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Osteoporosis, characterized by bone mass reduction and increased fractures, has become a global 

health problem that seriously affects the health of people, especially postmenopausal women; 
however, the current pathogenesis of postmenopausal osteoporosis (PMOP) has not been thoroughly 

elucidated to date. In this study, bilateral ovariectomy was performed to establish an OVX mouse 

model of osteoporosis. UPLC-Q-TOF-MS-based lipidomics in combination with metabolomics were 

used to analyze the femur tissue of osteoporosis mice. We found that 11 polar metabolites and 93 
lipid metabolites were significantly changed and were involved in amino acid metabolism, nucleotide 
metabolism and lipid metabolism. Among the lipids, fatty acyls, glycerolipids, glycerophospholipids, 

sphingolipids and sterols showed robust changes. These results revealed that several metabolic 

disorders caused by changes in the hormone levels in OVX, especially disordered lipid metabolism, 

are closely related to the imbalance between bone resorption and formation and may underlie the 

development of PMOP. The data generated via lipidomics and metabolomics presented in this study 

shows good applicability and wide coverage in the construction of the metabolic profile of bone tissue. 
Therefore, this approach may provide the pathway focusing and data support at the metabolite level for 

the in-depth mechanism of PMOP.

Osteoporosis is a progressive, age-related metabolic bone disease, it characterized by generalized reduced bone 
mass that is accompanied by microstructural degeneration of bone tissue, resulting in decreased bone mineral 
density (BMD) and increased risk of fracture1,2. Osteoporosis can be divided into primary and secondary, with 
postmenopausal osteoporosis (PMOP) being the most common primary form3. With aging of worldwide pop-
ulation, osteoporosis has become a global health problem that seriously a�ects the health of middle-aged and 
aged people, especially in middle-aged and aged women, which burdens the government �nancial and healthcare 
system greatly4.

�e imbalance between bone resorption and formation is the pathophysiological basis of osteoporosis5. �e 
current studies of osteoporosis mainly primarily focus on the di�erentiation, regulation and balance of osteo-
blasts and osteoclasts6. Many factors can play a role in PMOP formation, including metabolic disorders, espe-
cially hormone imbalance3. �us, studies of the internal metabolic environment of PMOP to monitor changes 
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in endogenous metabolites related bone resorption and bone formation disorders will help to determine the 
mechanisms of osteoporosis.

Metabolomics, a strategy to study endogenous small-molecule metabolites systematically, can explore changes 
in the metabolic environment a�er the dynamic stimulation of pathophysiological, environmental or genetic 
factors7. Furthermore, metabolomics has been widely used in exploration of pathologic mechanism, discovery 
of biomarker and toxicity and safety study of drugs8,9. As the object of metabolomics studies is to quantify down-
stream molecules of the bioinformatics �ow, which is close to biological phenotypes10, metabolomics can more 
readily screen out phenotype-related key biological nodes or biological pathways for diseases with complex causes 
and unknown mechanisms.

Recently, the application of metabolomics for the study of osteoporosis has attracted more and more attention11,12;  
however, most of these early studies used patients’ peripheral body �uids, including serum, plasma, and urine13–15,  
and bone tissue-related literature is notably rare. Metabolites changes in the peripheral body �uids include met-
abolic changes not only induced by osteoporosis but also induced by outside stimuli. So many confounding fac-
tors made it hard to indicate the pathogenesis directly and clearly. Bone tissue, the target tissue of osteoporosis, 
can be used to uncover the metabolic dysregulation directly associated with the development of osteoporosis. 
Additionally, due to the failure to use more advanced and targeted methods, the current bone metabolomic stud-
ies of osteoporosis re�ect an incomplete characterization of metabolic changes. Certain metabolic molecules with 
important biological functions, including lipids, were omitted from these previous studies. Lipids play an impor-
tant role in cell function maintenance and energy storage16 and have a close relationship with osteoporosis17–19.  
�e traditional metabolomics studies have limitations in the extraction and analysis of lipid molecules, which 
greatly in�uenced the characterization of lipids20. In recent years, lipidomics has been developed to analyze 
lipid molecules in a more targeted fashion, especially those based on electrospray ionization mass spectrometry 
(ESI-MS), which has been widely used in lipid metabolism, lipid mediated signal transduction and other related 
�elds21,22. �erefore, the application of advanced techniques in metabolomics can provide more complete and 
more accurate data for the interpretation of osteoporosis-related metabolic changes.

As mice can reproduce very similar models of human diseases as well as clear genetic background, in vivo 
microorganism controlled, stable and cheap, lots of researchers preferred establishing mice model to understand 
human clinical diseases23,24. So in our study, an ovariectomized (OVX) mouse model was established to simulate 
postmenopausal osteoporosis25. Lipidomics in combination with metabolomics analyses were performed on the 
femur to generate a bone metabolism pro�le of PMOP. To demonstrate the di�erential metabolites and metabolic 
pathways involved in the OVX model, we provide the complete metabolic data and a clear direction for revealing 
the metabolic dysregulation and mechanisms associated with PMOP occurrence and development.

Result
Micro-CT analysis and histological analysis. Micro-CT and histological analysis are taken to show bone 
loss a�er an OVX operation. In Fig. 1A, Micro-CT with 3D reconstruction of the femur shows that BMD (g/cm3),  
trabecular number (Tb.N, 1/mm), bone surface area/total value (BS/TV, 1/mm) and bone value/total value (BV/
TV, %) were reduced in OVX group (P < 0.001) compared to the sham group, all four parameters revealed sig-
ni�cant bone loss. Further histological and histomorphometric analyses con�rmed the destruction on bone a�er 
OVX operation (Fig. 1B). Less bone trabecular was observed in the OVX group, revealing signi�cantly bone loss 
and impaired trabecular microarchitecture in the femur bone. All these results suggested that we established a 
successful osteoporosis model.

Metabolic and lipidomic profiling analysis of femur. �e system stability was carried out by inject-
ing a QC sample every 4 samples during the whole sample batch. �e total ion chromatography (TIC) the 4 
QC samples displayed in Fig. 2A,B showed a good overlap in positive mode. Negative mode data is shown in 
Supplementary Figure S1A,B. �e RSD values of the peak intensities in the QC samples were measured for sta-
bility. As is shown in Fig. 3, more than 80% of the RSD values of the QC samples in metabolomics and lipidomics 
analysis were less than 20%. �ese results demonstrated that the stability of the proposed method was su�cient.

�e entire normalized data from all samples was imported into SIMCA-P program (version 11) to perform 
principal components analysis (PCA) and partial least square discriminate analysis (PLS-DA). PCA, an unsu-
pervised method, is applied as the �rst step in the separation procedure to reduce the dimension of data and 
make the observation more straightforward; PLS-DA, a supervised method that has a similar principle to PCA, 
is used to enhance the classi�cation performance26,27. �e PCA score plots in both modes showed that there 
was no outlier and that the Sham group was clearly separated from the OVX group in both the metabolic and 
lipidomic analyses (Fig. 4). Both modes of the supervised PLS-DA scores plots (Fig. 5A,C and Supplementary 
Figure S2A,C) displayed clearly separated clusters between the two groups. �e reliability of the established 
PLS-DA models was evaluated by the explained variation R2 and the predicted total variation Q2, which is calcu-
lated by cross-validation. �e expected R2 and Q2, highly dependent on their application model, should be more 
than 0.5 and 0.4, respectively, for a signi�cant biological model28. In our established model for PMOP, the value 
of R2 and Q2 were above 0.6 (Table 1), indicating that the PLS-DA model was established successfully. R2 and Q2 
from the PLS-DA analyses were calculated in the permutation test and shown in Fig. 5B,D and Supplementary 
Figure S2B,D. In the present research, ions with VIPs greater than 1.0 were considered to be important dif-
ferential metabolites. Students t-test was performed to assess the statistical signi�cance. Finally, 11 metabolites 
(Table 2, all decreased in the OVX group) and 93 lipids (Supplementary Table S1, 9 decreased and 84 increased 
in the OVX group) with signi�cant di�erences between the sham and OVX groups were identi�ed as potential 
biomarkers. �e heat map (Fig. 6 and Supplementary Figure S3) of potential biomarkers was performed using 
the MetaboAnalyst platform (http://www.metaboanalyst.ca) to visually display the di�erences between groups.

http://www.metaboanalyst.ca
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Biomarker identification and pathways influenced by OVX in the mouse femur. Potential bio-
markers were identi�ed using the method mentioned above. We categorized the potential biomarkers based on 
KEGG (http://www.kegg.jp/) and found that the identi�ed biomarkers are mainly in the amino acid, purine, and 
pyrimidine classes. Lipids were categorized into 14 subclasses, including fatty acyls, glycerophospholipids (PG, 
PA, PC, PE, PS), triacylglycerols (TG), sphingolipids (SM, Cer) and sterol lipids. �e proportion of di�erent lipid 
categories is shown in Fig. 7. �e classi�cation indicated that in established osteoporosis, the femur has multiple 
changes in several metabolic pathways and function (Fig. 8).

Discussion
�e OVX mouse model is a classical model of PMOP25. In this study, lipidomics in combination with polar 
metabolomics were performed to construct a comprehensive metabolic pro�le of the femur in OVX-induced 
osteoporotic mice and showed comprehensive changes in lipid metabolites to polar metabolites. �e results sug-
gested that some endogenous metabolites of the bone change signi�cantly during the initiation and progression 
of PMOP in this mouse model. �e polar metabolites included amino acids, purines and pyrimidine nucleotides. 
�e lipid metabolites included fatty acyls, glycerolipids, glycerophospholipids, sphingolipids and sterols. �ese 
lipid metabolites and polar metabolites are involved in multiple metabolic pathways, and interact with each other 
to form a complex network. As is shown in Fig. 8, amino acid and nucleotide metabolism were down-regulated, 
while lipid metabolism was up-regulated. �ese disorders not only reduced osteoblast but also increased osteo-
clast proliferation and di�erentiation, and increased ROS, as well as in�ammation, leading to the development of 
osteoporosis eventually. �is complex network help to explain the mechanism and metabolisms underlying the 
metabolic disorders associated with PMOP.

Amino acids play an important role in the process of bone metabolism. Arginine, leucine, proline and 
phenylalanine are all able to promote insulin secretion and enhance the e�ects of insulin-like growth factor 1 

Figure 1. Ovariectomy-induced bone loss in vivo. (A) Micro CT analysis of the distal femur from sham and 
OVX group. Calculations of bone mineral density (BMD), trabecular number (Tb, N), bone surface area/ total 
value (BS/TV), bone value/total value (BV/TV). (B) H&E staining of distal femoral sections and quanti�cation 
of trabecular area from sham and OVX group. (***P < 0.001).

http://www.kegg.jp/
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(IGF-1)29,30. IGF-1 is capable of promoting the proliferation and di�erentiation of osteoblasts31. Furthermore, 
amino acids, such as proline, phenylalanine and its analogues, were reported to inhibit osteoclastogenesis and 
decrease bone resorption in osteoporosis32,33. �us, concentration changes of these amino acids are likely to cause 

Figure 2. �e overlapped total ion chromatography (TIC) of 4 QC samples in positive ion mode in both (A) 
metabolomic analysis and (B) lipidomic analysis.

Figure 3. �e RSD values of the peak intensities in QC samples. (A) Scatter plot of RSD values in metabolomics 
QC samples (B) Scatter plot of RSD values in lipidomics QC samples.
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an imbalance of bone metabolism. Meanwhile, post-menopausal osteoporosis does exist in the lack of some 
amino acids, and increasing the intake of some amino acids could increase BMD and decrease the risk of inci-
dence of osteoporosis34. Chevalley et al. reported that arginine is able to increase growth hormone secretion and 
insulin-like growth factor-I production35. Fujita et al. discovered that leucine has a direct e�ect on the initiation 
of mRNA translation, participates in the synthesis of proteins, and maintains su�cient bone strength and bone 
density36. Phenylalanine is reported closely associated with body growth and normal physiological function37. In 
our study, we found that the above amino acids were signi�cantly reduced in bone tissue of PMOP, suggesting 
that metabolism of amino acids is nonnegligible in the occurrence and development of osteoporosis. In addition, 
among the nucleotide substances, xanthine, hypoxanthine and inosine are present in purine metabolic pathways. 
Uridine and cytidine are present in pyrimidine metabolism pathway. According to precious studies, pyrimidine 
and its derivatives and analogs not only have anti-in�ammatory and anti-oxidation e�ects38,39, but also can inhibit 
osteoclast genesis and bone resorption by inhibiting RANKL40. �e abnormalities of these pathways found in our 
study are consistent with these early studies and suggests that the dysfunction of nucleotide occurrs in osteopo-
rosis as well.

�rough lipidomics analysis, we found that the occurrence of osteoporosis in the femur of mice was associ-
ated with many changes in lipids, including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids and 
sterols. Fatty acids are a very important subclass of fatty acyls. Among the altered metabolites in our study, we 
found many fatty acids with a consistent uptrend in the bone tissue of the OVX group compared with sham ani-
mals. A previous study revealed that the concentration of cholesterol and fatty acids were increased in PMOP41. 
Zhu et al. also found that fatty acids increased in ovariectomy-induced group using metabolomics based on 
UPLC-Q-TOF-MS13. Moreover, fatty amines, fatty alcohols and fatty esters all belong to the fatty acyl group, and 
they all increase in the bone tissue of osteoporosis mice. We therefore concluded that osteoporosis indeed induces 
fatty acyl metabolic disorders.

In addition to fatty acyls, glycerolipids (primarily TG), sterols, some glycerophospholipids, and ceramides 
(Cer) also increased in the PMOP mice. Conversely, another part of glycerophosphocholines (PC) and sphin-
golipids showed a downward trend. Triglycerides belong to the glycerolipids group. Qi et al. reported that TG 
increased in postmenopausal women obviously18, and Xue et al. also found that TG signi�cantly increased in 
PMOP mice42. Additional studies reported that lipid metabolism is regulated by peroxisome proliferator activated 
receptor γ (PPARγ), and the accumulation of lipids increases its oxidation, resulting in the activation of PPARγ. 
�e activation of PPARγ could not only inhibit the di�erentiation of osteoblasts but also promote bone marrow 
stromal cell di�erentiation into adipogenic cells43,44. Lysophosphatidylcholines (LPC) and phosphatidylcholines 
(PC) belong to the glycerophosphate group. �ese phospholipids are an integral component of the animal cell 

Figure 4. PCA score plot of multivariate statistical analysis of the experimental group in ESI positive and 
negative ion mode. (A,B) PCA score plot of the sham and OVX group in ESI positive and negative ion mode 
respectively in metabolomic analysis; (C,D) PCA score plot of the sham and OVX group in ESI positive and 
negative ion mode respectively in lipidomic analysis.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |         (2018) 8:16456  | DOI:10.1038/s41598-018-34574-6

membrane structure and can mutually transform one into another. �e increase of LPC and PC is suggestive of 
an oxidative stress response. LPC is reportedly signi�cantly up-regulated in the plasma of osteoporosis mice, and 
increased ROS leads to oxidative stress damage45. �e existence of oxidative stress may lead to increased bone 
mass loss and bone friability, thereby aggravating the process of osteoporosis46. In our study, TG together with 
glycerophospholipids (e.g., PC, PA, PE, and PS) were found to be disordered in osteoporosis mice, suggesting that 
the abnormal metabolism of glycerolipids and glycerophospholipids is related to osteoporosis.

Sphingolipids, including sphingomyelin (SM), glycosphingolipid and ceramide, were also found to be altered 
in our study. Among these sphingolipids, sphingomyelins regulate cell growth and di�erentiation and function 
as second messengers47. Glycosphingolipids, components of the cell membrane, play an important role in tis-
sue development and function and can regulate trans membrane signals and mediate the interaction between 
cells and cells or cells and the matrix48. Glycosphingolipids are considered to be essential for the formation of 
osteoblasts induced by RANKL49. Increased glycosphingolipids can accelerate the di�erentiation and formation 
of osteoblasts, destroying the original balance in the bone tissue. Under the continuous action of acidic hydro-
lase, glycosphingolipid can be degraded into ceramide, which is an inhibitor of protein transport, secretion, and 
inhibit proliferation and promote apoptosis50. In our study, sphingomyelins are obviously decreased in the bone 
tissue of PMOP mice, while glycosphingolipids and ceramides are increased, suggesting the dysregulated sphin-
golipid metabolism is inseparable from osteoporosis. In addition, increased steroids are able to promote bone 
resorption, especially vitamin D3 and its products and sterol ester analogues, which can induce the formation of 
osteoclasts and destroy bone tissue, resulting in osteoporosis51.

Figure 5. Plots of multivariate statistical analysis of the experimental group in ESI positive ion mode.(A,C) 
PLS-DA score plot of the sham and OVX group in metabolomic and lipidomic analysis respectively; (B,D) 
Permutation test plot of the sham and OVX group in metabolomic and lipidomic analysis respectively.

OVX-Sham Mode No. Component R2X R2Y Q2

Metabolic Analysis
Positive 2 0.652 0.965 0.906

Negative 2 0.698 0.966 0.892

Lipidomic Analysis
Positive 2 0.895 0.952 0.883

Negative 2 0.926 0.903 0.855

Table 1. Summary of the parameters for assessing quality of partial least square discriminate analysis (PLS-DA) 
model.
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Figure 6. Heat map based on the relative levels of polar metabolites in femur of mouse in OVX. Class 0: OVX 
group, Class 1: Sham. Color key indicates metabolite expression value, red: up-regulated, blue: down-regulated.

Figure 7. �e proportion of di�erent lipid categories.

No. Name Formula m/z Adduct Rt(min) FC(M-C) P(M-C) FDR Pathway

1 Uridinea C9H12N2O6 243.0607 [M − H]− 3.61 0.49↓ 2.83E-08*** 4.143E-07 Pyrimidine metabolism

2 Hypoxanthineb C5H4N4O 137.0458 [M + H]+ 3.73 0.78↓ 3.13E-04*** 6.808E-07 Purine metabolism

3 Ubiquinol 8c C49H74O4 744.5893 [M + NH4]+ 3.93 0.44↓ 2.35E-08*** 1.785E-05 Respiratory chain

4 Xanthineb C5H4N4O2 151.0246 [M − H]− 4.58 0.61↓ 7.07E-08*** 8.762E-07 Purine metabolism

5 Inosineb C10H12N4O5 267.0722 [M − H]− 5.16 0.60↓ 6.77E-03** 1.515E-02 Purine metabolism

6 Cytidinea C9H13N3O5 242.0768 [M − H]− 6.25 0.31↓ 6.09E-09*** 1.963E-07 Pyrimidine metabolism

Cytidinea C9H13N3O5 266.0750 [M + Na] + 6.27 0.36↓ 5.44E-09*** 9.595E-05 Pyrimidine metabolism

7 L-Phenylalanineb C9H11NO2 166.0862 [M + H]+ 7.20 0.27↓ 5.73E-09*** 7.061E-07 Phenylalanine metabolism

8 L-Leucineb C6H13NO2 132.1019 [M+H]+ 7.21 0.29↓ 6.00E-09*** 9.846E-05
Leucine and isoleucine 
metabolism

9 L-Carnitinea C7H15NO3 162.1126 [M + H]+ 7.31 0.35↓ 5.31E-09*** 1.385E-04 Carnitine metabolism

10 L-Prolineb C5H9NO2 116.0707 [M + H]+ 9.35 0.35↓ 2.04E-08*** 2.927E-03 Arginine and proline metabolism

11 L-Arginineb C6H14N4O2 175.1191 [M + H]+ 16.71 0.41↓ 1.40E-05*** 1.333E-03 Arginine and proline metabolism

Table 2. Di�erential metabolites expressed in OVX group. aMetabolites analyzed based on MS/MS 

chromatograms. bMetabolites validated with standards. cMetabolites putatively annotated. (↓): down-regulated. 

**p < 0.01, ***p < 0.001 versus Sham.
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�is study has several limitations. First, the sample size used in the metabolomics and lipidomics analyses only 
meet the statistical power requirements. Additional studies with larger sample sizes will bolster our initial results. 
Secondly, we did not perform a systematic study on metabolites in vertebrae, which are another representative 
sample of osteoporosis; however, we believe that further experiments are warranted to elucidate the di�erentially 
expressed metabolites in vertebrae to more completely explain the mechanisms and metabolism disorders asso-
ciated with PMOP.

Materials and Methods
Chemicals and reagents. Acetonitrile (ACN) (LC–MS optimum grade) and methanol (HPLC grade) 
were purchased from Merck (Darmstadt, Germany); Formic acid was obtained from Fluka (Buchs, Switzerland). 
Deionized water from a Millipore Milli-Q water puri�cation system (Millipore Corp., Billerica, MA, USA) were 
used to prepare the chromatographic mobile phases. �e reference standards of L-Leucine, L-Phenylalanine, 
L-Tryptophan, L-Arginine, Xanthine, and Hypoxanthine were supplied by Sigma Corporation (St. Louis, MO, 
USA). All other chemicals were of analytical grade.

OVX model construction. Eighteen wild-type female C57B/L6 mice aged 8-week-old were purchased from 
Shanghai SLAC laboratory Animal Co. Ltd. A�er conditional housing for one week under controlled temperature 
(22–24 °C), humidity(50–60%), a 12 h light/dark cycle and free water and food. Mice were randomly divided into 
sham group (Sham) and ovariectomy group (OVX). �e ovariectomized mouse model were performed in the 
speci�c pathogen free animal laboratoryas described previously52 in OVX group to induce osteoporosis under 
chloral hydrate anesthesia, and the rest mice receive a sham procedure. A�er being housed for 8 weeks, all ani-
mals’ femur samples were collected by removing tissue. 3 of each group were randomly selected and �xed in 
4% paraformaldehyde 48 h for Micro CT and histological study, the rest were quickly placed in liquid nitrogen 
and stored at −80 °C a�er the bone marrow was completely �ushed out. All animal studies were performed in 
accordance with the National Institutes of Health (NIH) guide for the Care and Use of Laboratory Animals and 
approved by the Ethical Committee for the Experimental Use of Animals at Second Military Medical University 
(Shanghai, China).

Histomorphometric analysis using micro-CT and HE staining. We analyzed 100 section planes from 
the growth plate in each femurs bone using a high-performance micro-CT (Skyscan1172, Antwerp, Belgium) 
and detected the metaphyseal region and trabecular bone by built-in so�ware to obtain the following parameters 
within the region of interest: Bone mineral density (BMD), bone volume/total volume (BV/TV), bone surface 
area/total volume (BS/TV), Trabecular number (Tb, N). Femur samples were decalci�ed in 10% EDTA with 
continuous shaking for 3 weeks. Each distal femur was sliced for 4 µm sections and performed for H&E staining.

Figure 8. Molecular pro�ling showing the proposed mechanisms underlying OVX mouse model. : Increased 
in OVX group compared with shame group; : Decreased in OVX group compared with shame group. Solid 
line: direct connection, Dotted line: indirect connection. →: transform or promote, ⊥: Inhibit.
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Metabolic and lipidomic analysis of femur samples. Sample preparation. Bone tissue was cleaned of 
so� tissue, bone marrow, cartilage, and periosteum, then �ash frozen in liquid nitrogen. Every femur sample was 
crumbed and grounded into powder in liquid nitrogen. For metabolic analysis, 300 µl pre-cooling 80% methanol 
solution which contained 4 µg/ml 2-Chloro-L-phenylalanine as internal standard was added in each weighted 
sample (Weighing about 20 ± 2 mg, accurately) for protein precipitation and homogenate using a high-throughput 
tissue grinder (teice, 50 Hz, 2 min). Subsequently, the mixtures were centrifuged at 13,000rmp, 4 °C for 15 min, 
aliquots (10 µL) of each supernatant were mixed to generate a pooled quality control (QC) sample. For lipidomic 
analysis, the mice femurs powder were weighed(about 20 mg) and added with 190 ul methanol-chloroform-water 
(2:1:0.8, v/v/v), vortex for 1 minute and sonication for 10 minutes in 4 °C to extract the lipids. �en, 1 volume of 
chloroform and 1 volume of water were added, vortexed for 5 min and centrifuged at 13000 rpm with 4 °C for 
10 minutes, and then 50 µl chloroform layer was dried with nitrogen. Finally, the residue was reconstituted with 
100 µl isopropanol-acetonitrile-water (2:1:1, v/v/v), and the supernatant was prepared to be tested with 10 µL of 
each supernatant were mixed to generate a pooled quality control (QC) sample.

UPLC–MS/MS conditions. �e UPLC–MS/MS analysis was carried out using an Agilent 1290 In�nity system 
together with an Agilent 6538 UHD Quadrupole Time-of-Flight mass spectrometer (Agilent, USA). For metabolic 
analysis, chromatographic separations were performed on an X Bridge® BEH Amide column (2.1 mm*100 mm* 
2.5 µm, Waters) at a column oven temperature of 30 °C. �e initial mobile phase was a mixture of 98% phase A 
(0.1% formic acid in water) and 2% phase B (0.1% formic acid in ACN). A�er injection, the mobile phase was 
according to the following gradient eluted condition: 0–2 min, 95% B; 2–4 min, 95–89% B; 4–13.5 min, 89% B; 
13.5–15 min, 89–66% B; 15–17 min, 66% B then 7 min were required to re-establish the initial conditions. For lipi-
domic analysis, chromatographic separations were performed at 45 °C on a Waters X BridgeTM BEH C18 analytical 
column (2.1 mm × 100 mm, 2.5µm, Waters, Milford, MA). �e mobile phase consisted of 40:60 water: ACN with 
0.1% formic acid and 10 mM Ammonium formate (C) and 9:10:81 ACN: water: isopropanol with 0.1% formic acid 
and 10 mM Ammonium formate (D). �e detailed gradient elution conditions were as follow: 0–3 min, 40–68%D; 
3–5 min, 68–70%D; 5–7 min, 70%D; 7–12 min, 70–85%D; 12–15 min, 85–99%D; 15–19 min, 99%D; 19–19.5 min, 
99–40%D; 19.5–20 min, 40%D. �e �ow rate was set to 0.4 ml/min and the auto-sampler was maintained at 4 °C. �e 
injected volume was 3 µL and the samples were randomly run. QC samples were analyzed a�er every 4 injections to 
ascertain that the mass spectrometer performance was stable during the analysis of the samples set.

An electrospray ionization source (ESI) was used in both positive and negative ion mode with the ion spray voltage 
was set to 4000 V and −3500 V respectively. Other parameters were as follows: drying gas �ow, 11 L/min; gas temper-
ature, 350 °C; Nebulizer pressure, 45 psig; fragmentor voltage, 120 V; skimmer voltage, 60 V. Octopole RF Peak, 750 V; 
reference masses (m/z), 121.0509 Da and 922.0098 Da. �e MS data were collected in the full scan mode ranging from 
50 to 1100 m/z. �e biomarker candidates were further analyzed by MS/MS with the collision energy 10, 20 and 40 eV.

Data analysis and statistical analysis. A�er the UPLC/Q-TOF-MS analysis, the raw data (·d) were 
converted into a common data format (.mz data) �les using Agilent Mass Hunter workstation so�ware version 
B.01.04 (Agilent, MA, USA) with the isotope interferences being excluded and the intensity threshold was set to 
300 to exclude the noise. �en, the data from each polarity were processed using the open-free XCMS53 (http://
metlin.scripps.edu/download/) for peak extraction, alignment and integration to generate a visual data matrix. 
�ere are 1232 and 370 features in positive and negative mode in metabolomics, while in lipidomics there are 
3168 and 267 features in positive and negative mode. �en only molecular entities detected in at least 80% of the 
samples belonging to at least one of the groups under study (OVX and Sham individuals) were considered. A�er 
�ltering, there are 633 and 162 features in positive and negative mode in metabolomics, while in lipidomics there 
are 1571 and 67 features in positive and negative mode. Normalization of all detected ions in each sample were 
carried out by the peak area of internal standard in each sample to obtain the relative intensity then further nor-
malized by the weight of each sample in metabolomics analysis; while in lipidomics analysis, Normalization pro-
cedure was performed by the weight of each sample and then analyzed by peak area normalizing method. Finally, 
three three-dimensional data matrix, including the sample names, retention times, m/z pairs, and normalized ion 
intensities, were imported into the SIMCA-P program (version 11.0, Umetrics, Umea, Sweden) for multivariate 
statistical analysis including principal component analysis (PCA) and partial least squares-discriminant analysis 
(PLS-DA). �e relevant parameters R2X, R2Y, and Q2 of PLS-DA model were monitored to evaluate the goodness 
of �t and prediction internally and permutation tests were implemented to evaluate the quality of models exter-
nally. VIP (variable importance) value, generated in PLS-DA processing, represents the contribution to the group 
discrimination of each metabolite54. In our study, VIP values of all potential biomarkers should be greater than 1.

All data were expressed by means ± SD. �e statistical signi�cance in of mean values was tested using students 
T-test through SPSS 17.0 program (IBM, New York, USA). Di�erences were considered to be signi�cant when p 
values were less than 0.05.

Identification of potential biomarkers. Potential biomarkers were identi�ed as the previous report54. 
�e ions were con�rmed based on the extracted ion chromatogram (EIC) and then compared MS and MS/MS 
information by searching in the METLIN MS and MS/MS database (http://metlin.scripps.edu) and the Human 
Metabolome Database (http://www.hmdb.ca/). An accuracy error of 10 ppm was set in MS searching and the 
fragments were veri�ed by MS/MS data; furthermore, the retention times and the fragments of metabolites were 
compared with those of reference samples to con�rm the identi�cation of metabolites. Besides, a part of lipids 
were tentatively identi�ed based on their characteristic molecular ion information and corresponding fragments 
of product ion. We take Supplementary Figs S4 and S5 which was validated based on metlin database and their 
fragment ions to illustrate the identi�cation process.

http://metlin.scripps.edu/download/
http://metlin.scripps.edu/download/
http://metlin.scripps.edu
http://www.hmdb.ca/
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Conclusions
In this study, bilateral ovariectomy was performed to establish a mouse model of osteoporosis, and 
UPLC/Q-TOF-MS based lipidomics in combination with polar metabolomics were used to build a comprehen-
sive metabolic pro�le of the mouse femur, showing an overall change from lipid metabolites to polar metabolites. 
We found there were 11 polar metabolites and 93 lipid metabolites that were signi�cantly changed. �ese metabo-
lites are involved in amino acid metabolism, nucleotide metabolism and lipid metabolism. Among the lipids, fatty 
acyls, glycerolipids, glycerophospholipids, sphingolipids and sterols were altered. �ese dysregulated metabolic 
pathways, especially lipid metabolism, revealed a series of metabolic disorders caused by changes in the hormone 
levels a�er ovariectomy and are related to the imbalance between bone resorption and formation. �e lipidomics 
in combination with polar metabolomics methods used in this study show good applicability and wide coverage 
in the metabolic pro�le of bone tissue, especially for the lipidomics pro�le, and �ll the gap in the �eld of bone tis-
sue metabolite analysis. Furthermore, the metabolite information of the OVX mouse bone tissue obtained in this 
study provides a foundation for understanding the di�erentially regulated pathways and mechanisms of PMOP.
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