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Integrative functional genomics identifies
regulatory mechanisms at coronary artery
disease loci
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Coronary artery disease (CAD) is the leading cause of mortality and morbidity, driven by both

genetic and environmental risk factors. Meta-analyses of genome-wide association studies

have identified 4150 loci associated with CAD and myocardial infarction susceptibility in

humans. A majority of these variants reside in non-coding regions and are co-inherited with

hundreds of candidate regulatory variants, presenting a challenge to elucidate their functions.

Herein, we use integrative genomic, epigenomic and transcriptomic profiling of perturbed

human coronary artery smooth muscle cells and tissues to begin to identify causal regulatory

variation and mechanisms responsible for CAD associations. Using these genome-wide

maps, we prioritize 64 candidate variants and perform allele-specific binding and expression

analyses at seven top candidate loci: 9p21.3, SMAD3, PDGFD, IL6R, BMP1, CCDC97/TGFB1 and

LMOD1. We validate our findings in expression quantitative trait loci cohorts, which together

reveal new links between CAD associations and regulatory function in the appropriate

disease context.
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C
oronary artery disease (CAD) remains the leading cause of
mortality and morbidity in the world, despite advances in
treatment and lifestyle modification. As a complex disease,

both genetic and environmental factors contribute to cumulative
disease risk across human populations1,2. Meta-analyses of
genome-wide association studies (GWASs) through the
CARDIoGRAMplusC4D consortium have now identified 152
susceptibility loci for CAD3,4, which explain B10% of the
estimated heritable risk. More recent fine-mapping analyses of the
CARDIoGRAMplusC4D consortium using phased haplotypes
from the 1000 Genomes Project have revealed an additional
10 CAD loci5. These analyses have shed light on a number of
biologically relevant pathways involving genes that appear
to be operating in the vessel wall, independent of classical risk
factors6,7.

The majority of variants identified through GWAS (including
those in linkage disequilibrium (LD)) represent common single-
nucleotide polymorphisms (SNPs) located outside protein-coding
sequences, which are predicted to function via cis- or trans-
regulatory changes in gene expression8. A number of studies have
experimentally validated these effects at individual loci for
complex diseases, including CAD9–11, cancer12, metabolic
disorders13 and blood disorders14. However, a need exists for
more scalable and sensitive approaches to detect causal variants
and the underlying mechanisms for multiple loci. For instance,
expression quantitative trait (eQTL) mapping and allelic
expression imbalance (AEI) have been used extensively in
lymphoblastoid cell lines, monocytes and other cells to identify
regulatory variants15–17. Similarly, assays that measure chromatin
accessibility and transcription factor (TF) binding have been
critical for prioritizing regulatory variants18–20. Nonetheless, it is
now clear that integrative and dynamic multi-omic analyses in
primary cells/tissues may be necessary to disentangle the
mechanisms of regulatory variants under different disease
microenvironments21–23.

Human coronary artery smooth muscle cells (HCASMCs)
constitute the majority of the vessel wall and via their contractile
functions are largely responsible for distributing blood to the
heart muscle. However, these cells also undergo phenotypic
modulation or ‘epigenetic re-programming’ to a highly
proliferative and invasive state in response to vessel injury,
changes in blood flow, and during lesion expansion with
disease24. During atherosclerosis (hardening of the artery wall),
these cells secrete excessive extracellular matrix, undergo
apoptosis, and contribute to and remodel the surrounding
fibrous cap. Recent lineage tracing studies in mice have
convincingly demonstrated that up to 80% of the lesion cells
(including mesenchymal stem cells and macrophage-like
cells) are smooth muscle cell (SMC) derived25. Thus, we
hypothesized that investigating the epigenetic mechanisms of
gene regulation in HCASMCs may provide greater insights
into disease associations and the underlying biology of the
vessel wall.

Variation in chromatin accessibility and TF binding is a
dominant mechanism of variation in gene expression26, given
more than half of eQTLs in 70 lymphoblastoid cell lines overlap
with accessible DNaseI hypersensitivity sites (DHSs)27. Recently
developed methods to interrogate chromatin accessibility include
the Assay for Transposase Accessible Chromatin (ATAC-seq),
which has an advantage over other methods in that it requires a
fraction of the starting material to simultaneously assess
chromatin state, nucleosome profiles and TF footprints28.
Here we employ ATAC-seq to generate epigenomic profiles in
primary cultured HCASMCs stimulated with various growth
factors, as well as in normal and atherosclerotic human coronary
artery tissues. We integrate these data with chromatin

immunoprecipitation-sequencing (ChIP-seq) profiles for TF
binding and the active enhancer histone modification H3K27ac
to define HCASMC-enriched cis-regulatory mechanisms
(Supplementary Fig. 1). We incorporate publicly available
annotations through ENCODE, Epigenomics Roadmap and
eQTL databases to identify and experimentally validate seven
loci using allele-specific binding and expression analyses in
HCASMCs. Last, we leverage cis-eQTL analyses in large external
cohorts of normal and atherosclerotic arteries to validate our
approach ex vivo. Together, these multi-dimensional data further
advance our understanding of non-coding regulatory variation in
a complex disease, such as CAD.

Results
Chromatin accessibility in perturbed HCASMCs identifies TFBS.
The vast majority of epigenomic data in public databases are
derived from cells cultured under static conditions, which may
not reflect the native and disease-related cellular signalling
environments22,29. To mimic the phenotypic plasticity of vascular
smooth muscle cells during atherogenesis30,31, we treated
quiescent HCASMCs under serum-free control, transforming
growth factor-b (TGF-b; pro-differentiation phenotype), platelet-
derived growth factor-BB or DD (PDGF-BB or PDGF-DD;
de-differentiation phenotype) conditions for 6 h and profiled the
epigenome using deep ATAC-seq. These upstream growth factors
were previously shown to activate changes in gene expression and
chromatin remodelling at the TCF21 locus10, and are enriched at
CAD loci overall (Supplementary Data 1). We obtained an
average of 100 million Tn5-integrated mapped reads (200 million
paired) and average detection of B150,000 open chromatin
peaks per sample, which resulted in high signal-to-noise
ratios (Fig. 1a; Supplementary Fig. 2a–c), low individual sample
variability (r2¼ 0.94 biological replicates; Fig. 1b), and robust
CTCF centred footprints and resolved nucleosome profiles
(Supplementary Fig. 3). To identify relevant transcription
factor-binding sites (TFBSs), we performed de novo motif
enrichment analysis of each stimulated condition using
serum-free control as a background. The top de novo motifs in
TGF-b-treated HCASMCs included the AP-1 family members
(for example, ATF3), followed by TGF-b-related TFs (TEAD1/4,
SMAD2 and RUNX1; Fig. 1c). In contrast, in PDGF-BB-treated
HCASMCs, we identified even more enriched AP-1 motifs (for
example, FRA1), followed by CTCF (chromatin looping factor),
ETS1 (pro-proliferative factor) and NFY (potent repressor of
endothelial marker, von Willebrand Factor; Fig. 1d). Hierarchical
clustering of open chromatin regions overlapping CAD loci
revealed similarities within each donor sample and the nearest
annotated genes (Fig. 1e), despite observed differences between
stimulations (Supplementary Fig. 2). Functional enrichment
analysis of stimulated open chromatin regions overlapping
the GWAS catalogue showed significant enrichment for heart
disease, atherosclerosis and related Disease Ontology terms
(Fig. 1f; Supplementary Data 2). We also generated functional
association networks of CAD-associated genes in TGF-b-
stimulated open chromatin regions, which revealed SMAD3 as
one of the most connected CAD genes, providing a link to TGF-b
signalling and SMC functions in the vessel wall (Supplementary
Fig. 2d–e; Supplementary Data 2 and 3).

Integrative epigenomic profiling prioritizes CAD variants.
To prioritize all CAD variants, we first combined a candidate
list from CARDIoGRAMplusC4D replicated loci and those
associated at false discovery rate (FDR) of 5%, as well as novel loci
identified from CARDIoGRAMplusC4D 1000G fine-mapping
efforts5. To capture causal SNPs that are in high LD with the lead
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SNPs, we applied a correlation cutoff of r2Z0.8 in Europeans
using 1000 Genomes Phase 1 data (http://browser.1000genomes.
org/). This resulted in 5,240 total candidate CAD regulatory SNPs
present in the human genome (Supplementary Data 4). To rule
out the possibility that these candidate SNPs are linked to
potentially damaging protein-coding SNPs, we ran these through
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) and SIFT
(http://sift.jcvi.org), which identified eight and six non-
synonymous missense/nonsense variants, respectively, predicted
to be damaging (Supplementary Data 5 and 6). One of these
missense variants, rs867186 (Ser219Gly), in PROCR1 has been
previously reported to explain variable levels of soluble
endothelial protein C receptor associated with thrombosis and
CAD risk32. Another missense variant, rs11556924 (His363Arg),
in ZC3HC1 may alter cell cycle entry and was associated with
carotid intima-media thickness in rheumatoid arthritis (RA)
patients33. Nonetheless, this suggests that the majority of the

remaining variants are likely impacting regulatory elements.
We hypothesized that integrating multiple genome-wide
regulatory features in HCASMCs would help further prioritize
these variants into relevant pathways.

Given that open chromatin regions alone may not delineate
functional SNPs, we also performed ChIP-seq in HCASMCs
for the histone modification H3K27ac, which has been shown
to detect regulatory variants in active enhancer regions34.
Interestingly, from the H3K27ac data 16 CAD SNPs were
found to overlap four super-enhancer regions, potentially
indicating an additional regulatory mechanism in CAD
(Supplementary Fig. 4). Also, to begin to study cis- and trans-
acting causal transcription mechanisms, we restricted our
functional mapping analysis to those variants located in
validated binding sites by incorporating HCASMC ChIP-seq
peaks for relevant TFs including, JUN, JUND and TCF21
(ref. 35). We have previously shown that TCF21 and AP-1 TFs
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Figure 1 | Chromatin accessibility in perturbed HCASMC identifies AP-1 and state-dependent TFBS. (a) ATAC-seq signal-to-noise ratio, calculated as

distribution of ATAC-seq reads centred on TSS in a 1,000-bp window, normalized to total mapped reads and comparing 50 and 100 million mapped reads

from representative data sets (n¼ 22 biological replicates). (b) Scatter plot showing correlation of ATAC-seq tag intensities from two independent

biological replicates (r2B0.94). (c) Histogram distribution and resulting P value (via cumulative binomal distribution) for top four enriched motifs identified

using de novo motif enrichment analysis in open chromatin peaks in HCASMCs treated with TGF-b1 (n¼ 2 biological replicates per condition). (d) Similar

results shown above for HCASMCs treated with PDGF-BB. (e) Hierarchical clustering of open chromatin normalized read counts in stimulated HCASMCs

from two independent donors (1 and 2), with clustering on CAD loci annotated to transcription start site of nearest gene. (f) Genomic Regions Enrichment

of Annotations Tool (GREAT) analysis of stimulated HCASMC open chromatin regions overlapping entire GWAS catalogue (n¼ 2 biological replicates),

showing enrichment for Disease Ontologies relative to whole-genome background. P values were calculated using a combination of binomial and

hypergeometric tests.
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bind proximal to CAD loci, and TCF21 target regions are
enriched for CAD variants in LD with causal variants10,35. The
results of overlapping CAD SNPs in these data sets were n¼ 323,
n¼ 462 and n¼ 193, for open chromatin, active enhancers and
TF binding, respectively (Fig. 2a). The combined overlap resulted
in 87 candidate CAD SNPs at 11 loci (2.45 odds ratio; Fig. 2b;
Supplementary Fig. 4), suggesting that these are more likely to be
functional SNPs in HCASMCs. As a comparison, we overlapped
these data sets with the entire GWAS catalogue (including SNPs
in LD at r2Z0.8) or other chronic inflammatory diseases
(ulcerative colitis (UC) and inflammatory bowel disease (IBD)),
which resulted in 1.4, 1.8 or 1.9 odds ratios of enrichment
(Fig. 2b; Supplementary Fig. 5). Overall, incorporating TCF21
peaks improved the enrichment compared with JUN peaks, or
when combined with ATAC open chromatin or H3K27ac peaks
(Fig. 2b; Supplementary Fig. 5). ATAC-seq open chromatin
regions centred on all GWAS SNPs displayed a local peak of
enrichment (Fig. 2c). We further observed open chromatin

regions centred on CAD-associated variants to display a broad
pattern of enrichment, distinct from those which are directly
centred on CTCF motifs, yet strikingly similar to those in binding
peaks for TCF21 and JUN (Fig. 2d). We then plotted the
significance of SNPs overlapping open chromatin relative to their
fold enrichment for all GWAS variants using a cumulative
binomial distribution test (Fig. 2e). This revealed the
CARDIOGRAMplusC4D associated SNPs to cluster with other
highly significant (� log P valueB75) and enriched (410-fold)
SNPs for diseases with cardiovascular and chronic inflammatory
(for example, UC, Crohn’s disease, RA and so on) origin and
unexpected overlap with bone mineral density and Schizophrenia
SNPs, which appears to be cell-type dependent (Supplementary
Figs 6 and 7). It is possible that the chronic inflammatory
component of CAD may drive the majority of the strong
enrichment signals of UC, Crohn’s disease, RA, as well as
myocardial infarction and insulin resistance, reflecting shared
genetic aetiology.
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Figure 2 | Integrative epigenomic profiling in HCASMC prioritizes CAD regulatory variants. (a) Venn diagram of overlapping 5240 candidate

CAD-associated variants (including those in high linkage disequilibrium at r2Z0.8) with HCASMC ATAC-seq open chromatin regions (n¼ 323), H3K27ac

ChIP-seq active enhancer regions (n¼462) or TF binding via TCF21 or AP-1 ChIP-seq (n¼ 193). Unique overlapping numbers shown for combined

overlaps, respectively. (b) Forest plot depicting odds ratio (OR) of enrichment for CARDIoGRAMplusC4D (CAD), inflammatory bowel disease (IBD),

ulcerative colitis (UC) or entire GWAS catalogue SNPs in individual or combined HCASMC data sets as calculated using the Fisher’s exact test. Dots

represent mean OR and lateral lines represent 95% confidence intervals. (c) Histogram distribution of globally normalized GWAS SNPs in regions centred

on HCASMC open chromatin regions within a 1-kb window. (d) Heatmap distribution of HCASMC open chromatin regions centred on CTCF motif (from

JASPAR) within a 0.5-kb window (left panel). Hierarchical clustering heatmap showing distribution of ATAC-seq open chromatin, JUN or TCF21 ChIP-seq

binding regions centred on 5,240 CARDIoGRAMplusC4D SNPs (right panels). (e) Two-dimensional scatter plot of GWAS SNPs in HCASMC open

chromatin regions showing most significant enrichment for cardiovascular (CARDIoGRAMplusC4D and coronary heart), brain and autoimmune

phenotypes in upper right quadrant. Data shown are representative of n¼ 10 biological replicates in HCASMCs cultured under normal growth conditions.
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Ex vivo chromatin accessibility reveals disease mechanisms.
HCASMCs are primary cells that may not accurately mimic
the native disease environment to prioritize CAD-associated
mechanisms. Thus, we measured open chromatin via ATAC-seq
on dissected medial layers from normal and atherosclerotic
(athero) coronary arteries from human heart transplant donors
and recipients, respectively. We observed a correlation (r¼ 0.70)
between ATAC-seq tag densities from serum-free HCASMC and
normal artery tissue (Fig. 3a), suggesting distinct yet similar
epigenomes in native tissues versus cultured cells. We then
performed a principle component analysis (PCA) to compare
ex vivo open chromatin data sets with those from cultured

HCASMCs. Principal component 3 separated normal versus
atherosclerotic tissues and stimulated cells by expected differ-
entiation status (more to less differentiated, bottom to top), with
HCASMC plus PDGF-BB, PDGF-DD or serum, and athero tissue
in top half, and HCASMC serum-free, plus TGF-b, and normal
tissue in bottom half (Fig. 3b). Principal component 2 separated
the HCASMC donor lots, consistent with hierarchical clustering
results (Fig. 1e). Given the cell- and tissue-specific regulatory
contributions to CAD36, we also performed PCA of HCASMC
and ex vivo coronary artery open chromatin data with ENCODE
DHS data, in which serum-treated HCASMCs and athero
coronary tissue clustered with more de-differentiated cells
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(iPSC, stem cells) compared with normal coronary tissue
(Supplementary Fig. 8). It is worth noting that these complex
and limited human tissue samples present a challenge in resolving
distinct clusters from a standard PCA. As demonstrated
previously (Fig. 1), we identified the AP-1 family as the most
significantly enriched motif (Fig. 3c; Supplementary Fig. 9) in
ex vivo open chromatin peaks, followed by motifs for relevant
factors MEF2C, TEAD4 and serum-response factor. To further
investigate the relevance of AP-1 motifs in CAD, we correlated
the positions of candidate CAD SNPs with classic AP-1 motifs
across the genome and observed a peak of enrichment (Fisher’s
exact test P¼ 2.2E� 16), which was reversed using randomized
AP-1 matrices (Fig. 3d). As a control, randomized CAD-matched
SNPs displayed no gain or loss of enrichment with either AP-1 or
control matrices (Fisher’s exact test P¼ 0.941; Fig. 3e). Together,
these data demonstrate that chromatin accessibility profiles of
stimulated HCASMCs resemble those of diseased atherosclerotic
tissue, and that AP-1-binding sites may explain a CAD-relevant
cis-acting mechanism for the re-programming of these cells.

AP-1- and TCF21-dependent regulatory mechanisms at CAD loci.
To disentangle specific CAD associations, we intersected the
combined HCASMC-based ATAC, H3K27ac and TCF21/AP-1
ChIP-seq data with the CARDIoGRAMplusC4D variants,
resulting in 87 candidate variants (30 variants ex vivo;
Supplementary Data 7). We then annotated these variants for
chromatin state and enhancer activity using ENCODE37 and
Roadmap Epigenomics data collected from 4100 cells and
tissues38 (Supplementary Data 8), and utilized position weight
matrices (PWMs) from JASPAR (http://jaspar.genereg.net) to
annotate candidate variants predicted to alter TFBS motifs
(http://www.broadinstitute.org/mammals/haploreg/haploreg.php;
Supplementary Data 9). After filtering for variants with
RegulomeDb (http://www.regulomedb.org/) functional scores
r4 and evidence of protein binding in vivo (Z1 trans-acting
factor), we obtained 64 (out of 87) variants in HCASMCs and 26
(out of 30) variants ex vivo. Interestingly, one of the lead
candidate variants, rs17293632, located within an intergenic
region of the SMAD3 gene was linked to a new association for
CAD, rs56062135 (r2¼ 1.0; D0

¼ 1.0; Europeans) at 15q22.33,
(additive model P¼ 5.72E� 09)5 (Fig. 4a), while also being
previously associated with chronic inflammatory bowel disease39

and Crohn’s disease40 (Fig. 4a,b). SMAD3 was previously
associated with CAD through an independent SNP41; however,
the variant described here, rs17293632, resides within an open
chromatin region ex vivo, and preferentially in TGF-b- and
PDGF-BB-treated HCASMCs (Fig. 4c,d), peaks for JUN and
JUND binding, and H3K27ac marked active enhancer region
(Fig. 4c). The major risk C allele was more associated with open
chromatin (Fig. 4d) and further inspection revealed this allele to
reside in a canonical AP-1 motif, TGACT[C4T]A, which is
effectively destroyed by the minor protective T allele (Fig. 4c).
Intriguingly, this is analogous to the AP-1-dependent
mechanisms elicited by the TCF21 risk alleles10. This variant,
rs17293632, is also proximal to a muscle CAT motif for TEAD
(involved in TGF-b signalling and SMC differentiation42) and
upstream of a TCF21 motif, which we have shown to reside near
AP-1 sites35. Using the SMAD3 locus as a prototypical AP-1-
dependent mechanism, we then performed allele-specific ChIP
analyses for AP-1 factors, TCF21 and H3K27ac in HCASMCs
from individuals who were heterozygous for rs17293632 (n¼ 5).
These studies demonstrated preferential TF binding to the
risk C allele, with non-allelic enrichment of H3K27ac (Fig. 4e).
We also performed analyses for other top prioritized loci, such as
rs1537373 at 9p21.3 (CDKN2B/CDKN2B-AS1), which overlapped

open chromatin, H3K27ac, AP-1 and TCF21 peaks (Fig. 5a). The
risk T allele was associated with open chromatin (Fig. 5b), and TF
and H3K27ac enrichment (Fig. 5c), despite being located outside
but proximal to canonical motifs for AP-1 and TCF21. Finally, we
investigated the mechanism for another variant, rs2019090,
linked to the lead SNP, rs974819 (r2¼ 1.0; D0

¼ 1.0; Europeans)
at 11q22.3 (ref. 43) and located 4150-kb downstream of the
nearest coding gene, platelet-derived growth factor D (PDGFD).
This variant resides in a modest open chromatin peak ex vivo and
in stimulated open chromatin in HCASMCs, with the major risk
T allele enriched in TF and H3K27ac peaks (Supplementary
Figs 10 and 11). Similar observations were made through
mapping of candidate variants at LMOD1 and IL6R loci
(Supplementary Figs 12 and 13). These findings demonstrate
how integrative mapping approaches may point towards causal
relationships that should be validated in functional studies
in vivo.

Allele-specific and total gene expression at CAD loci. Mapping
cis-regulatory mechanisms by detecting changes in binding to
native chromatin implies effects on transcription. However,
this assumption should be evaluated empirically. Thus,
we identified seven top candidate causal variants to perform
enhancer trap assays to measure allele-specific transcription,
using regions of open chromatin flanking the candidate SNPs.
The effects on transcription were modest, although significant
allele-specific changes were observed at four loci, including
rs17293632 (SMAD3), rs2019090 (PDGFD), rs7549250 (IL6R)
and rs34091558 (LMOD1) (Fig. 6a). The greater effect size of
rs17293632 (C4T) at SMAD3 is likely attributed to its direct
AP-1 motif disruption. To validate these effects at rs17293632, we
performed gain and loss of function for AP-1 members, including
JUN, JUNB and JUND. As expected, overexpression of JUN and
JUNB further trans-activated the risk C allele reporter, consistent
with the effects observed on the consensus AP-1 reporter (Fig. 6b;
Supplementary Fig. 14). In contrast, short interfering RNA
(siRNA)-mediated knockdown of AP-1 (predominantly JUN and
JUNB) led to a reduction of the risk C allele compared with the
protective T-allele reporter (Fig. 6c; Supplementary Fig. 14).
Importantly, these AP-1 perturbations (particularly JUN) corre-
lated with changes in SMAD3 in HCASMCs (Supplementary
Fig. 14).

We also observed an eQTL dosage effect at rs17293632 with
the risk C allele correlated with greater endogenous SMAD3 gene
expression levels in HCASMC (n¼ 64, Po0.0001; Fig. 6d).
Similar results were observed for both CDKN2B and PDGFD
candidate variants, rs1537373 and rs2019090, respectively
(Supplementary Fig. 15). To further evaluate cis-effects on
endogenous SMAD3 levels, we performed AEI of SMAD3. Given
the weak linkage of a proxy transcript SNP to detect allele-specific
expression (ASE), we measured SMAD3 pre-mRNA levels using
individuals heterozygous at rs17293632 itself. This approach is
supported by genome-wide methods correlating intronic reads to
changes in transcription44. In all 23 heterozygous individuals, an
allelic imbalance was observed for the C allele (P¼ 8.72E� 13)
(Fig. 6e). Similarly, we detected significant allelic imbalance for
other candidate loci using linked transcript SNPs at PDGFD,
LMOD1, CDKN2B and IL6R (Supplementary Figs 16 and 17;
Supplementary Data 16). As a positive control, allelic imbalance
was also detected for the lead SNP at TCF21, rs12190287,
as previously reported45 (Supplementary Fig. 17). While the
30-untranslated region variant at CCDC97/TGFB1, rs2241718,
was predicted to affect binding, this variant might not alter
endogenous CCDC97 levels (Supplementary Fig. 16), but rather
serve as an enhancer for neighbouring TGFB1 in HCASMCs.
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Welch’s correction for unequal variances.
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Along these lines, it is predicted that the endogenous trans-acting
factors upstream of these cis-regulatory elements must also be
context dependent to elicit functional effects in HCASMCs. Thus,
we performed a RNA-seq-based transcriptomic analysis of
HCASMCs treated with TGF-b or PDGF-BB ligands to identify
differentially expressed genes. Interestingly, using DESeq analysis
of PDGF-BB treatment versus serum-free control HCASMCs, the
most significantly altered genes were among the immediate early
response genes: AP-1 members, FOSB, FOS, JUN, JUNB and
ATF3, as well as EGR3 (early growth response 3), and NR4A1/2
(nuclear receptor subfamily 4 group A member 1/2; Fig. 6f;
Supplementary Fig. 18; and Supplementary Data 10). These
results strongly implicate immediate early response genes such as
AP-1 factors as key trans-regulators of growth factor-dependent
changes in chromatin accessibility, binding and expression at
CAD loci in a critical vascular cell type.

Global cis-eQTLs in external databases validate CAD variants.
To validate the endogenous function of our prioritized variants,

we performed a query in global cis-eQTL databases, including the
Genotype-Tissue Expression (GTEx) project (Supplementary
Data 11). All but one candidate variant (rs1537373) was
detected as an eQTL in various tissues, with the lead candidate at
SMAD3, rs17293632 strongly associated with SMAD3 levels in
thyroid tissue (P¼ 1.94E� 13; Fig. 7b). This was not surprising
given the homogenous cellular composition of thyroid tissue.
Notably, IL6R variant (rs7549250) was one of the most significant
eQTLs in whole blood (Fig. 7c), and the BMP1 candidate
variant (rs73551707) was highly significant in aortic artery
tissue (Fig. 7d). Given the limited sample number and disease
phenotypes in these public databases, we then investigated our
candidate SNPs in human atherosclerotic aortic tissues (n¼ 513)
and internal mammary artery tissues (n¼ 528) collected during
coronary artery bypass graft procedures from the STARNET
(Stockholm-Tartu Atherosclerosis Reverse Network Engineering
Task) database23,46. First, we searched for the most significant
cis-eQTLs within a 2-Mb window surrounding each candidate
SNP, and then performed a conditional analysis using the
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most significant SNP or the lead GWAS SNP in this region
(Supplementary Data 12). Strikingly, we found that the candidate
SNP at the 9p21.3 locus, rs1537373, was a significant cis-eQTL for
CDKN2B (P¼ 2.13E� 05 in aorta; P¼ 0.0035 in mammary
artery) and was the second most significant SNP in this entire
region in aorta (Fig. 8a,b). We also observed greater CDKN2B
expression at rs1537373 to correlate with the T allele (Fig. 8c),
which is consistent with expected direction based on chromatin
accessibility, TF binding, H3K27ac enrichment (Fig. 5) and
expression analysis in HCASMCs (Supplementary Figs 14a
and 16a). Furthermore, we identified a highly significant cis-eQTL
for the candidate SNP, rs2019090, at the PDGFD locus
(P¼ 2.34E� 21 in aorta; 2.41E� 13 in mammary artery), which
represented the most significant cis-eQTL in this region for
PDGFD in aortic tissue (Fig. 8d,e). Greater PDGFD expression at
rs2019090 also correlated with the risk T allele (Fig. 8f),
consistent with the expected direction based on analyses in
HCASMCs (Supplementary Figs 15b and 16c). While we did
observe multiple cis-eQTL genes for some top candidate SNPs,

such as rs73551707, these were nominally significant compared
with the nearest target gene, BMP1 (P¼ 1.45E� 15 in aorta;
1.10E� 14 in mammary artery; Supplementary Fig. 19;
Supplementary Data 12). Others appeared to be tissue selective,
for example, rs34091558 (LMOD1) and rs7549250 (IL6R)
(Supplementary Fig. 19; Supplementary Data 12), which
implicate context-specific gene regulation through these
variants. Together, these analyses support the overall validity of
our approach to deduce causal regulatory variation in the
appropriate disease context.

Discussion
Herein, we apply an integrative approach to investigate causal
regulatory variants associated with a complex disease using
genomic, epigenomic and transcriptomic analyses with targeted
experimental follow-up at seven candidate loci. By incorporating
haplotype information for 5,240 lead and high-LD GWAS
variants along with custom genome-wide sequencing analyses
for chromatin accessibility, active enhancers, TF binding, as well
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as public annotations, we identify 64 candidate regulatory
variants in stimulated HCASMCs and 26 candidates in coronary
arteries ex vivo (Supplementary Fig. 1; Supplementary Data 4).
We confirm the functionality of seven variants via allele-specific
binding, enhancer traps and AEI (Supplementary Data 13
and 14). Using differential RNA-seq analysis, we identify trans-
acting factors that are coupled to the cis-regulatory elements in
growth factor-treated HCASMCs. Finally, genome-wide cis-eQTL
mapping in arterial tissues from atherosclerotic diseased
individuals further emphasizes that our HCASMC-based analyses
may reflect the function of these variants in the appropriate
disease environment (Supplementary Data 10).

Unique to our approach is the application of prior knowledge
of CAD-associated TCF21 and AP-1 to prioritize other CAD
regulatory variants. The TCF21 locus was identified from the
initial CARDIoGRAM meta-analysis of 14 GWAS in 22,233 cases
and 64,762 controls of European descent4, and was subsequently
replicated in a meta-analysis in Han Chinese individuals47. While
TCF21 is highly expressed in the developing epicardium and
proepicardial organ to give rise to interstitial cells and coronary
vasculature48–50, it may also be critical for remodelling the adult
artery during early atherogenesis51. TCF21 was selected given
our recent findings showing enrichment of CAD loci in
TCF21-binding sites in HCASMCs35, which localize in the
vicinity of AP-1 motifs35. Our findings that CAD loci are
enriched for AP-1 motifs in open chromatin in both cells and
tissues re-emphasizes the role of AP-1 in potentiating chromatin

accessibility52. We observed 58% of AP-1 (JUN and JUND)
versus 81% of TCF21 peaks to overlap open chromatin peaks,
suggesting that AP-1 factors are capable of priming compact
chromatin for subsequent recruitment of inducible TFs. Whether
AP-1 factors represent true ‘pioneer factors’ such as the FOXA or
PU.1 factors53 remains to be determined. Nonetheless, both
TCF21 and AP-1 likely play important roles in remodelling the
chromatin architecture to modulate SMC fate and differentiation.

One of the CAD-associated enhancers we identified at the
SMAD3 locus has been associated with IBD39 and Crohn’s
disease40, and was highlighted in a systematic scan of
autoimmune disease loci54. The fact that the rs17293632 risk
allele resides in a classical AP-1 motif parallels our previous
observations for the TCF21 risk alleles10, and may support a
‘multiple enhancer variant’ model for common regulatory
pathways55. More importantly, we note that open chromatin
regions in HCASMCs were also highly enriched for diseases of
chronic inflammatory origin, including UC, Crohn’s disease and
RA (Fig. 2e). While the hypothesis that inflammation plays a
causal role in atherosclerosis is not novel, for example, through
the actions of modified lipoprotein-activated macrophages56,57, it
is intriguing to speculate that SMCs are active participants in the
early immune responses through their ‘trans-differentiation’ into
macrophage-like foam cells58. This hypothesis is strengthened by
recent evidence that one of the encoded proteins at the top CAD-
associated 9p21.3 locus, cyclin-dependent kinase inhibitor 2B
(CDKN2B/p15), controls the clearance of SMC-derived apoptotic
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Figure 7 | Validation of SMAD3 and other candidate variants in GTEx eQTL database. All SNPs associated with SMAD3 gene expression in whole blood

(n¼ 338) (a) and thyroid (n¼ 278) (b) tissue, which span the entire 500-kb locus, were extracted from the GTEx V6 database, and –log(P values)

were plotted using LocusZoom. SNPs are colour-coded by r2 value. Candidate SNP rs17293632 is shown in purple. Gene names are shown at genomic

positions (hg19 assembly). (c) All SNPs associated with IL6R expression in whole blood (n¼ 338) are shown. Candidate SNP rs7549250 is shown in

purple. (d) All SNPs associated with BMP1 expression in aortic artery tissue (n¼ 197) are shown. Candidate SNP rs73551707 is shown in purple.
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bodies and regulates inflammatory cytokine production during
atherosclerosis59. We also investigated the mechanisms of a
putative 9p21.3 enhancer for the antisense non-coding RNA
CDKN2B-AS1. This variant, rs1537373, resides in a large
haplotype block of linked variants including the highly
replicated CAD SNPs, rs4977574 and rs1333049 (ref. 41), and
while it does not directly alter a known TF binding motif, it
localized to a region of accessible chromatin, TF binding and
enhancer activity (Fig. 5), proximal to both TCF21 and AP-1
consensus motifs. Allele-specific TF and H3K27ac enrichment at
rs1537373 implicate changes in the native chromatin structure,
consistent with the observed cis-eQTL for CDKN2B (rather
than CDKN2B-AS1) in aortic tissues (P¼ 2.18E� 05; Fig. 8;
Supplementary Data 12). This variant was strongly associated
with coronary artery calcification60, and warrants follow-up study
to unravel the complex pleiotropic and physical interactions at
this locus.

Similarly, we investigated the causal mechanism at the 11q22.3
locus through a variant, rs2019090, which is linked (r2 B0.97,
Europeans/Asians) to the lead GWAS variant, rs974819,
identified in individuals of European and South Asian ancestry43.
This variant is located B360-kb downstream of the transcription
start site (TSS) for PDGFD, resides in a moderately active
enhancer region in HCASMCs, and alters binding and chromatin
accessibility despite being outside consensus TF-binding motifs
(Supplementary Fig. 10). Importantly, we identify this variant as
the most significant cis-eQTL for PDGFD in diseased aortic

tissues (P¼ 2.34E� 21; Fig. 8; Supplementary Data 12). These
data strongly implicate rs2019090 and PDGFD as the likely causal
variant and gene at this locus. This also supports the notion that
variants converging on weaker and distal enhancers may exert
meaningful functional effects on endogenous genes. While both
CDKN2B and PDGFD likely play critical roles in early-stage SMC
disease processes, these effects may not be restricted to SMC.
For instance, PDGFD is an important paracrine signal from
neighbouring endothelium and adventitia and may mediate
functions independent of the classic PDGF-BB ligand61. Recent
data that PDGFRb signalling accelerates local inflammation and
hypercholesterolemia through the outer arterial layers (adventitia
and media)62, support a critical role of either SMC or pericyte
activation. One of our candidate loci, LMOD1 (Leiomodin 1),
does appear to have a SMC-restricted expression pattern as a
serum-response factor/myocardin target gene involved in actin
filament assembly63. The candidate enhancer variant we
identified for LMOD1, rs34091558, was a significant cis-eQTL
in aorta but not mammary artery (Supplementary Fig. 13;
Supplementary Data 12), suggesting differences in SMC content
or differentiation state during disease. The IL6R candidate
variant, rs7549250, was shown to be a mammary artery
selective cis-eQTL (Supplementary Fig. 18; Supplementary
Data 12), which may reflect the more systemic actions of this
pro-inflammatory cytokine pathway. It is worth noting that this
receptor is currently targeted for RA and juvenile idiopathic
arthritis64, and potentially for sub-clinical atherosclerosis65.
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Figure 8 | Validation of CDKN2B and PDGFD candidate variants in STARNET CAD eQTL data sets. (a,b) Distribution of all cis-eQTLs called for CDKN2B

from STARNET diseased human aorta (n¼ 513 independent donors/biological replicates) and mammary artery (n¼ 528 independent donors/biological

replicates) tissues, respectively. Association plot includes variants colour-coded by r2 value to represent LD with candidate SNP (shown in purple).

Gene names are shown at genomic positions (hg19 assembly). (c) For each genotype, the normalized expression of CDKN2B in STARNET is shown as well

as the linear regression line. (d,e) Distribution of all cis-eQTLs called for PDGFD in aortic and mammary artery tissue. In this case, the candidate SNP of

interest was also the most significant eQTL for PDGFD. (f) For each genotype, the normalized expression of PDGFD is shown as well as the linear regression

line. � log10(P values) and log2 normalized expression levels determined as described in the Methods section. AOR, aorta; MAM, mammary artery.
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In summary, these studies highlight the utility of combining
multiple GWAS and genomic data sets to uncover the
mechanisms of a complex disease such as CAD. We expect
many of these epigenetic changes to involve activation of SMCs;
however, defining cell specificity will require further investigation.
SMCs are one of many vascular cell types linked to athero-
sclerosis, including endothelial cells, monocytes, and macro-
phages/foam cells, however non-vascular cell types such as
hepatocytes may also be indirectly responsible for CAD pathology
through lipid metabolism4,5. While these studies of a single
vascular cell type have inherent limitations, future large-scale
efforts to investigate the crosstalk between vascular and non-
vascular cells may provide further mechanistic insight into disease
causality. Efforts to directly modify these associated regulatory
elements or genes in specific cell populations in vivo using
CRISPR/Cas9 may provide insights into the direction of effect
involving other disease processes66. Thus, by combining
systematic predictive analyses67,68 with exhaustive genome-wide
functional mapping of candidate risk loci in disease-relevant
tissues or individual cells69, followed by genomic targeting in
normal and disease states, such integrative approaches may finally
unravel the causal regulatory mechanisms of disease for early-
stage detection and/or therapeutic development.

Methods
Primary cell culture and reagents. Primary HCASMCs derived from normal
human donor hearts were purchased from three different manufacturers, Lonza,
PromoCell and Cell Applications (all tested negative for mycoplasma contamina-
tion). HCASMCs were maintained in growth-supplemented smooth muscle basal
media (Lonza) according to the manufacturer’s instructions. All experiments were
performed on HCASMCs between passages 4 and 7. Rat aortic smooth muscle cells
(A7r5) were purchased from ATCC (CRL-1444) and maintained in Dulbecco’s
modified Eagle media supplemented with 10% fetal bovine serum according to the
manufacturer’s instructions. Both HCASMCs and A7r5 (not listed in database of
misidentified cell lines maintained by ICLA) were validated by immunostaining
for alpha-smooth muscle actin using a mouse monoclonal antibody purchased
from Sigma (A2547). Human recombinant PDGF-BB, PDGF-DD and TGF-b1
(containing bovine serum albumin carrier protein) were purchased from R&D
Systems and were used at 20, 10 and 10 ngml� 1, respectively. Antibodies used for
ChIP-seq and ChIP–quantitative PCR (qPCR) were all pre-validated according to
ChIP-seq guidelines and ENCODE best practices70. Purified rabbit polyclonal
antibodies against human JUN (sc-1694 X), JUNB (sc-46 X) and JUND (sc-74 X)
were purchased from Santa Cruz. Purified rabbit polyclonal antibody against
H3K27ac (ab4729) was purchased from Abcam. Purified rabbit polyclonal antibody
against human TCF21 (HPA013189) was purchased from Sigma.

ATAC-seq analysis in HCASMCs. ATAC-seq was performed with slight
modifications to the published protocol. Briefly, HCASMCs (passages 5–6) were
cultured in normal media until B75% confluence. Approximately 5.0E4 fresh cells
were collected by centrifugation at 500g and washed twice with cold 1� PBS.
Nuclei-enriched fractions were extracted with cold lysis buffer containing 10mM
Tris–HCl, pH7.4, 10mM NaCl, 3mM MgCl2 and 0.1% IGEPAL (octylphenox-
ypolyethoxyethanol), and the pellets were resuspended in transposition reaction
buffer containing Tn5 transposases (Illumina Nextera). Transposition reactions
were incubated at 37 �C for 30min, followed by DNA purification using the DNA
Clean-up and Concentration kit (Zymo). Libraries were initially PCR amplified
using Nextera barcodes and High Fidelity polymerase (NEB). The number of cycles
was empirically determined from an aliquot of the PCR mix, by calculating the Ct
value at 25–30% maximum Rn for each library preparation. The final amplified
library was again purified using the Zymo DNA Clean-up and Concentration kit,
and the DNA was evaluated by TBE gel electrophoresis and quantified using
Bioanalyzer, nanodrop and quantitative PCR (KAPA Biosystems). Libraries were
multiplexed and paired-end 50-bp sequencing was performed using an Illumina
HiSeq 2500. Raw FASTQ files were evaluated using a modification of the FastQC
pipeline to generate per base and per sequence-level summary statistics. Libraries
that achieved consistent high-quality scores from this tool were accepted and
paired-end reads were aligned to the human genome (hg19) using Bowtie2 with the
–X 2000 maximum insert size parameter. Mitochondrial reads were not excluded
as these represented o5–10% total reads. After adjusting the read start positions to
account for Tn5 insertion bias using the preShift.pl script, peaks were called using
Model-based Analysis for ChIP-Seq (MACS) with –P value 1.0E� 05 cutoff to
reveal open chromatin peaks. Bigwig files were generated for University of Cali-
fornia Santa Cruz (UCSC) visualization, and peaks were annotated using HOMER.
To calculate the differential chromatin accessibility between treatments,

normalized read counts generated from HOMER were combined into a matrix and
a generalized linear model likelihood ratio test was used to compute P values with
the edgeR R/bioconductor package (https://bioconductor.org/packages/release/
bioc/html/edgeR.html) using default parameters. These results are
summarized in Supplementary Data 17. Alternatively, normalized read counts
at top candidate loci were subjected to unpaired two-tailed t-test with Welch’s
correction for unequal variances.

Ex vivo ATAC-seq analysis in coronary artery tissues. Coronary artery tissues
(left and right main arteries) were dissected from freshly explanted hearts from
consenting donors (under approved Institutional Review Board protocol at
Stanford University) at the time of heart transplantation. Normal arteries were
obtained from rejected donor hearts, and atherosclerotic arteries were obtained
from ischaemic diseased hearts from transplant recipients. Adventital layers were
carefully removed from coronary artery segments before snap-freezing medial
layers in liquid nitrogen and storage at � 80 �C. Medial tissues from either normal
or atherosclerotic arteries were pulverized using a liquid nitrogen chilled steel
homogenizer. An amount of 10–20mg of pulverized fresh-frozen tissue was
suspended in 1ml 1� PBS and centrifuged at 2,000g for 3min at 4 �C. The pellet
was resuspended in 1ml of a lysis buffer containing 50mM HEPES, pH 7.5,
140mM NaCl, 1mM EDTA, 10% glycerol, 0.5% IGEPAL CA-630 and 0.25%
Triton X-100, and supplemented with an EDTA-free complete protease inhibitor
(Roche). This suspension was incubated with rocking at 4 �C for 10min and
then homogenized via 15 loose strokes in a glass dounce. The homogenate was
centrifuged at 2,000g for 5min at 4 �C, and the resultant pellet was resuspended in
1ml 1� PBS. Cellular debris was filtered out with a 40-mm cell strainer, and intact
nuclei were quantified. A total of 50,000 nuclei were subjected to Tn5-mediated
transposition for 1 h and tagmented DNA was amplified and purified as previously
reported. Libraries were subjected to an additional electrophoresis step on an E-Gel
EX 2% agarose gel (Invitrogen), and gel fragments correlating to 100–1,000 bp were
excised and purified. The quality of the library preparation was determined by
evaluation of the electropherogram traces from an Agilent 2100 Bioanalyzer DNA
High Sensitivity, and libraries demonstrating appropriate nucleosomal enrichment
were multiplexed and subjected to a lane of Illumina HiSeq 2500 sequencing.
Sequences were analysed as described above.

ChIP-seq analysis. HCASMCs were cultured in normal media containing serum
and fixed in 1% formaldehyde to crosslink chromatin, followed by quenching with
glycine. 2.0E07 cells were collected, and nuclear lysates were prepared using dounce
homogenization (20 strokes) in cold hypotonic buffer, followed by lysis in 1�
RIPA buffer (Millipore). Chromatin nuclear lysates were then sheared to fragments
of 100–500 bp using a Bioruptor Pico sonicator (Diagenode) according to the
manufacturer. An amount of 5 mg of anti-rabbit IgG, TCF21 (Sigma; HPA013189),
JUN (Santa Cruz; sc-1694), JUND (Santa Cruz; sc-74) or H3K27ac antibody
(Abcam; ab4729) was added to sheared chromatin to immunoprecipitate TF–DNA
complexes overnight at 4 �C. Following capture of the antibody–TF–DNA
complexes to Protein G beads, the complexes were washed with ice-cold 1� RIPA
and 1� PBS and eluted twice in 1� TE containing 1% SDS for 10min each at
65 �C. Protein–DNA crosslinks were reversed overnight at 65 �C and ChIP DNA
was recovered using Qiagen PCR Purification kits. To generate the ChIP library,
Illumina TruSeq adapters were ligated to the ChIP DNA, followed by PCR
amplification and gel electrophoresis on a 2% agarose gel. ChIP DNA library
fragments B300 bp were selected for PCR amplification. PCR reactions were
performed under the following conditions 98 �C 30 s; (98 �C 10 s; 65 �C 30 s; 72 �C
30 s)� 14 cycles; 72 �C 5min. The ChIP DNA library concentrations were
quantitated by Qubit fluorometric and bioanalyzer analyses. Libraries were
sequenced on an Illumina HiSeq 2500 (2� 101) to obtain B45–50 million reads
per barcoded sample. Resulting fastq files were aligned to human genome hg19
using bowtie2 to generate bam files and peaks were called using MACS 1.4 with
treatment sample as TCF21, JUN, JUND or H3K27ac, and control sample as IgG
using the regional and local lambda model (TFs) or regional lambda (H3K27ac),
bandwidth of 300 and a P value threshold of 1.0E� 05.

TFBS analysis. To identify DNA-binding sites enriched in ATAC-seq open
chromatin peaks, AP-1, TCF21 or H3K27ac ChIP-seq peaks, the HOMER (http://
homer.salk.edu/homer/ngs/) findMotifsGenome.pl script was employed to search
for known TRANSFAC motifs and to generate de novo motifs59. All software
parameters were set to default values, with the addition of the ‘-size given’
command to define the width of each peak from the data rather than a constant
value. Motifs discovered by HOMER were validated with MEME-ChIP60 with a
maximum motif length of 10. The motifs identified by MEME-ChIP were further
compared with the binding motifs of known TFs. Density plots of the top de novo
motifs were generated as follows. ATAC open chromatin or ChIP-binding summits
were defined using MACS with default parameters for the collection of all
identified binding regions. Motif distribution plots were generated using HOMER
annotatePeaks.pl script centred on the respective motifs using the location of the
summits within each peak file. TRANSFAC matrices for the top HOMER known-
motif outputs were used to scan open chromatin and binding summit locations in
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the human GRCh37/hg19 genome. Scanning for motifs was performed using
annotatePeaks.pl with the following parameters: hg19-size 2000-hist 20.

Super-enhancer analysis. Super enhancers were defined using HOMER findPeaks
tool with parameters findPeaks otag directory4 -i oinput tag directory4 -style
super -o auto. In total, 24,727 H3K27ac peaks were used to define in total 653 super
enhancers and a super-enhancer stitching window of 12,500 bp. FDR rate threshold
was 0.001 and FDR effective Poisson threshold was 2.69E� 06.

Footprinting analysis. To detect genomic footprints of physical protein–DNA
binding within regions of accessible chromatin, we employed the Wellington
algorithm61. The wellington_footprints.py script was used with the updated –A
parameter to account for the Tn5 integration bias in the ATAC-seq data, and
footprints spanning all open chromatin regions were called at an FDR of 0.01.
We then centred the generated ATAC footprints on CTCF motifs using the
HOMER annotatePeaks.pl script, and utilized the dnase_average_profile.py and
dnase_to_javatreeview.py scripts with the –A parameter and the respective motif
centred intervals to generate histograms and heatmaps to plot the distribution of
Tn5 integration.

Cis-regulatory functional enrichment and network analysis. To annotate the
function of HCASMC-stimulated ATAC-seq open chromatin sites, we utilized the
GREAT (Genomic Regions Enrichment of Annotations Tool) algorithm. Test
genomic regions were uploaded to the GREAT webserver and the entire hg19
human genome was used as a background. Genes were associated with the test
genomic regions using the ‘basal plus extension’ parameters, which defines gene
regulatory domains within a proximal region of 5-kb upstream, 1-kb, downstream
and a distal region extending up to 1,000 kb from the TSS. Annotations from
various biological, molecular and disease-based ontologies were used to associate
genomic regions to functional annotations. Also, we used the aligned reads from
HCASMC-stimulated ATAC-seq with the HOMER annotatePeaks.pl script to
identify normalized read counts at TSS of nearest gene using the ‘tss’ and -size
-500,100 parameters. These regions were intersected with CAD loci to perform
k-means hierarchical clustering using a matrix of log normalized read counts across
treatments, and heatmaps were generated using the ggplot2 R package. The
CAD-associated gene list was also used with the Genes2FANs (functional
association networks) algorithm to identify potential interactions from known
functional association databases (including TFs, TRANSFAC and protein–protein
interactions). The maximum path length to detect intermediate nodes connected to
the seed nodes and z-score significance cutoff were set at 2.0.

GWAS enrichment analysis in accessible chromatin regions. GWAS SNP
positions were downloaded from the NHGRI-EBI GWAS catalogue. ATAC-seq
open chromatin regions were centred and GWAS SNPs were counted in a window
of 100 bp for ±1 kb surrounding centred ATAC-seq regions using the Feature
correlation tool from the ChIP-Cor module (part of ChIP-Seq Analysis Server of
the Swiss Institute of Bioinformatics (http://ccg.vital-it.ch/chipseq/chip_cor.php)).
Counts were normalized to the total number of reference counts. The P values for
enrichment of GWAS SNPs in ATAC-seq open chromatin regions were calculated
as described previously18. The P values were computed using binomial cumulative
distribution function b(x;n,p) in R (dbinom function). We set the parameter n
equal to the total number of GWAS SNPs in a particular GWAS phenotype.
Parameter x was set to the number of GWAS SNPs for a given GWAS phenotype
that overlap ATAC-seq regions and parameter p was set to the fraction of the
uniquely mappable human hg19 genome (2,630,301,437 bp) that is localized in the
ATAC-seq open chromatin regions and contains assessed GWAS phenotype SNPs.
Calculated binomial P value equals the probability of having x or more of the n test
genomic regions in the open chromatin domain given that the probability of that
occurring for a single GWAS genomic region is p.

Custom R script was generated to intersect data sets and calculate Fisher’s exact
P values. Peak intervals from each data set were selected to contain those that have
at least 1 bp overlap with a combined set of ENCODE DHS intervals from 125
ENCODE cell lines. ATAC-Seq, and JUN, TCF21, H3K27ac ChIP-Seq intervals
were tested either separately or intersected (ATAC-JUN, ATAC-TCF, ATAC-K27,
ATAC-K27-JUN and ATAC-K27-TCF). For each analysis, we determined overlaps
with CAD SNPs, IBD SNPs, UC SNPs or a whole GWAS catalogue minus CAD
SNPs, as a control. Overlaps between datasets, as well as sites present in one or the
other tested data set, were determined using the ENCODE DHSs as a background.
Finally, we determined DHSs devoid of each of the tested data set intervals. One-
sided Fisher’s exact test was used to determine whether the observed peak overlap
between two tested data set intervals was statistically greater when compared
against a background of all DHS peaks. Contingency matrices were made in R and
Fisher’s exact test was performed using fisher.test R command.

PCA using ENCODE DHS data sets. Processed DNase-seq data for 125 cell types
generated by the ENCODE Analysis Working Group with the uniform processing
pipeline (Uniform DNaseI HS track for Human Genome Build 37 (hg19)) were
collected from the UCSC Golden Path FTP server. Each of 125 bedgraph files was

merged using the bedtools merge tool to contain only unique and non-overlapping
intervals with a mean intensity for the overlapping intervals. Bedgraph files were
combined to make a genome-wide matrix using bedtools unionbedg tool and were
filtered for the regions smaller than 100 bp using a custom script, since these small
regions mainly represent edges of the intervals that were not identically called in
different DNase-seq files and would influence the downstream variance analysis.
Furthermore, peaks on chrX and chrY were filtered out to eliminate the gender
effect on the downstream PCA analysis of variance. To eliminate the influence of
extreme outliers, we selected only data points in the range 100–2,000 of the
absolute peak intensity. Data generated with the ATAC-seq method were processed
using MACS (MACS v1.4.2) pipeline. ATAC-seq data were normalized to
encompass the same range of data points as the DNase-seq data using the
parameter equal to the ratio of the average peak intensity for each ATAC-seq data
set and the average peak intensity for the ENCODE AoSMC cell type (as this
represents the closest cell type to HCASMCs used for ATAC-seq). Each of the
values from ATAC-seq data sets was divided with the calculated factor for that data
set. Sex chromosomes were removed and intervals smaller than 100 bp were filtered
out as described above. PCA was computed in R using the prcomp function, and
PCA plots for principal components 2 and 3 were generated using the ggplot2
package and visualized with the wesanderson colour palette package for R available
on github.

SNP motif density plot calculation. CAD and SNPs in LD were defined using
the LD threshold of 0.8. Full-length AP-1 (JUN::FOS) motif (MA0099.1) was
randomized using JASPAR (http://jaspar.genereg.net). The randomized model
was created by permuting the columns so that the base composition of the
randomized matrix remains the same as the JUN::FOS matrix to eliminate
potential base composition bias. Whole-genome matrix scan was performed
with PWMScan—genome-wide PWM scanner (http://ccg.vital-it.ch/pwmtools/
pwmscan.php). PWM scan threshold was set to 0.001 to get approximately same
number of sites as in AP-1 (randomized motif scan against hg19: 4114183 hits;
AP-1 motif 10650673 hits). Density plots were calculated with the ChIP-Cor
Analysis Module (http://ccg.vital-it.ch/chipseq/chip_cor.php) for AP-1 and
AP-1-randomized matrix using the global normalization parameter and matching
motives in both DNA strands. Correlation was repeated with the randomly selected
set of 5,265 SNPs from the set of SNPs in low LD with CAD SNPs (o0.5).

We also counted the total number of PWM sites for regions±100 bp from the
SNPs (that is, where the enrichment is seen in the AP-1 matrix density profile and
a gap is seen in AP-1-randomized matrix) and for 900–1,000 bp away (background
regions) for the CAD GWAS and control SNPs, and obtained a contingency matrix
(173,761, 63,176, 165,206 and 65,423, that is, AP-1-CAD SNPs, AP-1-randomized
control matrix-CAD SNPs, AP-1-background regions and AP-1-randomized
control matrix-in background regions) that gave us Fisher’s exact P value of
Po2.2E� 16. Similar calculation for randomized matched SNP controls gave us
non-significant P-values (P¼ 0.9491).

Allele-specific ChIP–qPCR (HaploChIP). Heterozygous genotypes at the
candidate loci were determined using TaqMan SNP genotyping qPCR assays
(Supplementary Data 15). SNP genotyping assays were further validated using
PCR-based Sanger sequencing. Briefly, heterozygous HCASMC lines were cultured
under normal conditions, growth factor stimulated, and chromatin crosslinked,
sheared and immunoprecipitated as described above. Purified DNA was then
amplified using TaqMan SNP genotyping assay probes against the candidate SNPs.
Calibration of the SNP genotyping assay was determined by mixing 10 ng of
HCASMC genomic DNA (gDNA), homozygous for each allele at the following
ratios: 8:1, 4:1, 2:1 1:1, 1:2, 1:4 and 1:8. The Log2 ratio of the VIC/FAM (VIC-
proprietary, Applied Biosystems; FAM – 6-carboxyfluorescein, Applied Biosys-
tems) intensity at cycle 40 was then plotted against the Log ratio of the two alleles
to generate a linear regression standard curve. The Log ratio of the intensity of the
two alleles from complementary DNA (cDNA) samples was fitted to the standard
curve. These values were then normalized to the ratio of gDNA for each allele to
obtain the normalized allelic ratio. The Log2 ratio of VIC/FAM intensity at cycle 40
was then fitted to the standard curve and normalized to the gDNA ratio.

Enhancer trap luciferase reporter assays. Oligonucleotides containing the
regulatory elements overlapping candidate CAD loci (156 nt for 1� construct or
468 nt for 3� construct) were synthesized for each allele and cloned into a shuttle
vector pUC57 (GeneWiz). These fragments were then isolated by double restriction
digest and subcloned into the multiple cloning site of the minimal promoter
containing pLuc-MCS luciferase reporter vector (Agilent). All constructs were
validated by Sanger sequencing. Empty vector (pLuc-MCS), 1� and 3� CAD
loci and Renilla luciferase constructs were co-transfected, with or without
pcDNA3-empty, pcDNA3-JUN, JUNB or JUND expression constructs into A7r5
or HCASMCs using Lipofectamine 3000 (Life Technologies) according to the
manufacturer’s instructions. For siRNA knockdown studies, 20 nM Silencer Select
siRNA negative control or siRNA against JUN, JUNB or JUND (Life Technologies)
was transfected in HCASMCs 12 h before reporter transfections using RNAiMAX
(Life Technologies). Media was changed after 6 h, and dual-luciferase activity
(Promega) was recorded after 24 h using a SpectraMax L luminometer (Molecular
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Devices). Relative luciferase activity (firefly/Renilla luciferase ratio) is expressed as
the fold change of the empty vector control (pLuc-MCS).

AEI assays. Total RNA was isolated from 460 primary HCASMCs from
unrelated donor tissues, purchased from three different vendors (Lonza, Cell
Applications and PromoCell) using the miRNeasy Mini kit (Qiagen) according to
the manufacturer’s instructions. Total cDNA was prepared using the High Output
cDNA Synthesis kit (Applied Biosystems) according to the manufacturer’s
instructions. Total gDNA was prepared using the Blood and Tissue DNA Isolation
kit (Qiagen). To identify appropriate markers for detecting allelic imbalance or
ASE, linked coding or untranslated region SNPs were identified in haplotype blocks
of genomic regions surrounding candidate regulatory SNPs using 1,000 Genomes
Phase 1 or 3 variants (http://browser.1000genomes.org/) in Europeans (depending
on the LD data availability for each SNP). D0 values of LD40.90 were considered
as the cutoff for linked variants; however, moderately linked variants with D040.75
were used if necessary. In the case of SNP rs17293632, given the weak linkage
between the proxy transcript SNP rs1065080, we used the intronic SNP rs17293632
itself to measure imbalance in the nascent SMAD3 pre-mRNA as a transcription
surrogate44. Another criteria for detecting ASE with these markers was minor allele
frequency (MAF) 40.15 in Europeans (as determined from 1000 Genomes data),
since this is a limiting factor to obtain sufficient heterozygous individuals from the
cohort of HCASMCs. Refer to Supplementary Data 16 for details on these proxy
transcribed SNPs. TaqMan SNP genotyping probes were ordered for the identified
ASE markers (Life Technologies) and calibrated in homozygous genotyped
individual samples for each locus, as described above. SNP genotyping assays were
further validated using PCR-based Sanger sequencing. ASE was then evaluated in
heterozygous individual samples by determining the ratio of transcript levels for
each allele using cDNA samples, and then normalized to the allelic ratio for the
corresponding gDNA samples. P values were then determined using a Student’s
t-test for the observed allelic ratios versus the expected ratio of 1.0.

RNA-seq analysis. HCASMCs were cultured as described above and stimulated
for 1 or 6 h using recombinant human TGF-b1 and PDGF-BB, and total RNA was
purified from 5.0E5 cells using the Qiagen miRNeasy kit. RNA libraries were
prepared using the Illumina TruSeq library kit as described by the manufacturer.
RNA molecules were sequenced using Illumina HiSeq 2500 (2� 101). Reads
contained in raw fastq files were mapped to hg19 using the RNA-seq aligner STAR
(v2.4.0i), which processes the data with short run times and yields high numbers
of uniquely mapped reads (https://github.com/alexdobin/STAR). Second pass
mapping with STAR was then performed using a new index that is created with
splice junction information contained in the file SJ.out.tab from the first pass
STAR mapping. Reads that have been mapped with STAR second pass mapping
algorithm were subsequently counted using the htseq-count script distributed with
the HTSeq Python package (https://pypi.python.org/pypi/HTSeq). Differential
expression of exons, genes and transcripts were assayed using the DESeq2 R
package from Bioconductor (http://bioconductor.org/packages/release/bioc/html/
DESeq2.html), which uses negative binomial distribution to estimate dispersion
and model differential expression such as to permit biological variability to be
different among tested genes (transcripts).

STARNET gene expression biobank data processing. Gene expression and
genotyping data were obtained from the STARNET database23. These consist of
RNA-seq gene expression data and genotyping data from nine cardiometabolic
tissues from up to 600 CAD patients (determined eligible for the study and
consented by the ethical committees of the Karolinska Institutet and Tartu
University) that were obtained during coronary artery bypass graft open-heart
surgeries. GenomeWideSNP_6 arrays (Affymetrix) were used for genotyping
gDNA. Total RNA was isolated from the atherosclerotic arterial wall or internal
mammary artery. Gene expression levels were determined using a standard
RNA-seq library preparation and sequencing protocol (Illumina HiSeq 2500),
followed by normalization of raw read counts to adjust for library size and batch
effects. Briefly, samples with o1 million reads were removed, and genes with
counts per million o1 in o50% of the samples were also removed. EDAseq was
then used to normalize the library size and GC % content, and outliers were
removed based on a gender-expression test, covariates were adjusted with linear
regression, outliers were again removed and last rank quantile normalization was
performed. ‘Normalized Expression Counts’ represent counts before rank quantile
normalization, as shown in Supplementary Fig. 20. Adjusted read counts were
subsequently log2-transformed, and the association between genotype and
expression was tested using a linear model.

Validating SNPs in external STARNET CAD eQTL data sets. eQTLs were called
using the MatrixEQTL R package (https://cran.r-project.org/web/packages/
MatrixEQTL/index.html) running a linear model and returning all calls with a
maximum P value of 0.05. A follow-up conditional analysis was done to test the
P(max SNP | SNP) as well as P(SNP | max SNP) for each gene. This was calculated
by regressing the genotype of SNP_1 onto the residuals of SNP_2 regressed onto
the gene expression, where SNP_2 is the SNP being conditioned on (for example,

P(SNP_1 | SNP_2)). Results were imported into LocusZoom (http://locuszoom.
sph.umich.edu/locuszoom/) to generate regional association plots.

Validating SNPs in public eQTL databases. In addition to calling eQTLs in
STARNET, candidate SNPs were queried in public eQTL databases, including
GTEx (http://www.gtexportal.org/home/), seeQTL (http://www.bios.unc.edu/
research/genomic_software/seeQTL/), the University of Chicago eQTL Browser
(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) or the Blood eQTL browser
(http://genenetwork.nl/bloodeqtlbrowser/). Queries were performed by rsID or
genomic coordinate for candidate SNP, and eQTLs were ranked by P value for all
genes. Alternatively, proxy SNPs (r2¼ 1.0) were used to report any known
eQTLs for the candidate SNPs. Results were imported into LocusZoom (http://
locuszoom.sph.umich.edu/locuszoom/) to generate regional association plots.

Statistical analysis. All experiments were performed by the investigators blinded
to the treatments/conditions during the data collection and analysis, using at least
two independent preparations and treatments/conditions in triplicate. The sample
sizes for individual experiments were determined based on the power calculations
to detect small effects in cultured cells/tissues. R/Bioconductor or GraphPad
Prism 6.0 was used for statistical analysis. For enrichment analyses, we used both
Fisher’s exact test and the cumulative binomial distribution test, as indicated.
For comparisons between two groups of equal sample size (and assuming equal
variance), an unpaired two-tailed Student’s t-test was performed or in cases of
unequal sample sizes or variance a Welch’s unequal variances t-test was performed,
as indicated. P values o0.05 were considered statistically significant. For multiple
comparison testing, two-way analysis of variance accompanied by Tukey’s post hoc
test were used as appropriate.

Data availability. All custom scripts have been made available at https://
github.com/milospjanic/IntegrativeFunctionalGenomics. Additional modified
scripts can be accessed upon request. All sequencing data that support the findings
of this study have been deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO) and are accessible through the GEO
Series accession number GSE72696. All other relevant data are available from the
corresponding author on request.
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