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Small-cell lung cancer (SCLC) is an aggressive lung tumor 
subtype with poor prognosis1–3. We sequenced 29 SCLC 
exomes, 2 genomes and 15 transcriptomes and found an 
extremely high mutation rate of 7.4 ± 1 protein-changing 
mutations per million base pairs. Therefore, we conducted 
integrated analyses of the various data sets to identify 
pathogenetically relevant mutated genes. In all cases, we 
found evidence for inactivation of TP53 and RB1 and identified 
recurrent mutations in the CREBBP, EP300 and MLL genes that 
encode histone modifiers. Furthermore, we observed mutations 
in PTEN, SLIT2 and EPHA7, as well as focal amplifications of 
the FGFR1 tyrosine kinase gene. Finally, we detected many of 
the alterations found in humans in SCLC tumors from Tp53 
and Rb1 double knockout mice4. Our study implicates histone 
modification as a major feature of SCLC, reveals potentially 
therapeutically tractable genomic alterations and provides a 
generalizable framework for the identification of biologically 
relevant genes in the context of high mutational background.

Small-cell lung cancer (~15% of all lung cancer cases) typically occurs 

in heavy smokers and is characterized by aggressive growth, frequent 

metastases and early death1,2,5. Unfortunately, no single molecularly 

targeted drug has yet shown any clinical activity in SCLC6. Genomic 

analyses have revealed genetically altered therapeutic targets in lung 

adenocarcinoma7–16 and in squamous cell lung carcinoma17–19. By 

contrast, little is known about the molecular events causing SCLC 

beyond the high prevalence of mutations in TP53 and RB1 (ref. 3). 

Systematic genomic analyses in SCLC are challenging because these 

tumors are rarely treated by surgery, resulting in a lack of suitable 

fresh-frozen tumor specimens.

We have established a global lung cancer genome research consor-

tium19, giving us access to approximately 6,600 surgically resected 

lung cancer specimens, out of which we retrieved 99 SCLC specimens. 

We conducted 6.0 SNP array analyses of 63 tumors, exome sequencing 

of 27 tumors and 2 cell lines, transcriptome sequencing of 15 tumors 

and genome sequencing of 2 tumors (Supplementary Table 1).

We applied a novel algorithm to identify significant broad 

(Supplementary Fig. 1a) and focal (Fig. 1a and Supplementary 

Table 2) somatic copy-number alterations (SCNAs) and observed 

almost universal deletions affecting 3p and 13q (containing RB1), 

frequent gains of 3q and 5p, and losses of 17p (containing TP53) 

(Supplementary Fig. 1a). Gains of 3q affected the region containing 

SOX2, which was recently shown to be focally amplified in squa-

mous cell lung cancer19,20. However, 3q gains in SCLC were less focal 
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than those in squamous cell lung cancer (Supplementary Fig. 1b). 

Focal amplifications affected MYCL1 (5/63 cases) and MYCN (4/63 

cases)21,22 (Fig. 1a). A single case harbored a focal amplification of 

MYC. All MYC family member amplifications (16% of cases) were 

mutually exclusive, suggesting genetic epistasis21–23. Focal ampli-

fications affected 8p12, including FGFR1 (6% of cases with copy 

number of ≥3.5; Fig. 1b), and 19q12, containing CCNE1 (ref. 24). 

FISH analyses in 51 independent specimens validated the occurrence 

of FGFR1 amplifications in SCLC (n = 3, 6%; Fig. 1c). We and oth-

ers have recently reported focal FGFR1 amplifications in squamous 

cell lung cancer; FGF receptor inhibitors are currently being tested 

in such patients17,19,25. Thus, FGFR1-amplified SCLC might benefit 

from FGFR inhibition. The only significant focal deletion involved 

FHIT26 (Fig. 1a and Supplementary Table 2).

Mice with conditional deletion of Rb1 and Tp53 develop  

SCLC4,27–31 bearing amplifications of Mycl1, Mycn and Nfib, which 

were subsequently also found in human SCLC28. We analyzed SCNAs  

in 20 SCLC tumors (15 primary tumors and 5 metastases) from Tp53 

and Rb1 conditional double knockout mice4 to identify alterations 

shared by both human and mouse tumors. We found significant 

amplifications of Mycl1, Mycn and Nfib (Fig. 1d). In the 15 pri-

mary tumors (Supplementary Fig. 2), Nfib did not reach statisti-

cal significance, suggesting that Nfib amplifications occur later in 

tumor evolution. Although NFIB was not significantly amplified 

in the human tumors, three samples had copy-number gain at this  

locus (data not shown). Furthermore, we identified significant 

amplifications affecting E2f2, a mediator of RB1 function32, and 

deletions of the histone acetyl transferase gene Crebbp in two mouse 

tumors (Fig. 1d).

By analyzing the transcriptome sequencing data of 15 human tumors, 

we next identified and validated 3 chimeric transcripts (Fig. 1e and 

Supplementary Table 3). Two contained a fusion partner that was also 

mutated, MPRIP-TP53 and CREBBP-RHBDF1 (Fig. 1e), both of which are 

predicted to cause loss of function of the genes involved (Supplementary 

Fig. 3a,b). Similarly, we also found a low genomic rearrangement fre-

quency by reconstruction from paired-end whole-genome sequencing 

data of two specimens (Fig. 1f). This low frequency is in accordance with 

the spectrum of SCNAs in these samples that show almost exclusively 

chromosome arm–level events (Supplementary Fig. 4a).

To identify possible differences in the overall genomic architecture 

between surgically resected (early stage) samples (n = 17) and samples 

obtained by autopsy (late stage, n = 10), we compared the spectrum of 

broad SCNAs in these two sets. We computed absolute copy numbers 

from sequencing data to correct for admixture of non-tumor cells and 

for ploidy (Supplementary Fig. 4b and Supplementary Note) but 

found no significant difference between resected and autopsy cases 

(Fig. 2a). Furthermore, there was no difference in the total mutation 

frequency (Fig. 2b) and no segregation between resected and autopsy 

cases in an analysis of mutated ‘driver’ genes (Fig. 2c,d). We further 

identified 5 triploid and 2 near-tetraploid cases (n = 29) and found 

no statistically significant over-representation of samples with ploidy 

of >2 between resected and autopsy cases (P = 0.15). On average, we 

observed a ploidy of 2.3, which is in line with previously reported 

studies based on DNA cytometry5. Thus, resected early-stage tumors 

and late-stage tumors are genomically similar, underscoring the rep-

resentative nature of our analysis.

Compared to other tumor types in global sequencing studies33–41, 

SCLC exhibits an extremely high mutation rate of 7.4 protein-changing 
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Figure 1 Identification of SCNAs, chimeric transcripts and genomic rearrangements  

in human and mouse SCLC tumors. (a) Copy-number analysis to detect significantly  

altered regions across 63 tumors. Statistical significance, expressed by q values (x axes),  

is computed for each genomic location (y axis) (Supplementary Note). Deletions (blue  

lines, lower scale) and amplifications (red lines, upper scale) are analyzed independently,  

and vertical dashed black lines indicate the significance threshold of 1%. Focally  

amplified and deleted regions were identified using narrow thresholds (upper quantile,  

10%; lower quantile, 15%) to resolve SCNAs to candidate driver genes. (b) SCNAs of  

chromosome 8 containing FGFR1 (8p12). Samples are sorted according to the amplitude  

of FGFR1 amplification. (c) FISH analysis to screen for FGFR1 amplifications in an  

independent set of 51 tumors. Quantification of green signals (FGFR1-specific probe) in comparison to red signals (centromere 8 probe) revealed three 

FGFR1-amplified samples. Scale bar, 100 µm. (d) Copy-number analysis based on array–comparative genomic hybridization (aCGH) data for 20 SCLC 

tumors derived from Tp53 and Rb1 double knockout mice. Data were analyzed as in a. Due to the small sample size, a significance threshold of 5% 

was used (vertical dashed lines). (e) Circos plot of all validated chimeric transcripts detected by transcriptome sequencing. (f) Circos plot of validated 

genomic rearrangements obtained from whole-genome sequencing. Both rearrangements affect only portions of the genome smaller than 500 kb. 

Whereas the structural variant in sample S00841 affects non-coding DNA, the rearrangement in S00830 leads to loss of exons 7–11 of the FOXP1 gene.
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mutations per million basepairs (Fig. 2b and Supplementary Fig. 5a). 

This high mutation rate is likely linked to tobacco carcinogens, reflected 

by an elevated rate of C:G>A:T transversions compared to the neutral 

mutation rate observed in evolution (Supplementary Fig. 5b)38,42–44. 

To identify pathogenetically relevant driver genes in the context of 

frequent background mutations, we applied several filters, including 

analyses of a signature of mutational selection and of gene expression 

(Fig. 2c and Supplementary Note). In particular, significantly mutated 

genes showing an expression level lower than 1 FPKM (fraction per 

kilobase of exon per million fragments mapped) in more than half of 

the 15 transcriptomes were removed. Using these adjustments, only  

two genes had q values of ≤0.1: TP53 and RB1 (Fig. 2d)22,29,30,45,46. 
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Figure 2 Comparison of resected and autopsy samples and identification of candidate  

driver mutations. (a) Comparison of broad structural genome alterations between  

surgically resected and autopsy samples. Analysis is based on absolute copy numbers  

determined using a reconstruction of the allelic state (Supplementary Note). A broad  

alteration is determined to be present if one-fourth of the chromosome arm is altered  

accordingly. Differences between resected and autopsy samples of broad SCNAs in  

3p, 3q, 5p, 13q and 17p were statistically tested by Fisher’s exact test. (b) Distribution  

of the mutation frequency observed in SCLC. The average of the mutation frequency in  

SCLC (red line and text) is compared to various tumor types taken from recent  

large-scale sequencing studies of melanoma (MEL)37, SCLC38, breast cancer (BC)35,  

ovarian cancer (OC)40, multiple myeloma (MM)34, ovarian clear cell carcinoma (OCC)36,  

prostate cancer (PC)33, renal cell cancer (RC)41 and chronic lymphocytic leukemia  

(CLL)39. (c) Schematic showing the various steps of our integrated analysis and  

filtering procedures. All candidate driver genes extracted from sequencing were  

filtered against gene expression data derived from transcription sequencing. SCNAs were  

identified from SNP arrays, and candidate SCNA regions that were represented by only a single SCLC sample were subsequently removed. (d) Candidate driver 

genes identified by significance analysis, presence in the COSMIC (Catalogue of Somatic Mutations in Cancer) database, clustered mutations and genes that are 

also involved in fusion events. The type of each mutation is shown for every sample, including the gene-specific total number of mutated samples.
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sequencing are shown in red, and the results of the extended screen using 454 sequencing are shown in black. (b) Alterations in CREBBP and EP300. 

Alterations identified by whole-exome sequencing are shown in red, and the results from extended sequencing around the region encoding the HAT 
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Notably, many of the significantly mutated genes were actually not 

expressed (Supplementary Table 4), and none of these mutations 

were called in the transcriptomes. By contrast, all known tumor sup-

pressors showed expression in the upper part of the overall distribu-

tion (Supplementary Fig. 6), supporting the use of our strategy for 

the elimination of ‘passenger’ mutations. Additional filters included an 

analysis of regional clustering of mutations in a given gene (defining 

a mutational hotspot) and integration with orthogonal data sets and 

databases (Fig. 2c)47. As in the analysis of significantly mutated genes, 

we discarded genes that were enriched for silent mutations. Together, 

these filters yielded a list of likely driver genes in SCLC: TP53, RB1, 

PTEN, CREBBP, EP300, SLIT2, MLL, COBL and EPHA7 (Fig. 2d).

SLIT2 showed a pronounced clustering of mutations (5/29 cases). 

The observed mutation spectrum (two nonsense, one frameshift dele-

tion and two missense; Fig. 3a) together with frequent genomic losses 

(Supplementary Fig. 7a) suggests that SLIT2 may be a novel tumor 

suppressor gene in SCLC. We sequenced SLIT2 in 26 additional tumors 

and 34 cell lines and found an overall mutation frequency of 10%  

(n = 89). Slit proteins are secreted ligands for Robo receptors, which 

are involved in axon guidance and cellular migration48,49. Supporting 

the notion of a tumor suppressive function of SLIT2-ROBO1 in the 

lung, Robo1-knockout mice do not develop normal lungs; surviving 

mice exhibit bronchial hyperplasia50. Accordingly, a tumor suppres-

sive role for SLIT2 has recently been implied in lung cancer cell lines51. 

Furthermore, ROBO1 was recently found to be a specific serum biomar-

ker of SCLC52. EPHA7 was recently described as a tumor suppressor 

gene that is frequently lost in lymphomas53. Given the role of EPHA7 

in embryonic development and neural tube closure54, mutations in this 

gene may contribute to the invasive phenotype of SCLC.

Mutations in CREBBP and EP300 were significantly clustered 

around the sequence encoding the histone acetyltransferase (HAT) 

domain (Fig. 3b). Of these mutations, those affecting the homolo-

gous Asp1399 (EP300) and Asp1435 (CREBBP) residues both affect 

acetylase activity in vitro55–57. Furthermore, the p.Gly1411Glu alter-

ation in CREBBP has previously been identified in lung cancer58 and 

follicular lymphoma59, and p.Gly1411Val as well as p.Asp1435Gly 

were found in relapsed acute lymphoblastic leukemia60, suggest-

ing a mutational hotspot. By contrast, the p.Arg386fs alteration 

and the CREBBP-RHBDF1 gene fusion truncate the protein at the 

N terminus (Fig. 3c and Supplementary Fig. 3a). Together with 

the observation of Crebbp deletions in mouse SCLC (Fig. 1d) 

and the recently described CREBBP-BTBD12 gene fusion in the 

NCI-H209 SCLC cell line38, inactivation of CREBBP and EP300 

likely has a major role in SCLC. Focused sequencing of the HAT 

domain–encoding exons of CREBBP and EP300 in a validation set 

of 26 additional SCLC tumor specimens and 45 cell lines, as well 

as break-apart FISH performed in 34 SCLC cell lines, confirmed 

an overall mutation frequency of 18% (point mutations, insertions 

and/or deletions (indels) and gene rearrangements) (Fig. 3b–d). 

CREBBP and EP300 mutations have recently been described in 

relapsed acute lymphoblastic leukemia and B-cell lymphoma57,61 

but have not been observed at such high frequency in solid tumors 

to date. Furthermore, all mutations and most of the deletions in 

CREBBP and EP300 occurred in a mutually exclusive fashion in the 

total set of 101 samples analyzed, suggesting epistasis (Fig. 3e). The 

observed alterations are predominantly heterozygous, supporting 

haploinsufficiency57,62. Thus, even hemizygous deletions occurring 

in at least 10% of non-mutant samples (Fig. 3e and Supplementary 

Fig. 7b) may be considered inactivating.

Further supporting the relevance of CREBBP and EP300 muta-

tions in SCLC, all but one (the mutation encoding the p.Asn1286Ser 

alteration in EP300) of the missense mutations were classified as 

being damaging by computational analyses63. Furthermore, all HAT 

domain alterations were located at the interface of substrate binding56 

(Fig. 4a), thus supporting the notion that they may affect catalytic 

activity. We assessed the functional impact on histone acetylation of 
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the p.Gly1411Arg, p.Asp1435Tyr and p.Ser1432Pro CREBBP altera-

tions (homologous to p.Gly1375Arg, p.Asp1399Tyr and p.Ser1396Pro 

alterations in EP300) in reconstitution experiments in Crebbpfl/fl; 

Ep300fl/fl (Crebbp and Ep300 Cre-deleted double knockout) mouse 

embryonic fibroblasts (MEFs)64–66. All three mutations significantly 

reduced acetylation of histone 3 lysine 18 (H3K18) (Fig. 4b,c). 

Specifically, p.Asp1435Tyr induced complete, p.Gly1411Arg pro-

nounced and p.Ser1432Tyr moderate loss of H3K18 acetylation. 

Furthermore, knockdown of CREBBP in the DMS114 SCLC cell line 

that lacks CREBBP HAT domain alterations resulted in a moderate 

but significant increase in cell proliferation (Fig. 4d,e). Tumors with 

mutations and hemizygous deletions in CREBBP and EP300 did not 

exhibit a significantly different pattern of gene expression compared to 

wild-type tumors after correcting for multiple hypothesis testing (data 

not shown), suggesting that global changes in gene expression are not 

the predominant mechanism by which loss of HAT activity contrib-

utes to SCLC pathogenesis. Taken together, these results support a role 

for loss of CREBBP and EP300 function in the biology of SCLC.

Another histone-modifying enzyme mutated in SCLC was the 

methyltransferase gene MLL, which was recurrently mutated to alter 

Ile960 (p.Ile960Met)47. MLL rearrangements occur in acute leuke-

mia67,68. Similarly, recurrent genetic alterations in histone modifying 

genes seem to be a newly identified hallmark of SCLC.

Confirming previous reports69, we found mutations in PTEN 

(3/29 cases), all of which are likely (p.Gly165Glu) or proven 

(p.His61Arg and p.Arg130Gly) to affect phosphatase activity70, 

thereby activating the phosphatidylinositol 3-kinase (PI3K) path-

way. We did not observe any mutations in PIK3CA71.

We developed a mathematical model that gives insight into the 

allelic state of each tumor and yields estimates of tumor heterogene-

ity (Supplementary Note). On average, we observed a rather low het-

erogeneity of approximately 6.5% (Supplementary Table 5). Using the 

reconstructed allelic states of each tumor, we found that copy-neutral 

loss of heterozygosity (CNLOH) events (complete loss of one allele at 

a given locus combined with a match of the absolute copy number at 

that locus with the overall ploidy of the sample) were enriched at the 

TP53 and RB1 loci (Fig. 5a,b). Furthermore, all TP53 and RB1 muta-

tions in CNLOH regions were early events (Fig. 5b), as their allelic 

fractions were compatible with the tumor purity. By integrating the dif-

ferent data sets, we found that at least one allele of TP53 and RB1 was 

affected by any genomic event (mutation (including rearrangement) 

or hemizygous deletion (LOH)) in all cases (Fig. 5c). Thus, similar to 

genetically manipulated mouse models of SCLC, inactivation of TP53 

and RB1 are early and necessary events in the development of SCLC 

in humans as well4,27–31. Finally, we identified one case, in which the 

affected individual had undergone surgery for lung adenocarcinoma 3 

years before diagnosis with SCLC. Whereas both tumors contained the 

same TP53 alteration (p.Val73fs), the RB1 alteration (p.Arg251*) was 

restricted to the SCLC tumor (Supplementary Fig. 8), compatible with 

trans-differentiation of adenocarcinoma cells to SCLC cells, mediated 

in part through loss of RB1. Acquired resistance of EGFR-mutant lung 

adenocarcinomas to EGFR inhibition has been linked with trans-differ-

entiation to SCLC72,73. It is tempting to speculate that loss of RB1 may be 

mechanistically involved in such cases of acquired resistance as well.

Despite methodological challenges (limited sample set and high 

mutation frequency), integrative genome analyses of human and 

mouse SCLCs afforded a molecular map of this tumor type, condensed 

in five categories (Fig. 5d). The tumor-suppressive functions of p53 

rely on its acetylation by CREBBP or EP300 (refs. 74–79). However, 

given the universal loss of p53 function in SCLC, the tumor suppres-

sive functions of CREBBP that we observed are likely independent of 

p53. One of the best-studied functions of SLIT2 is its involvement in 

actin polymerization mediated by Cdc42 (ref. 80). We speculate that 

this property might enhance invasive capabilities and thus contribute 

to the aggressiveness of SCLC. The reported functions of EPHA7 

(refs. 53,54) may also contribute to this phenotype. Beyond univer-

sal losses of TP53 and RB1 and amplifications of MYCL1, MYCN 

and MYC, we present PTEN mutations and FGFR1 amplifications 

as potentially therapeutically tractable genome alterations. Finally, 

we define genomic alterations that affect the histone-modifying 

enzymes CREBBP, EP300 and MLL as the second most frequently 

mutated class of genes in SCLC. In summary, our study represents a 
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considerable extension of the current molecular concept of SCLC and, 

more broadly, provides an example of how integrative computational 

genome analyses can provide functionally tractable information in the 

context of a highly mutated cancer genome.

URLs. ATCC, http://www.atcc.org/.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes. Binary sequence alignment data of 300-bp regions 

around all identified somatic mutations, segmented human SNP 

array data and segmented mouse aCGH data can be downloaded  

from http://www.uni-koeln.de/sclc/SCLC_Data.tgz.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Sample preparation, DNA and RNA extraction and Illumina sequencing. 

Total RNA and DNA were obtained from fresh-frozen tumor and matched 

fresh-frozen normal tissue or blood. Tissue was frozen within 30 min after 

surgery and was stored at –80 °C. For autopsy cases, tumors were derived 

within a few hours after death. Blood was collected in tubes containing the 

anticoagulant EDTA and was stored at −80 °C.

Total DNA and RNA were extracted from fresh-frozen lung tumor tissue 

containing more than 60% tumor cells. Depending on the size of the tissue, 

15–30 sections, each 20 µm thick, were cut using a cryostat (Leica) at –20 °C.  

The matched normal sample obtained from frozen tissue was treated accord-

ingly. DNA from sections and blood was extracted using the Puregene 

Extraction kit (Qiagen) according to the manufacturer’s instructions. DNA 

was eluted in 1× TE buffer (Qiagen), diluted to a working concentration of 

150 ng/µl and stored at –80 °C.

We used the SPRIworks system (Beckman Coulter) for automated library 

construction. For whole-exome sequencing, exome enrichment was per-

formed using the SureSelect Human All Exon 38Mbp Kit (Agilent), follow-

ing the manufacturer’s protocol. Exon-enriched libraries were subsequently 

paired-end sequenced using mostly a read length of 2 × 95 bp on the Illumina 

Genome Analyzer IIx (Supplementary Table 5). Whole-genome sequencing 

was performed on the Illumina HiSeq 2000 using a read length of 2 × 100 bp 

for all samples.

Sections for RNA extraction were disrupted and homogenized for 2 min 

at 20 Hz with the Tissue Lyser (Qiagen), and RNA was extracted using the 

Qiagen RNeasy Mini kit. RNA quality was assessed in a Bioanalyzer, and only 

samples showing an RNA integrity number (RIN) of >8 were retained for 

transcriptome sequencing. RNA sequencing (RNA-seq) was performed on 

cDNA libraries prepared from PolyA+ RNA extracted from tumor cells. We 

aimed for a library with an insert size of 250 bp, allowing us to sequence 95-bp 

paired-end reads without overlap. All RNA-seq libraries were sequenced on 

the Illumina Genome Analyzer IIx.

Processing of whole-exome and whole-genome sequencing data. Raw 

sequencing data were aligned to the human genome (NCBI Build 36/hg18) 

using MAQ82 (version: 0.7.1) for whole-exome data and the Burrows-Wheeler 

Aligner (BWA; version: 0.5.9rc1)83 for whole-genome sequencing data. To 

prevent miscalls that might be caused by duplicated sequencing errors, pos-

sible PCR duplicates were removed form the alignments. The quality of the 

sequencing data was assessed by evaluating criteria such as on-target coverage 

(exome), average coverage and insert size. These quality metrics are summa-

rized in Supplementary Table 5.

Mutation detection. We implemented a new variant caller to identify somatic 

mutations from the aligned sequencing (M.P. et al., unpublished data). To this 

end, tumor-specific characteristics, including local SCNAs, tumor purity, and 

total aneuploidy were incorporated into a mathematical model that controls vari-

ant calling. Details of our approach are presented in the Supplementary Note.

Reconstruction of rearrangements from whole-genome paired-end data. To 

reconstruct rearrangements from paired-end data, we first screened for read 

pairs that were either separated by at least 600 bp or showed incorrect orienta-

tion. For the regions encompassing this type of read pair, we next examined 

whether the region had aberrant reorganization in the matched normal sample. 

The remaining genomic locations were then annotated for repetitive elements. 

We discarded those locations where both pairs mapped to the same repeat type, 

as the sequences showed a very high degree of homology, which might lead 

to an elevated rate for the alignment of artifacts. The remaining candidates 

were finally filtered by comparing the coverage of the read pairs to the total 

read coverage in the region that encompassed the reads. To validate these 

candidates by genomic PCR, two candidate-specific primer sets encompassing 

the fusion points were designed: one for each of the two possible orientations 

of the rearrangements. All validated genomic rearrangements are shown in 

Supplementary Fig. 9 and Supplementary Table 6.

Validation of somatic mutations and frequently mutated genes. Because of 

the high mutation rate, we only systematically validated by dideoxy sequencing 

those mutations that were detected in the candidate driver genes TP53, RB1, 

PTEN, CREBBP, EP300, SLIT2, MLL, COBL and EPHA7. For CREBBP, EP300 

and SLIT2, we extended our sequencing efforts to an independent valida-

tion cohort. To this end, we sequenced the regions around the gene sequence 

encoding the HAT domain (exons 18–30) for CREBBP and EP300 by dideoxy 

sequencing. For SLIT2, the full-length gene was screened for mutations using 

454 sequencing. Further details and results from our validation strategy are 

given in the Supplementary Note.

Analysis of significantly mutated genes and detection of mutational 

hotspots within a gene. The analysis of significantly mutated genes was an 

extension of a previously described method84 to correct for gene expression 

and the accumulation of synonymous mutations. Conceptual and mathemati-

cal details are outlined in the Supplementary Note.

Mutational hotspots within a gene were detected by resampling positions 

of observed mutations. P values were computed by comparing the observed 

variance of the mutations with the distribution of the variance derived from 

resampled mutations. We restricted this analysis to genes with at least three 

somatic mutations and those that did not show enrichment of silent mutations; 

frameshift indels were not considered. The results of this analysis for all genes 

having a P value of ≤0.05 are shown in Supplementary Table 7.

Analysis of RNA-seq data. For analysis of RNA-seq data, we have developed a 

pipeline that affords accurate and efficient mapping and downstream analysis 

of transcribed genes in cancer samples (R. Sun et al., unpublished data). Details 

of this method are presented in the Supplementary Note.

FISH analyses. A dual-color break-apart FISH assay was developed to assess 

CREBBP and EP300 (chromosomes 16 and 22, respectively) rearrangements 

on the chromosomal level, as has been described previously85. For the CREBBP 

break-apart assay, we used the BAC clone RP11-962J17 for centromeric labe-

ling with digoxigenin (green) and RP11-363A1 for telomeric labeling with 

biotin (red). Similarly, for the EP300 break-apart assay, we used BAC clone 

RP11-928B9 for telomeric labeling with digoxigenin (green) and RP11-844C16 

for centromeric labeling with biotin (red). Further information about the 

break-apart FISH assay is given in the Supplementary Note. FGFR1 FISH 

analysis was carried out as described elsewhere86.

Analysis of SNP 6.0 data. Genomic DNA was hybridized to Affymetrix SNP 

6.0 arrays according to the manufacturer’s instructions. Raw signal intensi-

ties were processed using the same approach as in a previous publication19, 

with modifications in the normalization of SNP probes. Allele-specific copy 

numbers were estimated using an adaption of the PLASQ algorithm87 to 

the design of the SNP 6.0 arrays. Parameters of the log linear model that 

account for allele-specific probe affinities and probe-specific background were 

calibrated by a Gauss-Newton approach. The resulting raw copy numbers 

were segmented using circular binary segmentation88. Significantly ampli-

fied and deleted regions were assessed by a novel rank sum–based method 

(Supplementary Note).

aCGH analysis of mouse tumors. We extracted tumor and normal DNA form 

explanted p53- and Rb1-deficient SCLC mouse tumors using the Gentra DNA 

extraction kit (Qiagen, Gentra Puregene). In total, 20 tumors were analyzed. 

Among the 20 tumors, we analyzed 15 primary tumors and 5 tumors at meta-

static sites. Of the five metastases, two tumors were harvested from an inde-

pendent mouse, whereas the remaining three were explanted from the same 

mouse from which a primary tumor had been extracted. Arrays were hybrid-

ized and analyzed as described previously4.

Analysis of histone acetylation by indirect immunofluorescence. MEFs 

with conditional alleles of Crebbp and Ep300 were transduced with retrovirus 

expressing HA-tagged Crebbp protein (either with or without alterations in 

the HAT domain). After retroviral transduction, the endogenous loxP-flanked 

(floxed) alleles of Crebbp and Ep300 were recombined using Cre-expressing 

adenovirus to produce MEFs lacking endogenous Crebbp and Ep300 (double 

knockout MEFs). Four days after deletion of endogenous Crebbp and Ep300, 

cells were seeded on slides. The following morning, cells were fixed (in 3% 

n
p
g

©
 2

0
1
2
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.



NATURE GENETICS doi:10.1038/ng.2396

paraformaldehyde for 10 min at room temperature), permeabilized (0.1% 

Triton X-100 in PBS) and blocked in 3% nonfat milk in PBS for 30 min. Cells 

were incubated with primary antibody against the HA tag (1:500 dilution; 

mouse monoclonal HA-11, Covance) or H3K18Ac (1:1,000 dilution; rabbit 

polyclonal ab1191, Abcam) for 3 h at room temperature, and cells were then 

washed and incubated with secondary antibody (1:500 dilution; donkey anti-

body to mouse conjugated to CY3, Jackson or 1:500 dilution; goat antibody to 

rabbit conjugated to Alexa Fluor 488, Invitrogen) and DAPI for 1 h. Confocal 

images were acquired, and individual nuclei were masked on the basis of 

the DAPI signal. The mean signal intensity for the nuclei was assessed using 

Slidebook software. The background mean signal intensities for HA (CY3) 

and H3K18Ac (Alexa 488) were determined for nuclei from double knockout 

MEFs not transduced with retrovirus. Data were expressed as the ratio of 

the mean H3K18Ac signal intensity for each nucleus to the mean HA signal 

intensity for the same nucleus. Background signal was subtracted from each 

mean signal intensity value before the ratio was calculated. Only nuclei with a 

Crebbp-HA mean signal intensity that was at least twofold above background 

were analyzed. Graphs and statistics were produced using Prism GraphPad 

software. The immunofluorescence protocol (with some modifications) was 

described previously29,66.

CREBBP knockdown and growth analysis. Cell lines: The SCLC cell line 

DMS114 was cultivated in RPMI medium (Sigma Aldrich) supplemented with 

10% FCS (PAA Laboratories) and 1% penicillin-streptomycin (Invitrogen). 

The cell line was confirmed to be free of cross-contaminations based on a short 

tandem repeat (STR) analysis conducted at the Leibniz-Institute DSMZ. The 

DMS114 cell line lacks CREBBP mutations and deletions, as determined by 

cDNA sequencing and copy-number analysis, respectively.

shRNA-mediated knockdown of CREBBP in DMS114: A CREBBP-specific 

shRNA (AAATGCCAGTGACAAGCGAAACCAACAAA, OriGENE) and 

a scrambled shRNA control sequence (AACAAGATGAAGAGCACCAA, 

Sigma-Aldrich) were inserted into a pLKO.1-puro–based vector (Sigma) and 

cotransfected with pMD.2 and pCMVd.8.9 helper plasmids into HEK 293 TL 

cells using the TransIT-LT1 reagent (Mirius). Similarly, pLKO.1-puro vectors 

without any shRNA inserts were applied and served as an additional con-

trol. After 48 h, replication-incompetent lentiviruses were collected from the 

supernatant to infect DMS114 cells in the presence of 10 µg/ml polybrene 

(Millipore). To select for transduced cell clones, medium was replenished with 

growth medium containing 3 µg/ml puromycin (Sigma) 24 h after infection.

Protein blot analysis: Equal protein amounts of cellular lysates were sepa-

rated on 4–12% Tris-glycine gels (Invitrogen) and subjected to protein blot 

analysis to detect endogenous amounts of CREBBP (A-22, SC-369, Santa Cruz 

Biotechnology) and actin (691001, MP Biomedicals).

Cell growth analysis: Virally transduced DMS114 cells were seeded into  

6-well dishes (50,000 cells per well) and maintained for 5 d in selective growth 

medium. Cell growth was assessed by counting the cellular particles (Z1 

Particle Counter, Beckman Coulter) in triplicate every 1–2 d.

Cell culture. Cell lines were obtained in part from the American Type Culture 

Collection (ATCC) or were received as a kind gift from X.X. Ninomiya 

(University Hospital Okayama) and were cultured as described previously89, 

using either RPMI or HITES cell culture medium supplemented with 10–20% 

FBS. Whole-genome DNA was extracted from cell lines using the Puregene 

kit (Qiagen) as described previously89.

Dideoxy sequencing. For validation sequencing, primer pairs were designed 

to enclose the putative mutation. For resequencing, we designed primer pairs 

that covered the desired amplicons. Sequencing was carried out as described 

previously90, and electropherograms were analyzed by visual inspection using 

Mutation Surveyor 2.03 software (SoftGenetics).

Additional data are given in Supplementary Figures 10–12, Supplementary 

Tables 8–13 and the Supplementary Note.
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