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Abstract
Background/Aims: Chronic kidney disease (CKD) is a worldwide public health problem. 
Regardless of the underlying primary disease, CKD tends to progress to end-stage kidney 
disease, resulting in unsatisfactory and costly treatment. Its common pathogenesis, however, 
remains unclear. The aim of this study was to provide an unbiased catalog of common 
gene-expression changes of CKD and reveal the underlying molecular mechanism using an 
integrative bioinformatics approach. Methods: We systematically collected over 250 Affymetrix 
microarray datasets from the glomerular and tubulointerstitial compartments of healthy renal 
tissues and those with various types of established CKD (diabetic kidney disease, hypertensive 
nephropathy, and glomerular nephropathy). Then, using stringent bioinformatics analysis, 
shared differentially expressed genes (DEGs) of CKD were obtained. These shared DEGs were 
further analyzed by the gene ontology (GO) and pathway enrichment analysis. Finally, the 
protein-protein interaction networks(PINs) were constructed to further refine our results. 
Results: Our analysis identified 176 and 50 shared DEGs in diseased glomeruli and tubules, 
respectively, including many transcripts that have not been previously reported to be involved 
in kidney disease. Enrichment analysis also showed that the glomerular and tubulointerstitial 
compartments underwent a wide range of unique pathological changes during chronic injury. 
As revealed by the GO enrichment analysis, shared DEGs in glomeruli were significantly enriched 
in exosomes. By constructing PINs, we identified several hub genes (e.g. OAS1, JUN, and FOS) 
and clusters that might play key roles in regulating the development of CKD. Conclusion: Our 
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study not only further reveals the unifying molecular mechanism of CKD pathogenesis but 
also provides a valuable resource of potential biomarkers and therapeutic targets.

Introduction

Chronic kidney disease (CKD) is a worldwide public health problem, affecting 12% of all 
adults in the United States and 10.8% in China [1, 2]. Regardless of the underlying primary 
disease, CKD tends to progress to end-stage kidney disease, resulting in unsatisfactory and 
costly treatment. Therefore, it is important to identify the common key genes and pathways 
involved in CKD to improve early recognition and prevent disease progression.

Our knowledge of the underlying molecular mechanisms of CKD primarily originates 
from studies based on chronic kidney injury models and reviews summarizing common 
pathophysiological features. Although animal models are essential for understanding the 
pathogenesis of CKD, they can diverge from real patients and are open to misinterpretation 
[3]. The interpretation of the literature in reviews is sometimes subjective and lacks 
quantitative metrics, which may induce bias.

In recent years, bioinformatics has emerged as a powerful tool for providing 
comprehensive insights into the molecular mechanisms of disease and identifying potential 
biomarkers and therapeutic targets [4-6]. Using comprehensive pathway analysis and subsequent verification, Butz et al. identified three novel factors, including AHR, GRHL2, and KIAA0101, as potential biomarkers of clear cell renal cell carcinoma [5]. By reanalyzing seven samples from Ove26 (diabetic) and FVB (nondiabetic) mice, Wang et al. found several significant nodes and differentially expressed transcriptional factors that may serve as novel targets for diabetic kidney disease (DKD) [6]. However, owing to the tremendous amount 
of data generated by high-throughput technologies, bioinformatics analyses based on a few 
samples may be at high risk of false-positive results.

To this end, we applied robust algorithms and performed an integrative analysis of over 
250 microarray datasets of healthy renal tissues and those with various types of established CKD, including DKD, hypertensive nephropathy (HN), and glomerulonephritis (GN), to 
reveal the underlying molecular mechanisms of CKD. As the glomeruli and tubules may 
undergo different pathological processes during kidney injury [7], the molecular patterns 
of the glomerular and tubulointerstitial compartments were analyzed separately. To our knowledge, this is the first integrative bioinformatics analysis of this topic.

Materials and Methods

Datasets collectionGene expression datasets were compiled from the web resource GEO (https://www.ncbi.nlm.nih.gov/geo/) in May 2017. For datasets from normal human glomeruli and tubules, the primary search criteria 
were “(glomerulus OR glomeruli OR glomerular)” and “(tubulus OR tubules OR tubular),” respectively. Then, we searched for datasets of diseased glomeruli and tubules. For DKD and HN, the primary search criteria were “(diabetic nephropathy OR diabetic kidney disease OR DKD OR DN)” and “(hypertensive nephropathy OR hypertensive kidney disease OR hypertensive renal disease OR HN)”, respectively. We chose IgA nephropathy (IgAN), membranous nephropathy (MN), and focal segmental glomerular sclerosis (FSGS) as representative diseases of GN, with the primary search criteria of “(membranous nephropathy OR membranous glomerulonephritis OR MN)”, “(IgA nephropathy OR IgAN)”, and “(focal segmental glomerular sclerosis OR FSGS)”, respectively. To minimize platform variation, the platform filter criterion was set to ‘‘Affymetrix U133’’. The summary and sample description of each series were examined by two investigators, 
and those related to our research objectives were further included in the analysis.

© 2018 The Author(s)
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Microarray datasets preprocessing and differentially expressed gene (DEG) identificationData preprocessing and DEG identification were performed using Bioconductor in R according to the following steps [8]:Before included in the analysis, the quality of each dataset was examined using the general quality control (QC) stats in the simpleaffy package and RNA degradation analysis in the affy package, and unqualified datasets were discarded.For analysis involving different types of microarrays, the 22, 215 Affymetrix identifiers shared by both the Human Genome U133 Plus 2.0 Array and Human Genome U133A Array were extracted. Datasets of the same category were pooled to expand the sample size. Then, the relative log expression graph was used to evaluate the consistency among datasets, and those with significant bias were discarded.The robust multi-array average method in the affy package was used to preprocess the original data: firstly, the raw intensity values were background corrected, log2 transformed, and quantile normalized. 
Secondly, the principal component analysis was used to detect potential batch effects of pooled datasets. Lastly, a linear model was fit to the normalized data to obtain an expression measure for each probe set on qualified dataset [9].The empirical Bayes method was used to select DEGs for each disease. Statistically significant DEGs were defined as those with p-values < 0.05 after adjustment by the Benjamini-Hochberg method and fold changes > 1.5. Subsequently, DEGs shared among the five diseases were extracted.

Gene ontology(GO) and pathway enrichment analysisThree subdatabases (GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, and GOTERM_MF_DIRECT) from DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/) were used for GO enrichment analysis. KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) was used for pathway enrichment analysis, integrating the KEGG pathway (http://www.genome.jp/kegg), Reactome (http://www.reactome.org), BioCyc (http://biocyc.org), and Panther (http://www.pantherdb.org) databases. P-values < 0.05 after adjustment by the Benjamini-Hochberg method were regarded as statistically significant.
Construction of the protein–protein interaction (PPI) network (PIN), recognition of hub genes and cluster 

analysis.All established PPIs from four databases, BioGRID (http://thebiogrid.org/), DIP (http://dip.doe-mbi.ucla.edu/), HPRD (http://www.hprd.org/), and STRING (http://string-db.org), were used to construct PINs based on selected DEGs. Cytoscape software was utilized to visualize PINs and analyze the characteristics of each node. Those with the highest degrees, defined as the number of edges incident to the nodes, were recognized as hub genes. The MCODE plug-in of Cytoscape was used to perform cluster analysis and identify 
key clusters. An enrichment analysis based on the Reactome database was performed on the selected 

clusters to reveal related pathways.

Results

Characteristics of microarray datasetsAfter screening and quality control tests, a total of 255 qualified microarray datasets were included in the final analysis: 40, 7, 15, 43, 18, and 23 datasets for normal, DKD, HN, IgAN, MN and FSGS glomeruli, respectively, and 22, 11, 21, 25, 18, and 12 datasets for the 
corresponding tubules, respectively (Table 1). All cases were from subjects with biopsy-
proven CKD, and particularly, all subjects with DKD had diabetic nephropathy. Tissue sources 
of controls were either kidney biopsy from pre-transplant living donor or patients after tumor nephrectomy. These datasets were from GSE37463 [10], GSE47185 [11], GSE35489 [12], GSE21785 [13], GSE20602 [14], GSE50469 [15] and GSE69438 [16]. All datasets were generated by either Human Genome U133 Plus 2.0 Array or Human Genome U133A Array.
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Identification of shared DEGs 
of CKD
After comparing gene expression patterns between 

diseased and normal glomeruli, 
as shown in Fig. 1, 1753 
(upregulated, n = 1430; 
downregulated, n = 323), 1192 (upregulated, n = 739; 
downregulated, n = 453), 854 (upregulated, n = 492; 
downregulated, n = 362), 
2863 (upregulated, n = 1627; 
downregulated, n = 1236), and 1298 (upregulated, n = 1017; 
downregulated, n = 287) genes were identified as DEGs in DKD, HN, IgAN, MN, and FSGS, 
respectively. As shown in Table 2, 176 genes were identified as shared DEGs among all diseases, with 104 upregulated (e.g. FCN1, 
CX3CR1) and 72 downregulated (e.g. APOM, SLC13A1) vs. normal 
glomeruli.In tubules, 1297 (upregulated, n = 397; downregulated, n = 900), 520 (upregulated, n = 294; 
downregulated, n = 226), 305 (upregulated, n = 94; downregulated, n = 211), 389 (upregulated, n = 260; downregulated, n = 129), and 418 (upregulated, n = 303; downregulated, n = 115) genes were identified as DEGs in DKD, HN, IgAN, MN, and FSGS, respectively. As shown in Table 2, 50 genes were shared DEGs, with nine upregulated (e.g., COL3A1, MARCKS) and 41 downregulated (e.g. 

Table 1. Datasets included in the study after quality control

 

 

Variables Number of cases Number of controls Resources Platforms 

DKD Glomeruli 7 18 GSE37463, GSE47185 Affymetrix U133 Plus 2.0 

DKD Tubules 11 22 GSE35489, GSE47185 Affymetrix U133 A 

HN Glomeruli 15 22 
GSE47185, GSE37463, 

GSE21785, GSE20602 
Affymetrix U133 A 

HN Tubules 21 22 GSE47185, GSE37463 Affymetrix U133 A 

IgAN Glomeruli 43 22 
GSE50469, GSE37463, 

GSE21785, GSE20602 
Affymetrix U133 A 

IgAN Tubules 25 22 GSE35489, GSE47185 Affymetrix U133 A 

MN Glomeruli 18 22 
GSE47185, GSE37463, 

GSE21785, GSE20602 
Affymetrix U133 A 

MN Tubules 18 22 
GSE35489, GSE47185, 

GSE69438 
Affymetrix U133 A 

FSGS Glomeruli 23 40  GSE37463, GSE47185, GSE20602, GSE21785 
Affymetrix U133 A 

Affymetrix U133 Plus 2.0 

FSGS Tubules 12 22 GSE35489, GSE47185 Affymetrix U133 A 

 

Fig. 1. Identification of shared DEGs in CKD. Different colors 
represent different primary diseases. Overlapping areas represent shared DEGs. (a) Upregulated genes in glomerular compartments 
in various types of CKD; (b) downregulated genes in glomerular 

compartments in various types of CKD; (c) upregulated genes 

in tubulointerstitial compartments in various types of CKD; (d) 

downregulated genes in tubulointerstitial compartments in 

various types of CKD.
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GDF15, RGS3) vs. normal tubules. In addition, nine genes were significantly differentially expressed both in diseased glomeruli and tubules (Table 2). A complete list of the DEGs in 
each disease is presented in Supplementary Table 1. For all supplemental material see www.karger.com/doi/10.1159/000488830.

GO enrichment analysis of shared DEGsA total of 23 GO terms were significantly enriched among DEGs in diseased glomeruli [Fig. 2; molecular function (MF), n = 2; cellular component (CC), n = 14; biological process (BP), n = 7] as determined by adjusted p-values (Benjamini-Hochberg). According to the CC terms, DEGs were significantly enriched for genes encoding proteins involved in extracellular exosomes, with 80 DEGs in this category (Supplemental Table 2). Other enriched CCs included the integral component of the plasma membrane, extracellular space, and MHC class II protein complex. We further extracted DEGs involved in exosomes and performed a pathway enrichment analysis, which showed that these DEGs were mainly associated with metabolic and PPAR signaling pathways (Supplemental Table 3). DEGs in diseased glomeruli were also significantly enriched for several BPs and MFs (Fig. 2), including the interferon (IFN)-γ signaling pathway, antigen processing and presentation, MHC class II receptor 
activity, and platelet degranulation.For diseased tubules, 37 GO terms were significantly enriched (Fig. 3 and Supplemental Table 4; CC, n = 2; BP, n = 8; MF, n = 27). DEG-encoded proteins mainly localize to the nucleus and transcription factor complex. The enriched BPs included mostly responses to stimuli (e.g., cAMP, cytokines, and calcium ions) and regulation of cell death, cell cycle, and proliferation. Enriched MF terms were mainly related to molecule binding and transcription factor activity.

Pathway enrichment analysisUsing four databases (KEGG pathway, Reactome, BioCyc and Panther), a total of 265 and 243 pathway terms were found to be significantly enriched in diseased glomeruli and tubules, respectively (Supplementary Tables 5 and 6). The 30 most significantly enriched pathway 
terms are shown in Fig. 4 and 5. For glomeruli, several metabolic, immune response, and 

Table 2. Shared DEGs identified in CKD 

Shared DEGs Gene Names 

Upregulated in diseased 

glomeruli 

(n=104) 

FAM129A, FKBP11, LYN, HCK, FABP4, NMI, MCAM, AGTR1, IFI16, IER5, ISG20, SOSTDC1, ACTA2, 

FABP5, TAGLN, ICAM2, ARPC1B, S100A4, COL1A2, CRIP1, COL3A1, CD53, COL4A1, FRZB, CASP1, 

APOBEC3G, FGL2, HLA-F, GBP1, SRGN, C8orf4, DKK3, TRPV2, EED, SYT11, DNMT1, PCSK5, EPB41L2, 

POSTN, HLA-DPB1, SOX18, MYH11, CFD, CX3CR1, PXDN, LPAR6, PYCARD, ITGB2, FCN1, TM4SF1, CTSS, 

SLCO3A1, OAS1, TCF4, CDR2L, WFDC1, ARHGEF6, CORO1A, MICB, TYROBP, HLA-DQB1, GLIPR1, HLA-

DRA, GPM6B, FEZ1, PHLDA2, HLA-DMA, TSPAN13, IFI44, PCDH12, CD52, Sept4, RFTN1, ECM1, CASP4, 

SOX17, HLA-DPA1, FGR, ADGRE5, GBP2, NETO2, HLX, HBB, FN1, SERPINH1, TPM1, PSMB9, FSCN1, 

GATA3, HCLS1, MEF2C, CALHM2, NRP1, ALOX5, TGFBI, PLK2, THBD, PSMB10, HTR2B, PTPRC, HLA-

DMB, CD14, KIAA1462, CAMK1 

Downregulated in 

diseased glomeruli 

(n=72) 

XPNPEP2, SLC17A1, RIDA, NR4A2, GK, SLC13A1, CALB1, BHMT, MAOA, ETNK2, KL, SLC22A6, CDHR5, 

CYP4F3, ESRRG, PBLD, SLC34A1, MT1G, SLC22A8, SLC22A11, ALDH6A1, BHMT2, ZFP36, EGF, DUSP1, 

PCK1, DPYS, SLC6A13, CTH, AFM, CYP4A11, NR4A3, APOM, SLC7A8, MGAM, ALDH1L1, HPD, SLC12A3, 

SLC5A12, CYP27B1, FABP1, AK4, APOH, UPB1, SLC7A9, AZGP1, CPNE6, CA2, FBP1, GLYAT, DDC, PLG, 

ARG2, HAO2, RNF186, LPL, DIO1, CYP2B6, FOSB, SLC27A2, G6PC, ADH6, ALB, ALDOB, SLC13A3, 

KCNK5, AGMAT, GATM, SLC4A4, PIPOX, PRODH2, UGT2B28 

Upregulated in diseased 

tubules(n=9) 
PTPRC, HBB, TNFAIP8, IFI16, COL3A1, PROM1, MARCKS, FN1, COL6A3 

Downregulated in 

diseased tubules (n=41) 

GDF15, RGS3, GADD45A, ATF3, NR4A1, HBEGF, FOS, JUNB, RHOB, APOLD1, NFIL3, BHLHE40, EGR1, 

KLF6, SERPINE1, SOCS2, ZFAND5, CEBPD, JUND, ZFP36, LDLR, SGK1, ADM, DUSP1, FOSB, PTP4A1, 

NFKBIA, TRIB1, KLF10, TFRC, GEM, NR4A3, JUN, EGR3, MAFF, PDK4, MCL1, CTGF, RETREG1, 

GADD45B, ZNF165 

Dysregulated both in 

diseased glomeruli and 

tubules (n=9) 

IFI16, COL3A1, ZFP36, NR4A3, DUSP1, FOSB, HBB, FN1, PTPRC 
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signaling pathways (e.g., metabolism of lipids/lipoproteins and amino acids, SLC-mediated transmembrane transport, and IFN-γ pathway) were found to be dysregulated. Notably, other 
diseases such as Staphylococcus aureus infection and autoimmune thyroid disease were also 
listed as enriched terms, indicating that these disorders may share similar pathophysiological 
pathways with CKD. In tubules, our analysis highlighted the dysregulation of a wide range of signaling pathways, including the cholecystokinin receptor(CCKR), apoptosis, PI3K-Akt, MAPK, and TGF-β signaling pathways, some of which have been proposed to play critical 
roles in CKD development.

Key candidate gene and cluster identification based on PINsNext, we reconstructed PINs for the glomerular and tubulointerstitial compartments based on the DEGs (Fig. 6 and 7), which showed interactions among gene products. As shown 
in Table 3, using a criterion of >5 degrees of interaction, a total of 10 genes (5 for diseased tubules, 5 for diseased glomeruli) were identified as hub genes, including JUN, EGR1, OAS1, and FN1. According to MCODE scores, two clusters (Fig. 8; cluster 1 for diseased glomeruli, 

Fig. 2. Significantly enriched GO terms of DEGs in glomerular compartments in CKD. Log refers to logarithm 
to base 10.

Fig. 3. Significantly enriched GO terms of DEGs in tubulointerstitial compartments in CKD. Log refers to 
logarithm to base 10.
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cluster 2 for diseased tubules) were identified from the PINs. Cluster 1 consisted of 16 nodes 
and 31 edges and was mainly associated with platelet dysfunction, abnormal interleukin signaling, and extracellular matrix organization, as revealed by pathway enrichment analysis. Cluster 2 had 17 nodes and 38 edges and was significantly associated with SMAD2/SMAD3/SMAD4 heterotrimer-regulated transcription, TGF-β receptor complex signaling, and 
interleukin signaling. A complete list of the enriched pathways of each cluster is presented 
in Supplementary Table 7.

Fig. 4. Significantly enriched pathways of DEGs in glomerular compartments in CKD. Log refers to logarithm 
to base 10.

Fig. 5. Significantly enriched pathways of DEGs in tubulointerstitial compartments in CKD. Log refers to 
logarithm to base 10.
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Fig. 7. PIN 
reconstruction of 

t u b u l o i n t e r s t i t i a l 

compartments in 

CKD. Red, upregulated 

nodes; green, 

downregulated nodes. Node size indicates 
degrees, which is defined as the number 
of edges incident to 

each node.

Fig. 6. PIN reconstruction of glomerular compartments in CKD. Red, upregulated nodes; green, downregulated nodes. Node size indicates degrees, which is defined as the number of edges incident to each node.
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Discussion

CKD arises from several heterogeneous disease pathways that chronically affect the function and structure of the kidney [17]. Many studies have demonstrated that these 
primary diseases share a wide range of common pathological pathways that play essential roles in disease development and progression. Previous gene expression studies on CKD have been limited by either imperfect disease models or small sample sizes. Here, we conducted 
an integrative bioinformatics analysis to identify shared key genes and pathways. The use of large sample size and robust algorithms ensure the reliability of the identified DEGs, as well as the subsequent enrichment analysis and PIN reconstructions. Our study not only provides 
insights into the molecular mechanisms of CKD but also acts as a resource for promising 
candidate biomarkers and therapeutic targets to facilitate the diagnosis and treatment of 
CKD. To our knowledge, this is the largest integrative bioinformatics analysis of this topic.By comparing the transcriptomic profiles of the diseased tissues from different types of CKD, we identified hundreds of compartment-specific DEGs associated with CKD. In addition to several previously known key CKD genes (e.g., TGFBI, COL4A1, and FCN1), a lot of additional transcripts were also identified.According to the GO enrichment analysis, glomerular DEGs are significantly enriched for genes involved in membrane structures, especially extracellular exosomes. Exosomes are a type of extracellular vesicles 30–100 nm in diameter that play a pivotal role in cell–cell communication [18]. Emerging studies have shown that exosomes act as key regulators of kidney injury [19]. Our previous studies have also found that transcriptomic changes in urinary exosomes can be utilized as discriminative biomarkers of mild renal fibrosis [20, 

Table 3. Hub genes identified in PINs as possessing >5 degrees 

Gene Names Full names Descriptions Degrees 

JUN Jun Proto-Oncogene Downregulated in diseased tubules 14 

EGR1 Early Growth Response 1 Downregulated in diseased tubules 10 

FOS Fos Proto-Oncogene Downregulated in diseased tubules 9 

ATF3 Activating Transcription Factor 3 Downregulated in diseased tubules 8 

JUND JunD Proto-Oncogene Downregulated in diseased tubules 6 

OAS1 2'-5'-Oligoadenylate Synthetase 1 Upregulated in diseased glomeruli 21 

FN1 Fibronectin 1 Upregulated in diseased glomeruli 10 

EGF Epidermal Growth Factor Downregulated in diseased glomeruli 8 

ACTA2 Actin, Alpha 2, Smooth Muscle, Aorta Upregulated in diseased glomeruli 8 

PLG Plasminogen Downregulated in diseased glomeruli 7 

 

Fig. 8. Cluster analysis of PINs. The MCODE plug-in 
of Cytoscape was used 

to identify (a) cluster 

1 from glomerular 

compartments and 

(b) cluster 2 from 

t u b u l o i n t e r s t i t i a l 

compartments as key 

regulatory networks in 

CKD.
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21], indicating their potential roles as the regulators and biomarkers of kidney injury. These enriched DEGs, as shown by pathway enrichment analysis, are mainly associated with metabolic and PPAR signaling pathways. PPAR signaling plays an important role in renal 
diseases by regulating a wide range of processes including glucose and lipid metabolism, inflammation, and immunity [22]. Whether DEG products exacerbate kidney injury via an exosome-mediated pathway remains to be explored. In this analysis, three key components of the NLRP3 inflammasome, namely PYD and CARD domain containing protein (PYCARD), caspase 1 (CASP1), and caspase 4 (CASP4), are significantly upregulated in diseased glomeruli. Previous studies have found that NLRP3 inflammasome activation, both in immune cells and kidney intrinsic cells, may induce inflammation in glomerular compartments and 
contribute to the onset of glomerular injury [23]. Taken together, these data show that NLRP3 inflammasome activation might be an essential event during CKD onset.Pathway enrichment analysis reveals that CKD development is mainly associated with 
metabolic disorders, aberrant immune responses, and abnormally activated signaling pathways in glomerular compartments. Metabolites are considered to be the link between genotypes and phenotypes and act as the final proxies for physiological homeostasis [24]. Our analysis suggests that extensive metabolic disorders involving the amino acids, lipids, 
nucleotides, and carbohydrates of the glomeruli are common features of CKD. In fact, 
over 100 amino acids, purine and pyrimidine metabolites can be detected in at least 80% of participants with type 1 diabetes with impaired renal function [25]. The PIN cluster analysis further identified cluster 1, composed of 16 nodes, as the key regulatory network in the glomerular compartment. Enrichment analysis reveals that cluster 1 is strongly associated with platelet dysfunction, abnormal interleukin signaling, and extracellular matrix organization. CKD is well documented to be associated with a disturbed balance 
of the coagulation system [26]. Our data suggest that abnormal platelet function may be a 
major contributor to the imbalance. Similarly, a recent study observed markedly enhanced platelet activity in CKD mice, which could be attenuated by inhibiting MAPK signaling via klotho administration [27]. Regarding hub genes, FN1 and ACTA2 are well documented key regulators of renal fibrosis. EGF is also identified as a hub gene, which has attracted increasing interest recently. Both intrarenal and urinary expression of EGF was found to be positively correlated with eGFR[16]. EGF pathway has also been recognized as a novel therapeutic target of CKD progression [28]. Besides, OAS1 was found to have the most links with other nodes in the glomerular PIN. Early studies have shown that OAS1 is associated with hepatitis C virus infection, multiple sclerosis, and type 1 diabetes [29-31]. However, the 
relationship between OAS1 and CKD remains to be established.In recent years, tubular epithelial cells (TECs) have attracted increasing attention as the primary sensor and effector during the development of CKD. TECs, especially the proximal TECs, are particularly vulnerable to injury, ultimately resulting in cell death and tubule atrophy [32]. Consistently, our analysis shows that the DEGs in tubulointerstitial compartments are significantly enriched in GO terms such as responses to stimuli and regulation of cell death, cell 
cycle, and proliferation. Among the enriched pathways in diseased tubules, CCKR signaling 
is at the top of the list. CCKR signaling is a well-known regulatory pathway in the digestive tract that exerts anti-inflammatory effects. Through microarray analysis and subsequent validation, a recent study showed that cholecystokinin is also expressed in the kidney and has renoprotective effects through its anti-inflammatory activity in diabetic nephropathy [33]. 
Our data further suggest that CCKR signaling may also play a regulatory role in other CKDs. Other enriched signaling pathways in diseased tubules include the apoptosis, TGF-β, MAPK, TNF, integrin, and PI3K-Akt signaling pathways, which have been well studied in the context of CKD [34, 35]. Renal interstitial fibrosis is regarded as a common pathological pathway in CKD. Our PPI analysis further illustrates that the TGF-β/Smad signaling pathway might act as a master regulator. Recent studies have shown considerable cross-talks between TGF-β/Smad signaling and some other pathways, such as the MAPK and Wnt/β-catenin pathways, in the regulation of renal interstitial fibrosis progression [36]. Notably, the five hub genes 
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of the tubulointerstitial PIN all encode transcription factors, four of which are subunits of AP-1 transcription factors (JUN, FOS, ATF3, and JUND) with a complex role in regulating cell life and death [37]. Interestingly, a recent study demonstrated that many fibrotic diseases share the activation of JUN (also known as c-Jun) in fibroblasts, leading to enhanced cell 
proliferation and migration [38]. Considering that tubular injury leads to epithelial cell cycle arrest [39], it is not surprising that the level of JUN mRNA was significantly downregulated in diseased tubules. Based on our data, further examination of the role of AP-1 transcription 
factors in CKD progression is warranted.There are some limitations of our study. First, gene expression changes represent only one type of molecular alteration that occurs in CKD. Many other factors, including gene mutations, non-coding RNAs, proteomic and metabolomic changes, should also be considered 
to provide a more comprehensive understanding of disease development. Recently, 
metabolomics has emerged as a promising approach to identify new pathological pathways, and in-depth analysis of both genetic and metabolomic changes is expected to reveal more valuable information of the pathogenesis of CKD [40]. Second, gene expression data, rather than protein expression data, were used to reconstruct PINs, which might introduce bias as the changes observed on gene expression level are not always the same as those on the 
protein level. Third, despite we have applied several quality control procedures to ensure the 
consistency of datasets from different studies, heterogeneity among donors might still bring 
in potential bias. Fourth, our results are based on in silico analysis and therefore require further verification.

Conclusion

Our study not only further reveals the unifying molecular mechanism in CKD pathogenesis but also represents a valuable resource for potential biomarkers and therapeutic targets. We identified hundreds of compartment-specific genes that are differentially expressed in the common primary diseases of CKD. Most of the enrichment analysis results are consistent 
with our current understanding of the molecular mechanism of CKD. Others, such as the involvement of the dysregulated genes in exosomes, provide promising directions for future research. To further refine our results, we also identified key CKD regulatory networks and hub genes by constructing PINs. Notably, the shared DEGs not enriched in GO terms or PINs 
may also have critical pathological functions during disease formation and progression. Researchers are strongly encouraged to explore the supplemental materials, which provide 
further details for reference.

AbbreviationsBP (biological process); CC (cellular component); CKD (chronic kidney disease); DEG (differentially expressed gene); DKD (diabetic kidney disease); FSGS (focal segmental glomerular sclerosis); GN (glomerulonephritis); GO (gene ontology); HN (hypertensive nephropathy); IFN (interferon); IgAN (IgA nephropathy); MF (molecular function); MN (membranous nephropathy); PIN (protein–protein interaction network); PPAR (peroxisome proliferator-activated receptor); PPI (protein–protein interaction); QC (quality control).
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