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Abstract

Cheminformatics approaches such as Quantitative Structure Activity Relationship (QSAR) 

modeling have been used traditionally for predicting chemical toxicity. In recent years, high 

throughput biological assays have been increasingly employed to elucidate mechanisms of 

chemical toxicity and predict toxic effects of chemicals in vivo. The data generated in such assays 

can be considered as biological descriptors of chemicals that can be combined with molecular 

descriptors and employed in QSAR modeling to improve the accuracy of toxicity prediction. In 

this review, we discuss several approaches for integrating chemical and biological data for 

predicting biological effects of chemicals in vivo and compare their performance across several 

data sets. We conclude that while no method consistently shows superior performance, the 

integrative approaches rank consistently among the best yet offer enriched interpretation of models 

over those built with either chemical or biological data alone. We discuss the outlook for such 

interdisciplinary methods and offer recommendations to further improve the accuracy and 

interpretability of computational models that predict chemical toxicity.
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INTRODUCTION

Predictive toxicology is often evaluated at the initial stages of regulatory assessment of 

environmental chemicals or drug discovery to prioritize high-risk chemicals for further 

testing or eliminate such chemicals from further consideration, respectively. In the current 

age of chemical innovation, hundreds to thousands of new chemicals are introduced each 

year [1] creating an urgent need to substantially optimize testing resources and reduce 
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animal use. Current toxicity evaluation protocols increasingly follow a tiered approach 

where chemicals are funneled through in silico, in vitro and in vivo tests in order of 

decreasing throughput [2–4]. Among the in silico methods, cheminformatics and 

bioinformatics have been established as integral parts of toxicity testing, especially at the 

initial stages.

Most of the current computational tools employed in toxicity assessment rely either on 

chemical or biological data. Specifically, cheminformatics approaches attempt to predict 

toxicity from chemical structure alone while ignoring the underlying complex biological 

mechanisms whereas bioinformatics approaches ignore the inherent structural features of 

chemical molecules that may enrich and improve modeling outcomes. In contrast, 

integrative chemical-biological modeling may both improve the prediction performance of 

models and uncover insights previously invisible to either informatics discipline alone. The 

realization that chemical and biological entities interact at various levels of organization in 

the body has spawned the emerging fields of systems chemical biology [5–7], systems 
toxicology [8], or systems pharmacology [9–12]. Several recent reviews [6,10,12–16] have 

focused on the current state of each individual discipline and proposed general schemes to 

integrate cheminformatics and bioinformatics approaches for improved understanding of 

chemical effects on biological systems. Few integrative studies, however, have been 

reported; their paucity is stemming from the lack of both suitable data and integrative 

methods. Nevertheless, a new data landscape for predictive toxicology has emerged due to 

new toxicity testing paradigms such as REACH (Registration, Evaluation and Authorization 

of CHemicals)[17] and Toxicity Testing for the 21st Century [18]. These programs have 

stimulated the proliferation of short-term biological assays employed for testing of growing 

collections of chemicals [19]. These transformative experimental programs offer new 

opportunities for data-driven learning beyond the traditional methods of cheminformatics or 

bioinformatics.

In this review, we reiterate the case for integrative chemical-biological approaches for 

predicting chemical effects in vivo with the ultimate goal of developing safer pharmaceutical 

or industrial chemicals. We assess the strengths and limitations of current predictive 

toxicology efforts based on either cheminformatics or bioinformatics and then discuss 

studies drawing from the two disciplines concurrently. Lastly, we put forth our vision for 

such interdisciplinary methods and offer recommendations to further improve the accuracy 

and interpretability of chemical toxicity prediction models.

CHEMINFORMATICS IN TOXICITY PREDICTION

The availability of large toxicity datasets including hundreds, even thousands of chemicals 

tested as part of ToxCast [20] and Tox21 [21] projects has re-established an interest in 

cheminformatics as a powerful computational approach for predicting chemical toxicity. In 

particular, Quantitative Structure-Activity Relationships (QSAR) modeling is often used as a 

first-line tool for toxicity prediction [22] given that it requires the knowledge of molecular 

structure only. The first QSAR study was published in 1962 [23]; it employed regression 

model correlating plant growth to molecular electronic parameters. Since then, QSAR has 

grown in sophistication to incorporate thousands of chemical descriptors and machine 
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learning methods. Despite its popularity, QSAR modeling has been criticized for poor 

predictivity and interpretability [24–27]. Measures to address weaknesses include OECD 

guidelines [28] and implementation of best practices [29] which advocate careful data 

curation [30] and processing [31], representative sampling of the chemical space [32], 

stringent validation [33] and rational descriptor selection driven by a mechanistic basis to 

simplify interpretation [26].

Despite the above measures, cheminformatics-based prediction of complex toxic phenomena 

has fallen short of expectations. In reality, the relationship between chemical structures and 

toxicity is far more circuitous than the models assume, involving many non-chemical 

factors, e.g., those dependent on complex biological mechanisms. The significance of these 

non-chemical factors depends on the prediction target. Generally, QSAR models are more 

successful at predicting direct chemical-induced outcomes (e.g., mutagenicity) than those 

farther downstream of chemical-initiating events (e.g., carcinogenicity) [34]. Indeed, in 

some cases when large datasets are available, e.g., for mutagenicity (that largely depends on 

molecular interactions between chemical and DNA) the QSAR model accuracy approaches 

that of the experimental Ames assay [34,35]. On the contrary, carcinogenicity has been 

notoriously difficult to predict because of its heterogeneous modes of action and the 

biological host’s adaptive capacity for recovery [34]. One way to account for complex 

biological mechanisms underlying many in vivo effects and achieve better modeling 

outcomes is to integrate multiple biological characteristics of chemicals obtained in short 

term assays with inherent chemical properties of compounds. This emerging integrative 

modeling approach at the interface between bio- and cheminformatics is the main theme of 

this review.

BIOINFORMATICS IN TOXICITY PREDICTION

The post-genome era saw a dramatic rise of bioinformatics. While the field of bioinformatics 

is broad, involving the computational analysis of biological information arising from the 

detailed characterization of an organism at various levels (molecular, cellular, tissue, organ, 

system), this section focuses on applying bioinformatics approaches in toxicology where the 

goal is to study multiple biological perturbations in response to chemical insult.

Simultaneously studying thousands of bioassays offers several advantages: key biomarkers 

can be quickly identified and interactions between the biomarkers characterized, allowing 

for a systems toxicology approach. In drug discovery, the use of diverse bioassay panels 

helps to quickly identify potentially toxic properties (e.g., cytochrome P450 inhibition, 

transporter blockage) which may provide clues into the pathogenesis of undesired effects 

caused by a compound. The bioassay signatures of compounds reflecting certain toxic 

modes of action may be used to probe for compounds with similar mode of action. An 

example of broad biological characterization of drugs is provided by the Japanese 

Toxicogenomics Project where toxicogenomic signatures representative of various types of 

hepatotoxicities (e.g. phospholipidosis, glutathione depletion) have been determined [36]. 

These signatures can be generated for new drugs or drug candidates to predict their long-

term toxicities.
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Advances in assay technology have given rise to a diversity of biological measurements such 

as ‘omics signatures, enzymatic activity, receptor binding affinity, cytotoxicity, and histology 

imaging, allowing toxicologists to probe into both microscopic and macroscopic changes in 

the body. These bioassays may have different predictive power depending on the 

experimental error and biological relevance. High-dimensional ‘omics’ data, especially 

transcriptomics, were shown to predict long term effects such as hepatic tumorigenicity with 

high accuracy [37–40]. In contrast, hundreds of bioassays capturing a large diversity of 

biological characteristics in ToxCast Phase I [41,42], were less predictive [43]. Reasons 

cited by the authors include inadequate experimental fidelity, inadequate biological 

relevance, and poor interspecies extrapolation.

Certain successes notwithstanding, the use of biological data and bioinformatics approaches 

in chemical toxicity prediction is not problem-free. The ease of collecting large-scale 

bioassay data has encouraged fishing expeditions where assays often produce poor quality 

results or may be irrelevant to any toxicity leading to false discoveries. Overly sensitive 

‘omics’ markers may be producing more noise than signal [44]. Countermeasures include 

proper statistical correction (e.g. Bonferroni, Holm) and proper application of biological 

context to draw meaningful conclusions from the data.

The focus on biological information has also regrettably overlooked another important 

dimension of toxicology: chemical information. While bioassays were previously performed 

for a few chemicals due to throughput limitations, it is now possible to perform high 

throughput screening (HTS) for large chemical libraries [45]. Consequently, in vitro toxicity 

data is rich in both biological and chemical information. The underlying chemical patterns, a 

traditional and rich source of data in cheminformatics, have not been capitalized upon by 

bioinformatics. A reasonable approach may be to combine bioinformatics and 

cheminformatics approaches for improved toxicity prediction.

INTEGRATIVE APPROACH COMBINING CHEMINFORMATICS AND 

BIOINFORMATICS

Given the lack of consideration of biological factors in cheminformatics and ignorance of 

chemical structures in bioinformatics, the concurrent study of both biological and chemical 

domains may reveal new discoveries not possible with either domain alone. Such integrated 

approaches recognize that in vivo effects, whether occurring at the cellular, or systemic 

level, emerge from a complex interplay between the chemical inducer and the biological 

host. Chemical factors govern the molecular interactions between the chemical and its 

protein targets. These molecular interactions then initiate a cascade of interactions within the 

cell, organ or organism, eventually giving rise to the observed phenotype as a response to the 

chemical action on the biological system.

The rise of several recent enabling trends facilitates chemical-biological integration. First, 

there is an increased demand and acceptance of toxicity prediction from in silico and in vitro 
tests instead of in vivo tests in efforts to boost testing throughput, improve animal welfare 

and deepen our understanding of the toxicological mechanisms; these new paradigms are 

accelerated by regulatory programs such as REACH[17] and Toxicity Testing for the 21st 
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Century [18]. Consequently, in large-scale programs such as ToxCast [20], Tox21 [21], and 

Molecular Libraries Initiative [46] thousands of chemicals are tested in thousands of 

biological assays, with the results of these HTS studies placed in publicly available 

repositories such as PubChem [47] or ToxNet [48]. For instance, toxicity databases now 

contain large amounts of chemical and biological information through data consolidation 

(e.g. ACToR [19], Bio2RDF [49], OpenPHACTS[50], PredPharmTox [51]; see [11] for table 

of databases).

The unprecedented growth of data in terms of the number and diversity of chemicals, and 

comprehensive biological assay characterization has afforded new research opportunities for 

both cheminformatics and bioinformatics. Where previously only a few chemicals were 

tested, the new data landscape has reinvigorated interest in cheminformatics as a means of 

transforming latent chemical patterns into useful chemical insights. On the other hand, the 

deeper biological assay characterization allows one to learn more about each chemical in 

terms of underlying biological mechanisms of its in vivo effects. Yet, sticking to the 

approaches of only chemical or biological modeling is unlikely to take full advantage of the 

richness of the modern data streams that effectively capture chemical-biological interactions.

The many parallels between bioinformatics and cheminformatics provide points of 

commonality to facilitate integration. Underpinning both fields are statistical techniques 

relating molecular features of a chemical to its biological effects. These statistical 

relationships rely on the similarity principle which expects chemicals similar in their 

molecular feature profiles to exhibit similar behavior. The key difference between 

bioinformatics and cheminformatics here lies in the choice of appropriate molecular 

features, i.e., either ‘omics’ profiles assayed by HTS or molecular structural information 

represented by chemical descriptors. The statistical techniques, whether as simple as read-

across or as complex as machine learning, are equally applicable to both fields.

A simple means of integration is to apply existing statistical methods to both chemical and 

biological types of molecular features. Another way is to merge chemical models with 

biological models. Other approaches may be less straightforward, strategically combining 

chemical structures and biological assays such that the two data sources compensate for each 

other’s shortcomings and the complementary information between them is maximally used. 

Generally, modeling studies combining chemical and biological data have reported increased 

predictivity and interpretability (Table 1). Integrative chemical-biological approaches 

attempted in those studies may be broadly classified into three types: 1) data pooling (Fig. 

1A), 2) model pooling (Fig. 1B), or 3) other integrative strategies that exploit the multi-

domain data (e.g. hierarchical local models shown in Fig 1C).

Data pooling

In data pooling, disparate data sources are pooled to create a larger, “hybrid” data matrix for 

modeling by existing statistical methods. This has been aided by the growing availability of 

consolidated databases. Besides HTS assays, new data streams can include text annotations 

automatically mined from biomedical literature (ChemoText [52]), product labels (SIDER) 

[53–55] and clinical notes [56,57].
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Table 1 lists several studies predicting toxicity from pooling various data streams. Generally, 

prediction performance improved after pooling, although several exceptions exist. Among 

the exceptions, a comprehensive modeling of 60 in vivo toxicities based on chemical 

structures and/or in vitro assays of ToxCast phase I data described limited if any success 

with data pooling models [43]. Several other studies reported that models’ accuracy dropped 

when chemical descriptors were added on top of bioassay data such as toxicogenomics [58], 

hepatocyte imaging indicators [59], and protein targets [60]. Noteworthy, all four of the 

mentioned studies [43,58–60] employ rather small and structurally diverse sets of chemicals. 

Understandably, chemical models performed worse than biological ones [58–60], while in 

the ToxCast study [43] both were similarly poor. Thus, we caution against favoring either 

chemical or biological model as either performance will depend on many contributing 

factors such as the size and structural diversity of the chemical datasets and quality of 

biological data. Where biological data included considerable noise, additional data treatment 

may improve prediction outcomes from data pooling. For example, Sedykh et. al. [61] 

introduced a noise filter to transform cytotoxicity profiles into dose-response curve 

parameters that, when pooled with chemical structures, provided more accurate models of 

rat acute toxicity than the original cytotoxicity assay values.

Model pooling

Another way of integrating chemical and biological data is by meta-analysis or ensemble 

modeling, which pools individual predictions from several models into a final predicted 

value. The main benefit of ensemble modeling, i.e., increased predictivity, arises when the 

constituent models compensate for the errors of one another [62]. The notion that many 

models are better than one is best exemplified by the random forest algorithm which seeks 

the consensus vote of numerous constituent decision tree models within its “forest” [63]. In 

the case of toxicity modeling, chemical-based models and biological-based models may be 

pooled such that their consensus vote provides the final prediction outcome.

Such model pooling is already widely practiced in regulatory chemical risk assessment and 

drug discovery during where all the prediction outcomes from various toxicity models are 

weighted before arriving at a consensus decision [64,65]. For example, drugs must not 

contain structural alerts of mutagenicity and their bioassay profiles must indicate the lack of 

inhibitory effects on the major cytochrome P450 enzymes required for drug metabolism.

Ensemble modeling can be used in one of two ways. One approach is to require that all the 

constituent models for a compound point to the same prediction outcome so that the end 

point toxicity can be estimated with higher confidence. Alternatively, one can argue that 

ensemble modeling enlarges the modelable space of molecules such that compounds that 

cannot be predicted with confidence by one model receive their prediction from another 

model. In the first case, Vilar et. al. showed increased precision when a chemical similarity 

model was pooled with a model based on clinical notes [66,67]. In the second case, an 

ensemble chemical-biological model may compensate for the invalid predictions by the 

QSAR model outside its chemical coverage area. However, ensemble models may not 

always outperform their constituent chemical and biological models, as we have 

demonstrated recently using four different data sets [68]. Especially where a constituent 
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model is already highly predictive, adding another inferior model may lead to reduced 

predictive power of the consensus model. Thus, model pooling should be done with care 

paying attention to relative predictive power of each constituent model.

Other integrative methods

The mixed success of pooling data or models has led to the development of innovative 

approaches that leverage prior knowledge of the data structure and optimize the use of the 

disparate data sources. Network modeling that allows the simultaneous study of disparate 

entities (chemicals, targets and phenotypes) is employed increasingly [69]. In a graph 

representation (Figure 2), entities appear as nodes connected by edges if they are associated. 

Association may be defined in terms of direct physical interaction (e.g., drug binds to target) 

or statistically (e.g., disproportionately more reports of adverse effect with drug). In such 

way modeling, the goal is to infer new associations among pairs of entities through indirect 

associations. This is best illustrated by Swanson’s ABC paradigm [70] in which association 

between entities A and C is inferred if there exist direct associations between pairs A–B and 

B–C (Figure 2A). Networks may be further enriched by chemical similarity [71,72], protein 

sequence similarity [73], or side effect similarity [74] such that novel inferences with higher 

confidence can be drawn (Figure 2B [75]). Associations successfully predicted in recent 

studies include those of phenotype-target [72], chemical-phenotype [76,77], and chemical-

target [74,78,79] type. For examples of broader efforts to infer more than a single type of 

associations, the readers are referred to several recent studies [69,71,80].

Strategic use of biological data to stratify data sets into distinct clusters for further separate 

or localized modeling can be a promising direction. Zhu et. al.[81] described a two-step 

hierarchical approach, in which the authors first stratified compounds by their in-vitro/in-
vivo correlation into two classes , i.e., a group of compounds whose in vitro/in vivo data 

correlated and a remaining group where no correlation was observed. The authors then built 

a classification model using this biologically-inferred strata and then also built stratum-

specific QSAR models. It has been shown that such a hierarchical workflow where a new 

compound was first assigned to one of the two strata followed by the prediction using 

stratum-specific models afforded overall improved prediction accuracy [81,82]. Other 

strategic use of biological data to stratify data sets into clusters for localized modeling was 

also attempted by Lounkine et al. [83] who clustered compounds by chemical similarity and 

their bioactivity. Analogously, chemical structural data can provide useful input for 

biological modeling. For example, pharmacokinetics parameters, where unknown, may be 

estimated by QSAR models from molecular structure and then used in subsequent 

physiological-based models to simulate chemical toxicity in the body [84–86].

Another recently published novel integrative method, quantitative chemical-biological read-

across (CBRA) [68], relied on the principles of k nearest neighbors. The CBRA approach 

can be viewed as an ensemble model, in which chemical- and biological-based predictions 

for a new chemical are weighted by similarity to known both chemical and biological 

analogs. This enhanced pooling of chemical and biological neighbors helps to maximize the 

complementarities between chemical and biological data. In particular, conflicting 

predictions from chemical and biological models are resolved, resulting in overall 
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predictivity gains. The authors compared CBRA with two other types of integrative 

approaches (data pooling, model pooling) on four data sets and found that none of the three 

approaches was markedly superior to others. We believe that this holds true in general, and 

no single integrative technique is likely to solve all modeling problems. Instead, this we 

emphasize the importance of employing set of modeling tools from which most appropriate 

and expedient ones can be selected and attempted for each complex dataset.

RECOMMENDATIONS AND OUTLOOK

The mixed success of using both chemical and biological features suggest the following 

methodological implications for predicting chemical effects. First, consider information-rich 

and biologically relevant assays as features. Information-rich assays such as gene expression 

may have more predictive value than non-descript assays measuring binary biological 

responses (e.g., binding/nonbinding to a target protein) [87]. The bioassays may be selected 

rationally according to biological pathways to reflect their relevance to the in vivo effect 

[43,88]. Third, careful variable selection [43], modeling and validation according to OECD 

(Q)SAR principles [28] are necessary to ensure robust and accurate models [29]. Lastly, 

consider the choice of modeling methods. Irrelevant variables may affect some classification 

methods more than others. For example, instance-based methods including CBRA are more 

susceptible to irrelevant variables while others such as random forest can better tolerate 

noisy variables [89,90].

A multidisciplinary systems approach is increasingly seen as the key solution to translating 

molecular and preclinical insights into desired clinical outcomes of drug use. In addition to 

addressing the issue of data quality, further gains through methodological innovations and 

cohesive integration of the various disciplines will be necessary. Scientists who develop and 

employ such approaches need to have profound understanding of both the data and data-

analytical techniques. The ingredients for such multi-disciplinary efforts are unlikely to 

occur organically and will require deliberate efforts to foster a collaborative environment. As 

more data come online and advances in assay technologies reduce experimental variability, 

we expect integrative approaches to play a greater role in toxicology and drug discovery 

applications.
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Figure 1. 
Integrative chemical-biological approaches for toxicity prediction.
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Figure 2. 
Knowledge-based relationships between objects (e.g., drugs, targets, and activity 

phenotypes) form an object network that allows new inferences. (A) Swanson ABC 

paradigm, adapted from [52]; (B) Network enriched by similarity within classes of objects 

(solid edges) boost new inferences (dotted edges), adapted from [75].
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Table 1

Integrative approaches used for toxicity prediction

Prediction target Data sources Type Studies

Rat LD50 Chemical structure,
Cytotoxicity

Data pooling [91]

Rat LD50 Chemical structure,
Dose-cytotoxicity profiles

Data pooling [61]

Rat LD50 Chemical structure,
Cytotoxicity

Integrative method [81]

Rat reproductive toxicity Chemical structure,
In vitro assays

Integrative method [82]

Drug hepatotoxicity Chemical structure,
Transcriptomics

Data pooling,
Model pooling,
Integrative method

Chapter 2 [58]
Chapter 3

Drug hepatotoxicity Chemical structure,
Hepatocyte imaging assays

Data pooling [59]

In vivo toxicities Chemical structure,
In vitro assays

Data pooling [43]

Drug properties Chemical structure,
Bioactivity

Integrative method [83]

Adverse drug reactions Chemical structure,
Electronic health records

Model pooling [66, 67]

Adverse drug reactions Chemical structure,
Bioactivity,
Adverse drug reactions,
Therapeutic indications

Data pooling [92]

Adverse drug reactions Chemical structure,
Drug properties,
Adverse drug reactions

Data pooling,
Integrative method

[77]

Adverse drug reactions Chemical structure,
Drug targets,
Adverse drug reactions,
Clinical outcomes

Data pooling,
Integrative method

[76]

Adverse drug reactions Chemical structure,
Drug targets,
Adverse drug reactions,
Therapeutic indications

Data pooling [60]

Drug targets Chemical structure,
Adverse drug reactions

Data pooling,
Model pooling,
Integrative method

[72]

Drug targets Chemical structure,
Adverse drug reactions

Data pooling,
Model pooling,
Integrative method

[74]

Drug targets Chemical structure,
Adverse drug reactions

Data pooling,
Model pooling,
Integrative method

[71]

Drug targets Chemical structure,
Protein sequence

Data pooling,
Integrative method

[73]

Drug targets Chemical structure,
Adverse drug reactions,
Therapeutic indications

Data pooling,
Integrative method

[39]

Drug targets associated
with agranulocytosis

Protein docking profiles
Transcriptomics

Integrative method [93]
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