparing patterns of polymorphisms with somatic mutations, we show how this list

can aid in the identification of cancer drivers. We used multiple experimental methods for

validation, including yeast two-hybrid experiments, Sanger sequencing of independent

cancer samples, and relevant gene-expression measurements. Furthermore, we provide a

software tool that allows researchers to prioritize noncoding variants in disease studies.

Genomic Elements Under Strong Purifying Selection: Ultrasensitive

Regions

Enrichment of rare variants can be used to estimate the strength of purifying selection in

different functional categories (24). As expected, we found that having variants from 1092
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individuals allowed us to detect specific functional categories under strong purifying

selection with greater power than previously possible (2, 7, 9). In particular, the increased

number of samples provided a better estimate of allele frequencies, making possible the

measurement of differential selective constraints between specific categories [e.g., between

motifs of transcription-factor (TF) families HMG and MADs box] (figs. S4 and S5).

Estimates of purifying selection obtained by using enrichment of rare nonsynonymous SNPs

(derived allele frequency or DAF < 0.5%) showed that different gene categories exhibit

differential selection consistent with their known phenotypic consequences (data S1). Genes

tolerant of loss-of-function (LoF) mutations are under the weakest selection, whereas

cancer-causal genes are under the strongest (Fig. 1A and table S1). GWAS genes associated

with complex disorders lie in between these extremes, consistent with the presence of

common genetic variants in them.

We then analyzed selective constraints in noncoding regions, trying to find elements under

very strong selection (i.e., with a fraction of rare variants similar to that of coding genes,

~67%). We first estimated the strength of negative selection in broad categories [e.g., in all

TF binding sites (TFBSs), deoxyribonuclease I (DNaseI)-hypersensitive sites (DHSs),

noncoding RNAs (ncRNAs), and enhancers] (Fig. 2A). As observed previously, most of

these categories show slight but statistically significant enrichment of rare SNPs compared

with the genomic average; in contrast, pseudogenes demonstrate a depletion (Fig. 2A and

data S2) (2).

We further divided the broad categories into 677 high-resolution ones. These span various

genomic features likely to influence the extent of selection acting on the element. For

example, TFBSs of different TF families are divided into proximal versus distal and cell-

line–specific versus–nonspecific (fig. S7). We find heterogeneous degrees of negative

selection for specific categories (Fig. 2B and data S2). For instance, core motifs in the

binding sites of TF families HMG and Forkhead are under particularly strong selection,

whereas those in the CBF-NFY family do not exhibit selective constraints (relative to the

genomic average) (Fig. 2B). Among all the pseudogenes, polymorphic ones have the highest

fraction of rare alleles, consistent with their functional coding roles in some individuals (25).

Overall, we found that 102 of the 677 categories show statistically significant selective

constraints (data S2) (figs. S8 to S10).

Among these 102 categories, we defined the top ones covering ~0.02% and ~0.4% of the

genome as ultrasensitive and sensitive, respectively (fig. S11) (data S3). Thus, these regions

were defined such that they possess a high fraction of rare variants comparable to that for

coding sequences (67.2% for coding and 65.7% for ultrasensitive) (Fig. 2C). We validated

the rare variants in them by comparison with Complete Genomics data. Sensitive regions

include binding sites of some chromatin and general TFs (e.g., BRF1 and FAM48A) and core

motifs of some important TF families (e.g., JUN, HMG, Forkhead, and GATA). For some

TFs, there is a strong difference between proximal and distal binding sites—for example, for

ZNF274, proximal binding sites are under strong selection and belong to the ultrasensitive

category, whereas distal sites are not under negative selection.

In order to validate the functional importance of sensitive and ultrasensitive regions, we

examined the presence of inherited disease-causing mutations from HGMD (Human Gene

Mutation Database) in them (26). We found ~40- and ~400-fold enrichment of disease-

causing mutations in sensitive and ultrasensitive regions, respectively (compared with the

entire noncoding sequence, P < 2.2 × 10−16) (Fig. 2E). Thus, these documented disease-

causing variants provide independent validation for the functional importance of sensitive

regions. As a specific example, the disease congenital erythropoietic porphyria is caused by
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disruption of a binding site classified as sensitive (the GATA1 motif upstream of

uroporphyrinogen-III synthase) (27). Similarly, the well-known disease-causing ncRNA

RMRP is in the binding site of BRF2, classified as ultrasensitive (28).

Purifying Selection and Other Aspects of Regulatory Regions

We analyzed sites at which SNPs break or conserve core-binding motifs. As expected, we

found that disruptive motif-breaking SNPs are significantly enriched for rare alleles

compared with motif-conserving ones (P < 2.2 × 10−16; Fig. 2D; a motif-breaking SNP is

defined as a change that decreases the matching score in the motif position weight matrix).

This result is over all TF families; moreover, we find the difference between constraints on

motif-breaking versus -conserving SNPs varies considerably for different TF families,

possibly reflecting differences in the topology of their DNA binding domains (data S4).

We also found that expression quantitative trait loci (eQTLs) are enriched in the binding

sites of many TF families (Fig. 2B); the association of TF binding and gene expression at

these loci provides a plausible explanation for their phenotypic effects.

An analysis of SNPs from a personal genome (NA12878) exhibiting allele-specific TF

binding in chromatin immunoprecipitation sequencing (ChIP-Seq) data or allele-specific

expression in RNA-seq data (with the allele-specific “activity” tagging a difference between

maternal and paternal chromosomes at the genomic region in question) showed that these

sites are depleted for rare variants (relative to a matched control) (Fig. 2F). This suggests

that regions where differential allelic activity is not observed may be under stronger

purifying selection (29).

In a similar fashion, we found that core-motif regions bound in a “ubiquitous manner” (i.e.,

where differential cell-type-specific binding is not observed) are under stronger selection

than those bound by TFs in a single cell line (data S2), consistent with the greater functional

importance of ubiquitously bound regions. In relation to this, we further examined how

selective constraints vary among coding genes and DHSs with tissue-specific activity (Fig.

1B). We found there are pronounced differences between tissues: For example, genes with

ovary- and brain-specific expression are under significantly stronger selection than the

average across all tissues (Fig. 1B and table S4). Similarly, some DHSs are under

significantly stronger selection, whereas others are under relaxed constraints relative to the

average (brain- and kidney-specific versus urothelium- and breast-specific, respectively; Fig.

1B and table S4). Last, matched expression and DHS data for six tissues indicate that

purifying selection in tissue-specific genes and their corresponding regulatory regions is

likely correlated (fig S15). Thus, our results suggest that the deleteriousness of both coding

and regulatory variants depends on the tissues they affect.

Purifying Selection in the Interactome and Regulome

We found a significant positive correlation between the fraction of rare SNPs and the degree

centrality of genes in networks: physical protein-protein interaction (PPI) (rho = 0.15; P <

2.2 × 10−16) and regulatory (rho = 0.07; P = 6.8 × 10−08). Thus, consistent with previous

studies, we found that hub genes tend to be under stronger negative selection (29-31).

Indeed, centralities of different gene categories in the PPI network follow the same trend as

differential selective constraints on them: Cancer-causal genes show the highest

connectivity, and LoF-tolerant genes, the least, with GWAS genes in the middle (Figs. 1A

and 3A). These results indicate that the interactions of a gene likely influence the selection

acting on it.
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Hub proteins tend to have more interaction interfaces in the PPI network (31). A corollary of

this is that interaction interfaces are themselves under strong selection, in turn leading to

stronger constraints on hub proteins. Indeed, we found that SNPs disrupting interaction

interfaces are enriched for rare alleles (P < 2.2 × 10−16) (Fig. 3B). To further corroborate

this, we tested a specific case, the Wiskott-Aldrich syndrome protein (WASP), using yeast

two-hybrid (Y2H) experiments (32). All of the three tested single-nucleotide variants

(SNVs) at WASP interaction interfaces disrupted its interactions with other proteins (Fig.

3C). We observed similar behavior for two other proteins: Mutations at their interfaces

disrupted specific protein interactions (fig. S16).

Relationship of Functional Elements with Indels and Larger SVs

We analyzed the association of functional annotations with small indels [<50 base pairs

(bp)] and large SVs (deletions). Similar to the results for nonsynonymous SNPs, we found

that genes linked with diseases show stronger selection against indels whereas LoF-tolerant

genes show weaker constraints (relative to all genes), with a consistent trend for indels

overall and frame-shift indels, in particular (Fig. 4A, fig. S17, and table S1).

The wide range of SV sizes (~50 bp to ~1 Mb) leads to their diverse modes of intersection

with functional elements; for example, a single SV breakpoint can split an element, a

smaller SV can cut out a portion of a single element, and a large SV can engulf an entire

element. To analyze the diverse effects of SVs, we computed the enrichment or depletion of

SVs overlapping each functional category relative to a randomized control. As expected, we

found that genic regions [coding sequences, untranslated regions (UTRs), and introns] are

depleted for SVs, suggesting SVs affecting gene function are deleterious (Fig. 4B) (22).

However, when we broke down the mode of SV intersection with genes into partial versus

whole (an SV breakpoint splitting a gene versus an SV engulfing a whole gene), we

unexpectedly found that SVs are enriched for whole-but depleted for partial-gene overlap.

This suggests that partial-gene overlap is under stronger selection than whole-gene overlap,

possibly because whole-gene deletions may be compensated by duplications. Furthermore,

another category of gene-related elements, pseudogenes, are enriched for SVs, consistent

with their formation mechanism involving either duplication or retrotransposition.

In relation to nongenic elements, we found that SVs tend to be depleted in regulatory

elements such as binding-site motifs and enhancers (Fig. 4B), consistent with our

expectations from SNPs. However, enhancer elements are enriched for SVs formed by

nonallelic homologous recombination (NAHR). This observation is further supported by the

high signal of activating histone marks associated with enhancers (e.g., H3K4me1) around

NAHR breakpoints (Fig. 4C and fig. S18). The association of enhancers and NAHR

deletions may be explained by the three-dimensional structure of chromatin bringing

enhancer elements into close proximity with the gene transcription start site (via DNA

“looping”). If these two “nonallelic” loci contain homologous sequences, it would be

favorable for NAHR to occur.

Functional Implications of Positive Selection Among Human Populations

Negative selection is widespread in the genome; nevertheless, some positions within

negatively selected regions also experience positive selection (33-36). We have previously

identified and validated one category of variants that are strong candidates for positive

selection: sites where continental populations show extreme differences in DAF (HighD

sites) (24). By analyzing these HighD sites, we are focusing on positive selection under the

classic selective-sweep model (37). Positive selection via other modes (such as selection on

standing variation) likely also played a major role in recent human evolution (38).
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Nonetheless, functional annotation of HighD sites can provide important insights about

recent adaptations (39).

We examined positive selection in the same fashion as we have done for negative selection:

in coding genes, noncoding regulatory elements, and networks of gene interactions. The

functional analysis of positive selection using highly differentiated sites is limited to SNPs,

because of the low numbers of such indels and SVs in functional elements.

We observed enrichment of HighD sites in UTRs and missense SNPs in coding regions (Fig.

5A). Next, we observed that some disease gene groups (Online Mendelian Inheritance in

Man, HGMD, and GWAS) are enriched for HighD SNPs (fig. S20). Mutations in disease

genes are likely to have strong phenotypic impact; thus, it is possible that some of these

mutations confer advantage for local adaptation. For example, whereas LoF mutations in

ABCA12 lead to the severe skin disorder harlequin ichthyosis (40), we found that a SNP

within the second intron of this gene is a HighD site (DAF > 90% in Europe and East Asia;

13% in Africa), possibly reflecting adaptations of the skin to levels of sunlight outside of

Africa.

Similar to our analysis of negative selection, we analyzed the enrichment of HighD sites in

broad and specific noncoding categories, finding significant enrichment in many noncoding

categories (Fig. 5A). These enriched categories include DHSs (particularly distal ones) and

binding sites of sequence-specific TFs (specifically those in ZNF and NR families). Out of

the seven enriched categories, five are also under significant negative selection (Figs. 2A

and 5A and data S2). Thus, even though an entire category might be under negative

selection, some particular sites within it can be targets of positive selection. In this respect,

our results are consistent with previous studies for missense SNPs: Overall they are under

strong negative selection, but a small group of them have been targets of positive selection

(36).

We found that, as expected, coding genes with HighD SNPs tend to have lower degree

centrality in both PPI and regulatory networks (although the small number of these cases

does not produce statistical significance) (Fig. 5B and fig. S21) (41). In an opposite trend to

genes (where positive selection occurs on the network periphery), HighD sites in TFBSs

tend to occur in hub promoters (P = 0.02 with 23 promoters and P = 3.2 × 10−03 with37

proximal TFBSs) (Fig. 5B). It was previously proposed that mutations in cis elements in

regulatory networks may play an important role in development (42, 43); our study supports

this by suggesting that some hub promoters may have undergone recent adaptive evolution.

Contrasting Patterns of Somatic Mutations with Inherited Variants

After analyzing inherited polymorphisms in functional elements, we examined somatic

variants. Because somatic variants from diverse tumors exhibit different sets of properties,

we analyzed variants from a wide range of cancer types: prostate, breast, and

medulloblastoma (17, 19, 20). We found that ~99% of somatic SNVs occur in noncoding

regions, including TFBSs, ncRNAs, and pseudogenes (fig. S22).

Analysis of matched tumor and normal tissues from the same individuals showed that

somatic variants tend to be enriched for missense (~5×), LoF (~14×), sensitive (~1.2×), and

ultrasensitive (~2×) variants (Fig. 6A, fig. S24, and table S6). Consistent with this trend, we

found higher TF-motif-breaking/conserving ratios for somatic variants compared with

germline ones across many different samples and cancer types (~3 for somatic versus ~1.4

for germline) (Fig. 6B and table S7). Thus, somatic-cancer variants are generally enriched

for functionally deleterious mutations.
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This enrichment of functionally deleterious mutations among somatic variants is

understandable because they are not under organism-level natural selection (unlike

inherited-disease mutations, including GWAS variants). Indeed, among all somatic

mutations, those most deviating from patterns of natural polymorphisms are the most likely

to be cancer drivers. Consistent with this, our analysis has shown that, among all disease

mutations, those causing cancer occur in genes under strongest negative selection (and with

highest network connectivity) (Figs. 1A and 3A). Thus, we argue that somatic variants in the

noncoding elements under strongest selection are the most likely to be cancer drivers.

Another feature of somatic mutations associated with their potential role as drivers is their

recurrence in the same genomic element across multiple cancer samples. We found that

some noncoding elements from our functional categories show recurrent mutations (fig.

S23). For example, the pseudogene RP5-857K21.6 is mutated in three out of seven prostate

cancer samples, and the promoter of RP1 is mutated in two (17).

FunSeq: Tool for Identification of Candidate Drivers in Tumor Genomes

On the basis of the integrative analysis above, we developed a tool to filter somatic variants

from tumor genomes and obtain a short list of candidate driver mutations

(funseq.gersteinlab.org). FunSeq first filters mutations overlapping 1000 Genomes variants

and then prioritizes those in regions under strong selection (sensitive and ultrasensitive),

breaking TF motifs, and those associated with hubs. It can score the deleterious potential of

variants in single or multiple genomes and output the results in easy-to-use formats (i.e.,

“decorated” variant call format files, fig. S29 and data S6). The scores for each noncoding

variant vary from 0 to 6, with 6 corresponding to maximum deleterious effect. When

multiple tumor genomes are given as input, FunSeq also identifies recurrent mutations in the

same element. Although our emphasis is on noncoding variants, it also outputs scores for

coding variants.

We demonstrate the application of FunSeq as a workflow on representative breast and

prostate cancer genomes (Fig. 6C). In the breast cancer sample, the workflow yielded one

noncoding SNV likely to have strong phenotypic consequences: This SNV (i) occurs in an

ultrasensitive region (BRF2 binding site); (ii) breaks a PAX-5 TF binding motif; (iii) is

associated with a network hub (44); and (iv) is recurrent—that is, the regulatory module

contains somatic mutations in multiple breast-cancer samples. In a similar fashion, the

prostate-cancer sample revealed two noncoding SNVs predicted to have strong functional

consequences (Fig. 6C). One of these is in an ultrasensitive region (FAM48A binding site)

and lies in the promoter of WDR74 gene (a hub in the PPI network with degree centrality =

56). We further tested the presence of mutations in this binding site by polymerase chain

reaction followed by Sanger sequencing in an independent cohort of 19 prostate-cancer

samples (45). We found that one sample in the cohort also harbors mutations in this region

(Fig. 6D and fig. S25). Furthermore, we also observed increased expression of WDR74 in

the tumor relative to benign samples (fig. S26). These experimental results provide support

for a likely functional role of this candidate driver.

A large-scale application of our tool to three medulloblastoma, 21 breast, and 64 prostate

cancer genomes provided a total of 98 noncoding candidate drivers (table S8 and data S6)

(17-20). Among these candidates, 68 occur in sensitive regions, 55 break TF motifs, and 90

target network hubs.

Generalized Identification of Deleterious Variants in Personal Genomes

Although we envision the most effective use of our tool for tumor genomes, it can also be

applied to germline sequences to identify potentially deleterious variants. We applied it to
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four personal genomes: Snyder, Venter, NA12878, and NA19240 (46-48). Out of ~3 million

SNVs, we were able to identify ~15 (range from 6 to 26) noncoding SNVs per individual

with high scores from FunSeq (>4), indicating their potential deleterious effects (Fig. 6E,

tables S9 and S10, and data S6 and S7). Thus, our approach can be used to prioritize

noncoding variants in personal genomes as well.

Discussion

We identified the sensitive and ultrasensitive noncoding elements, which exhibit depletion

of common polymorphisms and strong enrichment of known, inherited disease-causing

mutations. Because they cover a small fraction of the entire genome (comparable to the

exome), these regions can be probed alongside exome sequences in clinical studies. We

found that functionally disruptive noncoding mutations tend to be under strong selection: In

an analogous manner to LoF variants in coding genes, variants that break motifs in TF

binding sites are selected against. There is a close relation between connectivity in

biological networks and selective constraints: Higher connectivity is generally associated

with higher constraint. Furthermore, selection against indels and large SVs acts in a similar

fashion as against SNPs overall; however, the large size of SVs sometimes leads to a

complex relation with functional elements. On the basis of these patterns of negative

selection in functional elements, we developed a workflow and a corresponding software

tool to prioritize noncoding variants in disease studies.

The prioritization scheme presented in our paper can be readily extended by incorporation of

genomic polymorphisms from larger populations and higher-resolution functional

annotations. Moreover, with the availability of RNA-seq data from large cohorts, additional

genomic features such as eQTLs can be folded in. Our approach can be immediately applied

in precision medicine studies to prioritize noncoding variants for follow-up characterization,

particularly candidate driver mutations in cancer, and it can be further extended in the

future.

Materials and Methods

Details of all data sets and methods are provided in the supplementary materials. A brief

summary of major data sets and methods is provided here. SNPs, indels, and SVs from 1000

Genomes Phase I release were used to investigate patterns of selection in DNA elements

(24). Noncoding annotations were obtained from ENCODE Integrative paper release (2).

Although we did analyze broad functional annotations, such as all TFBSs, we focused on

highly specific categories such as distal binding sites of factor ZNF274. A randomization

procedure, similar to the Genome Structure Correction (2), was developed by considering

the dependency structure of different categories to deal with multiple hypothesis correction

while identifying the categories under significantly strong selection. Patterns of somatic

mutations were obtained from seven prostate cancer (17), three medulloblastoma (20), and

21 breast cancer genomes (19), whereas driver mutations were also identified in additional

57 prostate cancer genomes (18).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Fraction of rare (DAF < 0.5%) SNPs
(A) In various gene categories. Total number of SNPs in each category shown. (B) In

noncoding DHSs and coding genes, which show tissue-specific behavior. Matching tissues

for which both DHS and gene expression data are available shown in same colors: shades of

green for endodermal, gray for mesodermal, and blue for ectodermal origin of tissues. Red

dotted lines show the total fraction for all DHSs and coding genes. Asterisks show

significant depletion or enrichment after multiple-hypothesis correction. Error bars in both

(A) and (B) denote 95% binomial confidence intervals.
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Fig. 2. Fraction of rare SNPs in noncoding categories
Red dotted lines represent genomic average. Error bars denote 95% binomial confidence

intervals. Total numbers of SNPs in each category shown. (A) Broad categories.

Ultrasensitive and sensitive regions are those under very strong negative selection. TFSS,

sequence-specific TFs. Categories tested for enrichment of HighD sites (Fig. 5A) marked by

using hollow triangles on the left. (B) Example of high-resolution categories: TFBS motifs

separated into 15 families. e superscripts in red denote enrichment of eQTLs in TFBSs of

specific families. (C) Examples of TFBSs included in ultrasensitive category. (D) SNPs

breaking TF motifs show an excess of rare alleles compared with those conserving them.

Representative motifs for two families are shown. (E) Enrichment of HGMD regulatory

disease-causing mutations in ultrasensitive, sensitive, and annotated regions compared with

all noncoding regions. (F) SNPs not exhibiting allele-specific behavior (−) are enriched in

rare alleles compared with SNPs exhibiting allele-specific behavior (+).
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Fig. 3. SNPs in protein-protein interaction (PPI) network
(A) Degree centrality of coding-gene categories in PPI network. (B) Fraction of rare

missense SNPs at protein-interaction interfaces is higher than all rare missense SNPs (error

bars show 95% binomial confidence intervals; total number of SNPs also shown). (C)

Effects of SNVs at interaction interfaces on interactions of WASP with other proteins tested

by Y2H experiments. Wild-type (WT) WASP interacts with all proteins shown, whereas

each missense SNV disrupts its interaction with at least one protein.

Khurana et al. Page 15

Science. Author manuscript; available in PMC 2014 March 09.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4. Functional annotations of indels and SVs
(A) Fraction of rare indels in coding-gene categories. Total number of indels shown. (B)

Enrichment of SVs affecting functional annotations. Middle box shows genes, pseudogenes,

and TF motifs; upper blow-out shows gene parts in different modes, and bottom blow-out

shows enhancers with different formation mechanisms, i.e., NAHR, NH (nonhomologous),

TEI (transposable element insertion), and VNTR (variable number of tandem repeats).

Asterisks indicate significant enrichment (green) or depletion (red) after multiple hypothesis

correction. SVs intersecting various functional categories in different modes (e.g., whole/

partial) are shown in the right-hand schematics. (C) Aggregation of histone signal around

breakpoints of deletions formed by different mechanisms. Breakpoints centered at zero.

Aggregation for upstream and downstream regions corresponds to negative and positive
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distance, respectively. Signals for an activating histone mark (H3K4me1) and a repressive

mark (H3K27me3) are shown.
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Fig. 5. Functional implications of positive selection
(A) (Left) Frequency of HighD SNPs versus matched sites for broad categories (marked by

hollow triangles in Fig. 2A). (Right) Specific categories, e.g., specific TF families. Asterisk

denotes significant enrichment after multiple-hypothesis correction. e superscripts in red

denote the enrichment of eQTLs. (B) (Left) The in-degree of genes with HighD missense

SNPs is lower than that of all genes. (Center) The in-degree of genes with HighD SNPs in

their promoters is higher than all genes. (Right) The human regulatory network with edges

in gray. Red nodes represent genes with HighD SNPs in their promoters, and blue nodes

represent genes with HighD missense SNPs. Size of nodes scaled based on their degree
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centrality. Nodes with higher centrality are bigger and tend to be in the center, whereas those

with lower centrality are smaller and tend to be on the periphery.
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Fig. 6. Functional interpretation of disease variants
(A) Enrichment of functionally deleterious mutations among somatic compared with

germline SNVs. Mean values from seven prostate cancer samples shown (variation shown in

fig. S16). (B) Ratios for the number of SNVs that conserve versus break TF-binding motifs

depicted for NA12878, the average of 1000 Genomes Phase I samples,and the average of

somatic and germline samples from different cancers. Error bars represent 1 SD. MB,

medulloblastoma. (C) Filtering of somatic variants from a breast (PD4006, left) and a

prostate (PR-2832, right) cancer sample leading to identification of candidate drivers. (D) A

part of the FAM48A binding site sequenced by Sanger sequencing in an independent cohort

of 19 prostate cancer samples shown in green (with the coordinates of mutations observed in
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one sample). (E) Application of variants filtering scheme to Venter personal genome.

Number of SNVs in various categories shown.
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