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Abstract Biological hydrogen (H2) production by dark

and photo-fermentative organisms is a promising area of

research for generating bioenergy. A large number of

organisms have been widely studied for producing H2 from

diverse feeds, both as pure and as mixed cultures. However,

their H2 producing efficiencies have been found to vary

(from 3 to 8 mol/mol hexose) with physiological conditions,

type of organisms and composition of feed (starchy waste

from sweet potato, wheat, cassava and algal biomass). The

present review deals with the possibilities of enhancing H2

production by integrating metabolic pathways of different

organisms-dark fermentative bacteria (from cattle dung,

activated sludge, Caldicellulosiruptor, Clostridium, Enter-

obacter, Lactobacillus, and Vibrio) and photo-fermentative

bacteria (such as Rhodobacter, Rhodobium and Rhodo-

pseudomonas). The emphasis has been laid on systems

which are driven by undefined dark-fermentative cultures in

combination with pure photo-fermentative bacterial cultures

using biowaste as feed. Such an integrative approach may

prove suitable for commercial applications on a large scale.

Keywords Biowaste � Dark-fermentation � Hydrogen �
Mixed culture � Photo-fermentation

Introduction

Hydrogen (H2) has been recognized as fuel for the future due

to its high efficiency (122 kJ/g) and eco-friendly nature in

comparison to fossil fuels [1, 2]. Biological H2 production

(BHP) process has been widely studied under dark- and

photo-fermentative conditions. With these approaches the

yields of H2 have been quite low in comparison to the the-

oretically achievable values of 4 and 8 mol/mol of glucose

under dark and photo-fermentative conditions, respectively

[2–7]. Quite a few research efforts have been made to

overcome the limitations of these processes. It has been

realized that in order to recover maximum H2 from the

organic matter, it is necessary to further use the end-products

of the dark fermentative process, especially volatile fatty

acids (VFA). It is possible to convert VFAs to H2 by pho-

tosynthetic bacteria. The potential of exploiting these pro-

cesses in various combinations have been reviewed to some

extent [7–10]. However a large number of hurdles still seem

to persist such as: (i) in the dark-fermentative process—

(a) relatively lower H2 yield (b) the need for strict anaerobic

conditions for high H2 producers, and (c) thermodynamic

instability of the process at higher H2 concentrations, and (ii)

during the photo-fermentative process—(a) sensitivity of the

H2 production process to nitrogen content of the feed

(b) effect to light intensity and duration of radiation under

outdoor (sunlight) and indoor (artificial light sources) con-

ditions, and (c) types of bioreactors required for H2 pro-

duction [2, 11–14].

High cost of the feed and operational conditions is the

major limiting factor of BHP. Most basic studies have been

carried out on simple and complex sugars as feed material

[15–21]. For circumventing the issues related to cost of the

feed, biowastes of diverse origins especially agricultural,

food and fruit processing industries, and those of municipal

markets have been suggested as cheap and renewable

alternatives [2, 22–28]. Although, the amount of H2 gener-

ated from different biowastes encourages one to pursue this

route however, it demands quite a bit of optimization at
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different stages [29–34]. Instead of dwelling on optimization

efforts being made on individual parameters of BHP process,

an emerging proposal is to combine the dark- and photo-

fermentative H2 producing organisms [7, 10, 35, 36]. The

efforts in this direction have been targeted on the following

combinations: (i) using defined dark- and photo-fermenta-

tive H2 producing organisms in a sequential manner in two

independent stages (ii) using undefined dark-fermentative

H2-producers along with defined photosynthetic organisms

in two stages (iii) using the two types of BHP processes into a

single stage, and (iv) using effluent from a dark-fermentative

process (not necessarily a H2 production reactor) and

exploiting photo-fermentative bacteria for their H2 produc-

ing abilities [33, 37–48]. In our recent efforts, we have

emphasized only on using defined bacterial cultures in a

sequential manner and evaluate it with respect to their

individual H2 producing abilities from pure substrates and

biowastes [7]. In the present work, we are concentrating our

efforts on studies conducted using undefined dark fermen-

tative H2 producing culture combinations and exploitation of

effluent from dark-fermentative process by photosynthetic

organisms using biowaste as feed.

Biological Hydrogen Production

Integrative Two Stage Dark- and Photo-Fermentative

Sequential Hydrogen Production

The physiology and metabolic activities of bacteria vary

significantly under dark- and photo-fermentative conditions.

The efficiency depends primarily on the types of enzymes

involved in H2 evolution. Under dark-fermentative condi-

tions, hydrogenase and nitrogenase are the major enzymes

responsible for this process [2, 49]. In the overall conversion

of feed to H2, a few intermediates are also generated, such as

VFAs and alcohols. The efficiency of the dark-fermentative

H2 evolution process is governed by VFAs (Eqs. 1–4), such

that acetic acid generation can lead to an additional 4 mol of

H2 whereas butyric acid is expected to generate 2 mol of H2/

mol of substrate. Lactic acid and ethanol are considered to be

counter-productive to H2 evolution process [2, 28]. The

intermediates of the dark-fermentative BHP, such as acetic

and butyric acid can be taken up by photosynthetic organ-

isms to generate additional H2 (Eqs. 5–6) [45, 46, 50, 51].

C6H12O6 Hexoseð Þ þ 2H2O! 2CH3COOH Acetateð Þ
þ 4H2 þ 2CO2

ð1Þ

C6H12O6 ! 2CH3CH2CH2COOH Butyrateð Þ þ 2H2

þ 2CO2 ð2Þ

C6H12O6 ! 2CH3CH OHð ÞCOOH Lactateð Þ ð3Þ

C6H12O6 ! 2CH3CH2OH Ethanolð Þ þ 2CO2 ð4Þ
CH3COOH þ 2H2O! 4H2 þ 2CO2 ð5Þ
CH3CH2CH2COOH þ 6H2O ! 10H2 þ 4CO2 ð6Þ

Using the organisms present in activated sludge enriched

for dark-fermentative H2-producers, along with photo-

synthetic organisms such as Rhodobacter sphaeroides,

Rhodopseudomonas palustris and undefined photosynthetic

bacteria, it has been possible to achieve 2.86–6.07 mol H2/

mol hexose [34, 52], over an incubation period ranging from 1

to 6 days of dark-fermentation followed by 5–14 days of

photo-fermentative phase [53, 54]. In most of the cases, the

temperature of 31–37 �C has been found to be optimal during

the dark phase and 30 �C during the light phase (Table 1). In

these cases, starchy wastes have been employed, which had

originated from wheat, rice and cassava (Table 1). In other

studies, cattle dung, dairy manure and mixed cultures in

combinations with Rhodobacter capsulatus, R. palustris, and

R. sphaeroides, and their combinations have been shown to

yield 3.40–7.15 mol H2/mol hexose [33, 38, 43, 47, 55, 56]. In

these cases, starchy wastes, cheese whey and water hyacinth

have been fermented for quite long periods 2–10 days of the

dark phase followed by 11–21 days of the light period and

exceptionally it was 90/100 days under repeated batch culture

[47]. In a few other combinations of dark and photosynthetic

bacteria, Caldicellulosiruptor, Clostridium, Klebsiella,

Lactobacillus and Thermotoga in association with R.

capsulatus, R. sphaeroides, Rhodobium marinum and R.

palustris have been used for H2 production (Table 1). These

integrative approches of two stage H2 production have proved

effective as most of them have lead to yields up to 7.2 mol/

mol hexose [30]. In dark-fermentative BHP, the H2 yields are

quite low in most cases and exceptionally it is posible to

achieve a value of 3.8 mol H2/mol hexose [57]. In contrast,

the two stage integrative approach is much more effective and

exceptionally only it falls around 2.8–3.9 mol/mol hexose

[45, 51, 58]. A summary of the results of yields of C7.0 mol

H2/mol hexose reveals that it has been achieved with

combinations such as (i) mixed culture—R. palustris and

water hyacinth (10 g/l) [33], (ii) Clostridium butyricum—R.

sphaeroides—algal biomass (starch at the rate of 5 g/l) [31],

(iii) C. butyricum and Enterobacter aerogenes—R.

sphaeroides/Rhodobacter sp. and sweet potato starch

(5–10 g/l) [30, 59].

A perusal of Table 1 allows us to draw a few conclu-

sions on the significance of the roles of photosynthetic

organisms in influencing H2 yields in the integrative BHP

process. Here, it can be observed that photo-fermentative

organisms can utilize different biowastes to produce high

H2 yields—(i) R. sphaeroides could evolve 3.81–8.30 mol

H2/mol hexose (ii) R. capsulatus yielded 3.90–6.85 mol

H2/mol hexose, and (iii) R. palustris was also effective in
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generating up to 7.15 mol H2/mol hexose [31–33, 53, 58].

In view of the effective working of the photosynthetic

partners in the integrated BHP process, the observed

variations in H2 yields can be assigned to the dark-fer-

mentative H2-producers. Dark-fermentative bacteria pres-

ent in the activated sludge were relatively less effective in

producing H2 in comparison to those present in cattle

dung. Among the defined dark fermentative bacteria, C.

butyricum alone or in association with E. aerogenes was

quite consistent in yielding 7–8 mol H2/mol hexose, along

with R. sphaeroides as the photo-fermentative partner [31,

59]. H2 yields did not vary when R. capsulatus was used in

association with a wide range of dark-fermentative H2-

producers [47, 51, 57, 58, 60]. In contrast to R. sphaero-

ides, the combination of C. butyricum and R. palustris did

not prove to be the most effective H2-producing culture

combination [37].

Integrative Single Stage Dark and Photo-Fermentative

Hydrogen Production

In contrast to subjecting feed material to dark- and photo-

fermentative bacteria under two different sets of condi-

tions, attempts have been made to combine the two

(Table 2). Combination of activated sludge (as source of

dark-fermentative H2-producers) with R. sphaeroides has

resulted in H2 yield of 0.3–3.4 mol/mol hexose [39, 61–

63]. The variation in H2 yields could be assigned to dif-

ferences in substrate concentration, inoculum ratios, light

intensities, etc. [39, 63]. In most of the reports, batch and

fed-batch mode of reactors have been employed. The best

results of 3.4 mol H2/mol hexose were reported when

wheat starch was used at the rate of 5 g/l with an inoculum

ratio of 1:3 (of dark/photo-fermentative bacteria) in con-

tinuous mode (periodic feed) [63].

In other experiments, low H2 yields in the range of

1.05–1.16 mol/mol hexose were recorded on substituting

R. sphaeroides with Rhodobacter sp. and R. palustris

combination, along with activated sludge and wheat starch

(as feed) [64, 65] and quite high yield of 2.76 mol/mol

hexose with pure culture [66]. It allowed one to conclude

the superiority of R. sphaeroides as a photo-fermentative

partner. The high H2 yielding capacity of R. sphaeroides

was negatively affected when combined with Clostridium

beijerinckii as the dark-fermentative partner–resulting in

low H2 yield of 0.6 mol/mol hexose [41]. R. marium

proved to be an effective H2-producer, which resulted in

high yields of 7.3 mol/mol hexose with Lactobacillus

amylovorus and 6.2 mol/mol hexose with Vibrio fluvialis

[29, 67]. Incidentally, in spite of being such highly effec-

tive H2-poducers, L. amylovorus and V. fluvialis have not

been pursued since their initial reports.

Perspectives

Among the different worries which loom large are the

pollution due to burning of fossil fuels and their limited

resources. Although biohydrogen has been identified as a

clean alternative to ever polluting fossil fuels, however, in

order to establish biohydrogen as a non-polluting energy

carrier it is imperative to carry out innovative research. At

present, the struggle is on to look for cheap sources of feed

and robust microbes for commercial scale H2 production.

The need stems from the fact that BHP is regarded as

inefficient due to low yields. Theoretically 12 mol of H2

can be generated from each mol of glucose. However, in

practice, H2 yields are stagnant, such that a maximum of

3.8 mol/mol glucose has been shown as the achievable

limit with either dark- or photo-fermentative routes by a

limited number of bacteria. It was however realized quite

soon that H2 yields can be enhanced by combining the two

metabolic routes. Here, VFAs especially acetic acid and

butyric acid generated as the end products of dark fer-

mentative H2-production process can be subjected to

photo-fermentative bacteria. Theoretically, acetic acid can

be converted to generate 4 mol of H2 [50]. Such that a H2

yield of 12 mol/mole glucose can be achieved by

employing an integrative approach–dark followed by

photo-fermentation [7]. The need is to optimize the various

process parameters and thus improve the efficiency of the

organisms. Since, bacteria exist largely as complex com-

munities, they create conditions such that ecological

selection persists and the most productive system prevails.

Taking advantage of the abilities of the bacteria to occur as

mixed cultures and as consortia, it is desirable to select

bacteria which are compatible to each other and exploit

their natural abilities to accomplish our purpose. Faculta-

tive anaerobes such as Bacillus and Enterobacter have

abilities to produce H2 in quantities which are quite com-

parable to those produced by strict anaerobic (Clostridium).

They however offer additional advantages in terms of their

abilities to survive in the presence of O2 during the initial

stage of anaerobic biodegradation and produce H2 effi-

ciently. They also offer an added feature by quenching O2

in cases where Clostridium may be the associated H2-

producer [68, 69]. In case of photo-fermentation, light

intensity is a major requirement for most metabolic activ-

ities. During photo-fermentative BHP, nitrogenase enzyme

requires energy for the H2 production, which is provided by

the light energy conversion to ATP [70]. It has been shown

that increase in the light energy does enhance BHP [39],

although exceptionally it may not prove effective [71]. We

can design complex communities consisting of robust and

self stabilizing populations. This syntrophic association

must be managed for the sustainable development. It is

envisaged that the feasibility of these two stage processes
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can be established by combining it with microalgae pho-

tosynthesis processes, which is likely to enhance overall H2

production by utilizing CO2 produced in the previous

stages [37]. From a commercial point of view, it may be

necessary to integrate other processes such as bioplastic

and methane production in it [4, 7, 17, 72–75].
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