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In developing countries, cervical cancer is still the major cause of cancer-related death

among women. To better understand the correlation between tumor microenvironment

(TME) and prognosis of cervical cancer, we screened 1367 differentially expressed genes

(DEGs) of cervical cancer samples in The Cancer Genome Atlas (TCGA) database

using Estimation of STromal and Immune cells in MAlignant Tumor tissues using

Expression data (ESTIMATE) algorithm-derived immune scores. Then, we extracted 401

tumor immune microenvironment (TIME)-related DEGs that related to patients’ survival

outcomes. Protein-protein interaction (PPI) network and functional enrichment analysis

revealed that the prognostic genes mainly participated in myeloid leukocyte activation,

adaptive immune response regulation, and receptor signaling pathways. A total of 79

key prognostic DEGs were obtained through PPI network. A TF-lncRNA-miRNA-mRNA

regulatory network was constructed to explore the potential regulatory mechanism. 4

genes (CCR7, PD-1, ZAP70, and CD28) were validated in another independent cohort

of cervical cancer from the Gene Expression Omnibus (GEO) database. Finally, potential

drugs for key prognostics DEGs were predicted using DrugBank. In conclusion, we

obtained a list of potential prognostic TIME-related genes and potential predicted drugs

by integrative bioinformatics approaches. A comprehensive understanding of prognostic

genes within the TIME may provide new strategies for cervical cancer treatment.

Keywords: cervical cancer, tumor microenvironment, TCGA, GEO, multifactor, drug

Abbreviations: DEG, differentially expressed gene; ESTIMATE, Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data; GEO, Gene Expression Omnibus; HPV, human papillomavirus; lncRNA, long non-
coding RNAs; miRNA, microRNA; OS, overall survival; PPI, protein-protein interaction; TCGA, The Cancer Genome Atlas;
TF, transcription factor; TIME, tumor immune microenvironment; TME, tumor microenvironment.
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INTRODUCTION

In developing countries, cervical cancer is still the major
cause of cancer-related death among women (Arbyn et al.,
2020). Nearly all cervical cancers are associated with human
papillomavirus (HPV) infection (Berman and Schiller,
2017). Although significant progress has been achieved in
screening and prevention, the 5-year overall survival (OS)
rate for cervical cancer remains around 60% (McLachlan
et al., 2017). Radiotherapy and chemotherapy are standard
therapies for advanced-stage patients (Wui-Jin et al., 2019),
but with limited success. Recently, remarkable progress in
cervical cancer immunotherapy has been made, but positive
responses only occur in a small fraction of patients. Such
responses are usually dependent on dynamic interactions
between tumor cells and other factors within the tumor
microenvironment (TME).

Tumor microenvironment contains tumor cells and the
surrounding blood vessels, signaling molecules, immune cells,
and fibroblasts (Joyce and Fearon, 2015; Spill et al., 2016), etc.
The TME can critically influence gene expression in cancer
tissues, and is gradually recognized as a key contributor to
cancer progression and drug resistance (Piersma, 2011; Pasini
et al., 2014; Kim et al., 2016; Petitprez et al., 2018; Li et al.,
2019; Looi et al., 2019). Cancer cells can create a full range
of immunosuppression in the TME to counter the body’s anti-
tumor immunity and achieve immune escape (Teng et al.,
2015). Several studies have suggested that tumor-associated
macrophages (TAMs), matrix metalloproteinase, transforming
growth factor-beta, and interleukin (IL)-2 play key roles in
cervical cancer progression and are associated with cancer
cell invasion and dissemination ability (Valle-Mendiola et al.,
2016; Zhu et al., 2016; Ng et al., 2019; Wang et al., 2019a).
A deep understanding of the correlation between TME and
prognosis, and exploring new strategies for the treatment
are urgently needed for precise therapy improvement of
cervical cancer.

With the rapid development of public databases and
second-generation sequencing technologies, comprehensive
analysis for TME-related prognostic genes has become
possible. The Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTIMATE)
algorithm (Yoshihara et al., 2013) was developed to predict
infiltrating immune and stromal cells within tumor tissues
using gene expression data in The Cancer Genome Atlas
(TCGA) database. Subsequent studies have involved the
ESTIMATE algorithm to glioblastomas (Jia et al., 2018),
renal cell carcinomas (Xu et al., 2019), and colon cancers
(Alonso et al., 2017). However, the utility of the ESTIMATE
algorithm in cervical cancer has not been previously
investigated. In this study, we screened the expression and
interaction of TME-related differentially expressed genes
(DEGs) in cervical cancer, predicted their regulatory network,
and evaluated the potential therapeutic drugs based on
several large public databases (Figure 1). The results might
provide useful clues for prospective treatment strategies of
cervical cancer.

MATERIALS AND METHODS

Data
Gene expression profiles and related clinical materials for
cervical cancer were downloaded from the TCGA data
portal (Tomczak et al., 2015). The inclusion criteria were
(Arbyn et al., 2020) pathologically confirmed cervical cancer,
(Berman and Schiller, 2017) complete RNA expression data
from the patients, and (McLachlan et al., 2017) complete
ESTIMATE score, immune score, and stromal score
(Yoshihara et al., 2013).

For further verification, gene expression profiles and
clinical materials of another cohort of cervical cancer
patients were downloaded from the Gene Expression
Omnibus (GEO) database (GSE52903) (Medina-Martinez
et al., 2014). In addition, we also used an online web server
(OScc) to verify the prognostic value of targeted genes
(Wang et al., 2019b).

Identification of DEGs and Functional
Enrichment Analysis
Data analysis was conducted using package limma in R
language (version 3.4.0) (Ritchie et al., 2015). A fold change
(FC) > 2 and adjusted p-value < 0.05 were set up to screen
DEGs. Heat maps were generated by pheatmap package in R
(Kolde and Kolde, 2015).

Through the Search Tool for Retrieval of Interacting
Genes/Proteins (STRING) database (version 11.0), functional
enrichment analysis was conducted to identify gene ontology
(GO) annotation (Szklarczyk et al., 2019) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways.
P < 0.05 was considered to be statistically significant.

Survival Analysis
Using the survival and survminer package in R, Kaplan-
Meier plots and log-rank tests were performed to
elucidate the relationship between 5-year overall survival
(OS) rates and DEGs expression levels. Univariate
Cox regression was used to assess the effect of clinical
parameters and mRNA expression on the survival of
cervical cancer patients. P < 0.05 was considered to be
statistically significant.

Protein-Protein Interaction (PPI) Network
Building and Gene Set Enrichment
Analysis (GSEA)
The PPI network was extracted from the STRING database
and visualized by Cytoscape software (version 3.4.0) (Shannon
et al., 2003). To identify densely connected regions, Molecular
COmplex Detection (MCODE) in Cytoscape was then involved
to extract topology-based clusters.

Using the STRING database and GSEA method, we further
retrieved a functional profile of the gene set derived from the PPI
network (Mootha et al., 2003; Subramanian et al., 2005). P < 0.05
was considered to be statistically significant.

Frontiers in Genetics | www.frontiersin.org 2 July 2020 | Volume 11 | Article 727

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. TME Bioinformatics for Cervical Cancer

FIGURE 1 | The workflow of the current study. TCGA = The Cancer Genome Atlas, GEO = Gene Expression Omnibus, TME = Tumor microenvironment,

DEGs = Differentially expressed genes, PPI = Protein-protein interaction, ncRNA = non-coding RNA, TF = Transcription factor.

Extraction of microRNA (miRNA), Long
Non-coding RNA (lncRNA), Transcription
Factor (TF), and Drug Interactions
We obtained the miRNA – mRNA and lncRNA-mRNA
interactions from the RNA Interactome (RNAInter)
database (version RNAInter in 2020) (Lin et al., 2019), TF-
mRNA interactions from the Transcriptional Regulatory
Relationships Unraveled by Sentence-based Text mining
(TRRUST) database (version 2.0) (Han et al., 2017), and
drug-mRNA interactions from the DrugBank database
(version 5.1.1) (Law et al., 2014). RNAInter, TRRUST V2
and DrugBank include the curated confirmed interactions from
the literatures.

To construct a muti-factor regulator network, we extracted
miRNAs, lncRNAs, TFs, and drugs that had interactions
with obtained genes.

Pivot Method
We further screened pivot nodes from obtained interaction
pairs using the phyper() function in R. The pivot node refers
to at least two interacting pairs between the node and a
gene, and the significance analysis p-value of the interaction
between the node and the gene set should be <0.05 by
the hypergeometric test (Wu et al., 2015). The obtained
pivot miRNAs-mRNAs, lncRNAs-mRNAs, and TFs-mRNAs

interactions were visualized by Cytoscape. Pivot drugs-mRNA
interactions pairs were also analyzed.

RESULTS

Immune Scores Are Significantly
Associated With HPV Infection,
Histological Type, and Patients’ Survival
Among 304 cases in TCGA, 253 (83.2%) were squamous
carcinomas, 47 (15.5%) adenocarcinomas, and 4 (1.3%)
adenosquamous carcinomas (Supplementary Table 1). Based
on the ESTIMATE algorithm, the median of stromal scores
was -1047.855 (-2586.99 to 778.01), and the median of immune
scores was -246.78 (-1645.63 to 3295.3) (Figure 2A). HPV-
positive cases had higher immune scores than HPV-negative
cases (p < 0.001) (Figure 2B). Cases of squamous carcinoma had
significantly higher immune scores and stromal scores than cases
of adenocarcinoma (p < 0.01) (Figures 2C,D).

To assess the potential relationship of stromal and immune
scores with patients’ outcome, a total of 304 cervical cancer
cases were categorized into high-score and low-score groups by
the median expression value. The results revealed that patients
with high immune scores had a better survival outcome than
those with low scores (p = 0.02) (Figure 2E). There was no
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FIGURE 2 | The immune score and stromal score are associated with clinicopathologic characteristics and overall survival of cervical cancer patients. (A) Distribution

of immune scores and stromal scores among 304 cervical cancer samples in TCGA. (B) Distribution of immune scores among HPV-negative and HPV-positive

cases. (C) Distribution of immune scores among cervical cancer subtypes. (D) Distribution of stromal scores among cervical cancer subtypes. (E) A higher immune

score is associated with better overall survival (p = 0.02). (F) Stromal score is not associated with overall survival (p = 0.25). TCGA = The Cancer Genome Atlas,

GEO = Gene Expression Omnibus, HPV = Human papillomavirus.

difference in survival outcomes between the two stromal-score
groups (p = 0.25) (Figure 2F).

DEG Screening and Functional Analysis
Between Low- and High-Immune Score
Groups
To determine the relationship between global gene expression
profiles and immune scores, 1367 DEGs between the

two immune-score groups were identified, including 488
downregulated genes and 879 upregulated genes (Figure 3A).

To further understand the potential biological function

of the DEGs, GO annotation and KEGG pathway were
analyzed. GO analysis showed that the DEGs were mainly
enriched in ingredients such as immunological synapse and
T cell receptor complex, and mainly enriched in processes

such as immune system process and regulation of immune
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FIGURE 3 | Comparison of gene expression profiles between the high- and low-immune score groups. (A) In the heat maps, genes with higher expression are

shown in red, and genes with lower expression are shown in green; genes expressed at the same level are in black. A total of 879 genes were upregulated and 488

genes downregulated in the high-score group as compared to the low-score group. Biological process (B), cellular component (C), and molecular function (D) in

gene ontology (GO) analysis for 1367 DEGs. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for 1367 DEGs. DEG = differentially expressed gene.

system process, signaling receptor binding, and leukocyte
activation (Figures 3B–D). KEGG pathway enrichment analysis
demonstrated that the DEGs were mainly associated with

antigen processing and presentation, cytokine-cytokine receptor
interaction, chemokine signaling pathway and cell adhesion
molecules, etc. (Figure 3E).
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FIGURE 4 | Kaplan–Meier survival curves and log-rank tests showing the correlation of partial immune-related genes (A–I) with the 5-year survival rates. High gene

expression (red line) was correlated with better outcomes in cervical cancer patients.

Kaplan–Meier plots were further performed for 1367 DEGs.
A total of 401 DEGs were significantly related to the 5-year OS
(Figure 4) (Supplementary Table 2).

PPI Networks Construction and
Functional Enrichment Analysis
To examine the interplay among the prognostic DEGs, we built a
PPI network, which was made up of 15 modules and comprised
228 nodes and 1041 edges (Figure 5A). GSEA was used to clarify
the main biological functions of 228 node genes. The results
showed that they were mainly associated with myeloid leukocyte
activation, adaptive immune response regulation, and receptor
signaling pathways (Figure 5B).

We selected the top three significant modules for further
analysis and named these modules cluster 1, cluster 2, and cluster
3 (Figure 5C). Cluster 1 had 171 edges and 19 nodes in the
network. In cluster 2, HLA-DQB1, CD3G, CD3D, CD4, CD3E,
LCK, and ZAP70, which are critical to the immune response, had
higher degree values. In cluster 3, TNFRSF1B, which is crucial
to immune and inflammatory procession (Croft, 2009), occupied
the module center.

After selecting from the three modules and PPI networks
with ≥10 node degrees, we obtained 79 key prognostic DEGs
(Supplementary Table 3).

Validation of Key Prognostic DEGs in the
GEO Database
We further validated 79 key DEGs in another
cohort of 55 cervical cancer patients from the GEO
database. Finally, high expressions of four genes
(CCR7, programmed cell death-1 [PD-1], ZAP70,
and CD28) was found to be associated with better
5-year OS in both GEO (Figures 6A,B) and OScc
(Supplementary Figure 1). In univariate analysis, high
expression of CCR7, PD-1, and ZAP70 were related
to better survival outcome in both TCGA and GEO
(Supplementary Table 4).

Construction of a Multifactor Regulatory
Network Based on Key Prognostic DEGs
We extracted interaction pairs of miRNAs, lncRNAs, and TFs
with 79 key DEGs and constructed a multifactor regulatory
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FIGURE 5 | PPI network among prognostic genes and functional enrichment analysis. (A) The PPI network was made up of 15 modules and included 228 nodes

and 1041 edges. The color of a node in the PPI network reflects the log (FC) value of the Z score of gene expression, and the size of the node indicates the number

of proteins interacting with the designated protein. (B) Enrichment profiles generated with GSEA for the gene set in the PPI network. (C) Top three modules in the

PPI network. PPI = protein-protein interaction, FC = Fold change, GSEA = gene set enrichment analysis.
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FIGURE 6 | Validation of 79 key prognostic DEGs in an independent GEO cohort. (A) Kaplan-Meier plots and log-rank tests in the TCGA cohort were performed for

4 validated prognostic DEGs based on high (red line) and low (blue line) gene expression. (B) Kaplan–Meier plots and log-rank tests in the GEO cohort were

performed for 4 validated prognostic DEGs.
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FIGURE 7 | Multifactor regulatory network of key prognostic DEGs. The network was composed of 148 pivot miRNAs, 31 pivot lncRNAs, 21 pivot TFs, and 75 pivot

mRNAs. TF = transcription factor, lncRNA = long non-coding RNAs, miRNA = microRNA.

network. The network contained 2295 nodes and 7678 edges
(2058 miRNA nodes, 79 lncRNA nodes, 192 TF nodes, and 76
mRNA nodes). To acquire nodes with greater influence on the

network, the network was pruned using the pivot method and
visualized with Cytoscape. The final network including 31 pivot

lncRNAs, 148 pivot miRNAs, 21 pivot TFs, and 75 pivot mRNAs,

was identified (Figure 7).

Identification of Potential Predictive
Drugs
From DrugBank, we obtained 25020 drug-mRNA interaction
pairs. A total of 79 key DEGs were then inputted into the
database to predict the potential drugs of the genes, and 149
drug-mRNA interactions were extracted. Pivot method was used
to simplify the obtained drugs and a total of 39 pivot drugs were
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TABLE 1 | Thirty-nine predicted potential drugs and their targeted DEGs in

cervical cancer.

DrugBank ID Drug p-value Gene

DB00075 Muromonab <0.001 CD247, CD3D, CD3E,

CD3G, FCGR1A,

FCGR2B

DB00098 Antithymocyte

immunoglobulin

<0.001 CD4, CD86, FCGR2B,

ITGAL

DB06681 Belatacept <0.001 CD80, CD86

DB01281 Abatacept <0.001 CD80, CD86

DB00095 Efalizumab 0.001 FCGR1A, FCGR2B,

ITGAL

DB00004 Denileukin diftitox 0.001 IL2RA, IL2RG

DB12698 Ibalizumab 0.001 CCR5, CD4

DB00111 Daclizumab 0.001 FCGR1A, FCGR2B,

IL2RA

DB00074 Basiliximab 0.002 FCGR1A, FCGR2B,

IL2RA

DB02010 Staurosporine 0.002 ITK, LCK, ZAP70

DB00005 Etanercept 0.003 FCGR1A, FCGR2B,

TNFRSF1B

DB06607 Catumaxomab 0.005 CD3E, FCGR1A

DB00041 Aldesleukin 0.010 IL2RA, IL2RG

DB11767 Sarilumab 0.015 FCGR1A, FCGR2B

DB00112 Bevacizumab 0.019 FCGR1A, FCGR2B

DB00081 Tositumomab 0.019 FCGR1A, FCGR2B

DB00110 Palivizumab 0.019 FCGR1A, FCGR2B

DB00028 Immune Globulin Human 0.019 FCGR1A, FCGR2B

DB00087 Alemtuzumab 0.019 FCGR1A, FCGR2B

DB00092 Alefacept 0.019 FCGR1A, FCGR2B

DB00002 Cetuximab 0.022 FCGR1A, FCGR2B

DB00073 Rituximab 0.022 FCGR1A, FCGR2B

DB00078 Ibritumomab tiuxetan 0.022 FCGR1A, FCGR2B

DB00108 Natalizumab 0.022 FCGR1A, FCGR2B

DB00056 Gemtuzumab

ozogamicin

0.022 FCGR1A, FCGR2B

DB00051 Adalimumab 0.022 FCGR1A, FCGR2B

DB00072 Trastuzumab 0.030 FCGR1A, FCGR2B

DB00054 Abciximab 0.030 FCGR1A, FCGR2B

DB01254 Dasatinib 0.022 BTK, FGR, LCK

DB00071 Insulin Pork 0.034 HLA-DQA2

DB00707 Porfimer sodium 0.039 HLA-DQB1

DB11714 Durvalumab 0.039 CD80

DB11626 Tasonermin 0.039 TNFRSF1B

DB05943 Resatorvid 0.039 IL2RG

DB04835 Maraviroc 0.039 CCR5

DB09052 Blinatumomab 0.039 CD3D

DB00895 Benzylpenicilloyl

Polylysine

0.039 FCER1G

DB05501 AMD-070 0.039 CCR5

DB01809 Ter-Butyl-3-P-Tolyl-1h-

Pyrazolo[3,4-D]

Pyrimidin-4-Ylamine

0.039 HCK

predicted (Table 1). For example, Bevacizumab and cetuximab
has been reported to target FCGR1A and FCGR2B (Imming
et al., 2006; Bogdanovich et al., 2016), and these 2 drugs (Moore
et al., 2012; Zighelboim et al., 2013; Tewari et al., 2014; Penson

et al., 2015) have already been approved for clinical treatment of
cervical cancer.

DISCUSSION

Cervical cancer treatment has suffered rapid progress in the past
decade. It moves away from drugs that attack tumors broadly
toward precise immunotherapy that regulates immune responses
against tumors. Identifying effective biomarkers related to tumor
immune microenvironment (TIME) and prognosis are urgently
needed for better patient management.

By ESTIMATE algorithm, we first found that high immune
scores were related to better OS, which is consistent with the
results of previous studies showing that immune cells infiltrating
the tumor tissue may inhibit cancer cells (Cho et al., 2014;
Gorter et al., 2015). The study also found HPV-positive cases
had higher immune scores thanHPV-negative cases, whichmight
be associated with HPV-related microenvironment components
regulation, such as increase of regulatory immune responses and
decrease of effector immune responses (Zhou et al., 2019). A total
of 1367 DEGs between the low- and high-immune score groups
were identified, and 401 DEGs among them were related to
survival outcomes of cervical cancer patients. These genes affect
the outcomes of patients mainly by regulating TIME-related
biological functions, including immune response regulation,
leukocyte activation, chemokine activities, and integrin binding.
These processes may shape tumor development and anti-cancer
immunity, thus improving prognosis (Jochems and Schlom,
2011; Engblom et al., 2016; Böttcher et al., 2018).

A PPI network for 401 prognostic DEGs was constructed
to reveal the interplay between DEGs, and 228 node genes
were confirmed. The top modules that we selected from the
PPI network have been reported to influence angiogenesis,
proliferation, invasiveness, and therapeutic efficacy in cervical
cancer (Yang et al., 2012; Zhang et al., 2015, 2018; Zhao
et al., 2015; Che et al., 2016). The GSEA results showed that
228 node genes were highly associated with myeloid leukocyte
activation, adaptive immune response regulation, and receptor
signaling pathways. Silveira et al. reported that proliferation and
accumulation of myeloid-derived suppressor cells might worsen
cervical cancer progression and strong infiltration of CD14-
positive myeloid cells might prolong survival in cervical cancer
patients (Garcia et al., 2004; de Vos van Steenwijk et al., 2013).

By cross-validation with an independent GEO cohort,
we identified four prognostic immune-related genes (CCR7,
CD28, PD-1, and ZAP70). In previous studies, PD-1
expression was only found on the surface of immune cells,
while programmed death receptor ligand-1 (PD-L1) was
on cervical cancer cells. Their interaction played critical a
role in tumor immune escape (Antoni, 2012). Monoclonal
antibodies targeting PD-1/programmed death ligand, such
as pembrolizumab, have already been widely assessed in
clinical trials and are currently approved for the treatment
of advanced cervical cancer (Borcoman and Le Tourneau,
2017; Chen et al., 2017; Chung et al., 2019; Dyer et al.,
2019). Interestingly, in our results, higher expression of
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PD-1 was associated with better clinical outcomes. However,
recent studies revealed a high intrinsic expression of PD-1
in most tumor cell lines (Yao et al., 2018). Combined with
our functional enrichment analysis results of DEGs (myeloid
leukocyte activation, adaptive immune response regulation, and
receptor signaling pathways), we speculated that PD-1 expressed
on tumor cells might have different functions, such as immune
activation, other than that on immune cells. CCR7 has been
reported to influence the lymph node metastasis of cervical
cancer, prostate cancer cell migration, and mammary cancer cell
stemness (Boyle et al., 2017; Dai et al., 2017; Maolake et al., 2018).
Tyrosine kinase ZAP70 has been identified to play a key role in T
cell activation and the immune response (Fu et al., 2016; Alsadeq
et al., 2017; Laufer et al., 2018).

To explore the molecular mechanisms underlying the
differential expression of these genes, we further constructed a
TF-lncRNA-miRNA-mRNA regulatory network. We identified
148 pivot miRNAs, 31 pivot lncRNAs, 21 pivot TFs, and 75
pivot mRNAs. In addition, a total of 39 potential drugs for
key prognostic DEGs were predicted. Bevacizumab was the first
molecular antibody to show survival benefit in advanced cervical
cancer, and it improved progression-free survival more than
3.7 months (Tewari et al., 2017). Cetuximab, an anti-epidermal
growth factor receptor monoclonal antibody, is a standard option
for the treatment of advanced cervical cancer (Meira et al.,
2009). Fourteen drugs were identified, including catumaxomab,
aldesleukin, trastuzumab, and ibritumomab tiuxetan, all of which
have been confirmed for various cancers, including malignant
ascites (Kietpeerakool et al., 2019), renal cell carcinoma (Fishman
et al., 2019), gastric cancer (Kimura et al., 2018), and lymphoma
(Lansigan et al., 2019), respectively. Among drug-interactions
obtained, Staurosporine has been reported to target ZAP70
(Overington et al., 2006), but their interaction in cancer
research is still blank.

One limitation of our study is that our predictions were
based on analyses of online databases, so further experimental
validation is needed. In future research, we will further explore
the potential functions and signal pathways of the 79 DEGs
(especially CCR7, CD28, PD-1, and ZAP70) within cervical
cancer TIME. A deeper understanding of the complex molecular
mechanism of TIME in cervical cancer may help explain the
individual difference in immunotherapy efficiency and help
explore new treatment strategies.

CONCLUSION

We identified 79 prognostic TIME-related genes in cervical
cancer and validated 4 genes (CCR7, CD28, PD-1, and ZAP70).
Additionally, a total of 39 potential predicted drugs targeting key
prognostic genes were obtained, and they might provide new
clues for future treatment management. Further investigation
of these genes and related regulatory network might put novel
insights into the cervical cancer immunotherapy and prognosis
improvement in a comprehensive manner.
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