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Integrative genomic analyses identify susceptibility
genes underlying COVID-19 hospitalization
Gita A. Pathak1,2,13, Kritika Singh3,4,13, Tyne W. Miller-Fleming 3,4, Frank R. Wendt 1,2, Nava Ehsan5,

Kangcheng Hou6, Ruth Johnson7, Zeyun Lu 8, Shyamalika Gopalan8, Loic Yengo9, Pejman Mohammadi5,10,

Bogdan Pasaniuc 11,14, Renato Polimanti 1,2,14, Lea K. Davis 3,4,14 & Nicholas Mancuso 8,12,14✉

Despite rapid progress in characterizing the role of host genetics in SARS-Cov-2 infection,

there is limited understanding of genes and pathways that contribute to COVID-19. Here, we

integrate a genome-wide association study of COVID-19 hospitalization (7,885 cases and

961,804 controls from COVID-19 Host Genetics Initiative) with mRNA expression, splicing,

and protein levels (n= 18,502). We identify 27 genes related to inflammation and coagu-

lation pathways whose genetically predicted expression was associated with COVID-19

hospitalization. We functionally characterize the 27 genes using phenome- and laboratory-

wide association scans in Vanderbilt Biobank (n= 85,460) and identified coagulation-related

clinical symptoms, immunologic, and blood-cell-related biomarkers. We replicate these

findings across trans-ethnic studies and observed consistent effects in individuals of diverse

ancestral backgrounds in Vanderbilt Biobank, pan-UK Biobank, and Biobank Japan. Our study

highlights and reconfirms putative causal genes impacting COVID-19 severity and sympto-

mology through the host inflammatory response.
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Coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
was first reported in December 2019 and rapidly pro-

gressed into a global pandemic1. Approximately 10–20% of
patients known to be infected with the respiratory virus SARS-
CoV-2 need hospitalization2, and among them, a fraction face
significant morbidity and mortality3. In addition to social deter-
minants of health, the host’s genetic background is likely to
contribute in explaining such diverse clinical outcomes. While
previous efforts have demonstrated the role of ACE2 and
TMPRSS2 in host defense against COVID-194, there remains
limited understanding for the role of host genetics contributing to
severe COVID-19 outcome variability.

Genome-wide association studies (GWAS) have provided an
opportunity to characterize the role of host genetics underlying
COVID-19 risk and severity5–9. Initial efforts8 identified variants
associated with COVID-19 related respiratory failure at the
3p21.31 and 9q34.2 regions, providing evidence for immune- and
blood-group-related mechanisms. Subsequent studies leveraging
much larger preexisting genetic cohorts have since replicated
these results and identified more than 15 genomic regions asso-
ciated with severe COVID-19 outcomes5–7,9. Due to extensive
linkage-disequilibrium patterns, the association signals at identi-
fied risk regions typically span multiple genes (e.g., SLC6A20,
LZTFL1, CCR9, FYCO1, CXCR6, and XCR1 at 3p21.31), which
makes identifying target genes challenging. To this end, previous
work9 integrated lung and whole-blood transcriptomic data
together with GWAS to identify genes associated with COVID-19
severity, however, this study had limited statistical power due to
the relatively small sample size (2244 critically ill patients).

Here, to map genes and pathways involved in COVID-19
severity we integrate mRNA expression, splicing, and protein
abundance data (n= 18,502) with data from a GWAS of COVID-
19 related hospitalization (n= 7885 cases, 961,804 controls;
Freeze 4 COVID-19 HGI excluding 23andMe participants5–9).
We perform mRNA/splicing/protein transcriptome-wide asso-
ciation studies (TWAS/spTWAS/PWAS) to identify 27 genes
across 13 genomic regions whose genetically predicted activity is
associated with COVID-19 related hospitalization. We further
investigate the clinical and functional role of these 27 genes using
phenome-wide (PheWAS) and laboratory-wide (LabWAS) asso-
ciation scans to map their role in immunity and blood biomarkers
in European and African ancestry patients from the Vanderbilt
University Medical Center biobank (BioVU; n= 85,460). We
replicate phenotypes identified from BioVU in secondary cohorts
of multiethnic individuals from the Pan-UK Biobank (980
Admixed American, 6636 African, 8876 Central/South Asian,
2709 East Asian, 420,531 European, and 1599 Middle Eastern)
and Biobank Japan (up to 200,000 Japanese participants). Taken
together, our results suggest multiple molecular mechanisms
contributing to severe COVID-19 outcomes and highlight
potential therapeutic targets (Fig. 1).

Results
TWAS identifies genes for COVID-19 related hospitalization.
To identify genes underlying COVID-19 related hospitalization,
we tested the predicted expression of 22,207 genes across 49
tissues for association with COVID-19 related hospitalization (see
Methods). We identified 123 associations representing 21 genes
across 45 tissues at eight independent genomic regions (p value
<2.3E-6; Fig. 2 and Supplementary Data 1, 2). Next, to improve
statistical power, we tested for association between predicted gene
expression levels from multiple tissues simultaneously with
COVID-19 related hospitalization GWAS. Of the 22,207 tested
genes, we identified 14 genes across ten genomic regions, which

consisted of two additional genes—XCR1 and DNAH3 (p value
<1.4E-06; Supplementary Fig. 1 and Supplementary Data 3).
Overall, we found 23 TWAS-based gene associations across ten
genomic regions.

To find additional support for genetic regulation of identified
susceptibility genes by SNPs at risk regions, we tested the 123
gene/tissue pairs identified in single tissue scans for allelic
imbalance within 1Mb GWAS regions (see Methods). We
identified nine genes (ABO, CCR2, CXCR6, FYCO1, IFNAR2,
IL10RB, LZTFL1, OAS1, and OAS3) with evidence of allelic
imbalance at COVID-19 GWAS risk variants, with three genes
(ABO, OAS3, and IL10RB; see Supplementary Fig. 2 and
Supplementary Data 4) when restricted to leading GWAS index
variants (p value <0.05/21). Together, these results further
support a model where risk is conferred through transcriptomic
dysregulation of key target genes. Next, we focused on the impact
of alternative splicing regulation for COVID-19 severity and
performed a multi-tissue splicing transcriptome-wide association
study (spTWAS; see Methods). Overall, we tested 131,376 splice
sites of predicted alternative-splicing expression across 49 tissues
for association with COVID19 related hospitalization and
identified 420 associations representing 43 splice variants for 11
genes across 49 tissues and five genomic regions (see Fig. 3 and
Supplementary Data 5, 6). Next, we performed a multi-tissue
analysis (see Methods) and identified 34 splice variants for 12
genes (two genes—IFIT3 and GNL3 not identified in single-tissue
scans) across 40 tissues (p value <3.7E-07; see Supplementary
Fig. 3 and Supplementary Data 7).

Comparing genes identified from TWAS (23 genes) and
spTWAS (13 genes), nine genes were implicated by both
approaches—LZTFL1, DPP9, IL10RB, IFNAR2, OAS3, FYCO1,
ABO, OAS1, and XCR1. Alternative splicing had stronger overall
association signals at the nine genes in common (p value= 2.17E-
09), with 5/9 genes showing greater signals on average (p value
<0.05/9; see Supplementary Data 8).

Next, we interrogated the role of genetic regulation of protein
abundances and performed a proteome-wide association study
(PWAS) using 1031 predictive models of plasma proteins fitted
from population data in the INTERVAL study (N= 3301; see
Methods)10. Of the 1031 tests performed, two genes (ABO and
OAS1) were significantly associated with COVID-19 related
hospitalization (p value <4.85E-5; Fig. 1 and Supplementary
Data 9).

We employed gene set enrichment analysis (GSEA)11 to
identify statistically overrepresented pathways for the 27 genes
identified through multilevel transcriptomic integration. Signifi-
cant pathways, among others, include cytokine–cytokine receptor
interaction (pFDR= 3.13E-10; Supplementary Fig. 4), chemokine
signaling pathway (pFDR= 9.89E-9), and JAK-STAT signaling
pathway (pFDR= 1.87E-2) (Supplementary Table 1). Analyzing
lung and whole-blood tissue-specific TWAS z-scores of genes that
belong to the identified pathway set, we found consistent signals
of downregulation, suggesting that decreased expression levels at
these genes increase the severity of COVID19 outcomes
(Supplementary Fig. 4). We also performed gene regulatory
network (GRN) identification, connecting transcription factors
(TFs) to gene targets. Retaining TFs with most of the number of
gene targets, we observed 30 TFs that target 17 genes
(Supplementary Fig. 5).

Studies have reported decreased lung function in COVID-19
affected individuals. Therefore, we investigated lung traits that
share a locus (colocalize) with the novel genes identified in this
study, and observed GNL3 colocalized with measures of lung
function i.e., forced expiratory volume (FEV; see Methods: H4 PP:
93%) and forced vital capacity (FVC; H4 PP:89.4% Supplemen-
tary Data 10).
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Phenome- and laboratory-wide association scans highlight
functional role for the 27 genes. We investigated the potential
functional role of the 27 TWAS genes using data of 1404 clinical
phenotypes for N= 70,439 individuals of European ancestry
using the Vanderbilt Biobank, BioVU (see Methods; Fig. 4 and
Supplementary Data 11). Overall, 40 clinical phenotypes were
significantly associated with genetically predicted ABO, IFNAR2,
and CCR1 expression levels; ABO accounted for the majority (30
out of 40) of the associations. Top associations with genetically-
derived ABO gene expression were driven by circulatory system
phenotypes, including acute pulmonary heart disease, deep vein
thrombosis, other venous embolism and thrombosis, pulmonary
heart disease, and acute pulmonary thrombosis and infarction
(OR= 1.47; p value= 3.97E-11). IFNAR2 was associated with
migraine (OR= 1.35; p value= 4.10E-06) and with throat pain
(OR= 2.05; p value= 2.62E-05; Supplementary Table 2). Across
the 17 phenotype categories, we found circulatory system-related
phenotypes were enriched for association (see Methods; 7.23-fold
enrichment, p value= 8.62E-22, Supplementary Data 11). We
repeated an enrichment analysis using all association data,
regardless of statistical significance, and observed circulatory- and
infectious disease-related phenotypes strongly enriched for asso-
ciation signal on average (p value <3.9E-44; Supplementary
Table 3).

Next, we focused on laboratory results for N= 70,337
individuals of European ancestry using the Vanderbilt Biobank,
BioVU (see Methods). For the 323 laboratory traits tested, we
found 32 labs significantly associated with four genes (ABO,
IFNAR2, KEAP1, and SLC6A20; p value <1.55E-04; see Fig. 5 and
Supplementary Data 12). Of these, ABO captured 27/32 significant
associations (mean OR= 1.33; p value= 8.02E-14 < 1.40E-04).
Genetically-predicted ABO expression was associated with
various measures of blood and platelet count, coagulation factors,
and ferritin in blood, as well as labs measuring immune and
metabolic function (Supplementary Data 12). Genetically-
predicted IFNAR2 expression was negatively associated with
creatine kinase (OR= 0.89; p= 5.85E-05; Supplementary

Data 12). Genetically-predicted KEAP1 expression was positively
associated with total cholesterol, and non-high-density lipopro-
tein levels (beta= 0.50, p= 3.72E-05). SLC6A20 genetically-
predicted expression was negatively associated with basophil
volume in the blood (beta=−0.19, p= 4.04e-5) and magnesium
volume in serum/plasma (beta=−0.26, p= 1.04e-4). Across the
12 broad lab definitions in our data, among significant LabWAS
findings we observed enrichment for blood-related lab measure-
ments (see Methods; 4.21-fold enrichment, p value= 1.23E-11;
Supplementary Table 4). When extending enrichment analyses to
all associations, we found blood- (see Methods; p value= 9.23E-
22; Supplementary Table 5) and immune-related labs (p value=
2.81E-14) displayed the greatest enrichment, with toxicology-,
urinary-, and cancer-related labs exhibiting significant depletion
of signal (Supplementary Table 5).

Cross-ancestry phenotypic comparisons. To perform cross-
ancestry validation of the clinical and laboratory phenotypes
implicated in the European-based results, we performed
phenome-wide association study (PheWAS) and LabWAS in the
N= 15,123 individuals of African ancestry in the BioVU records.
Of the 32 identified laboratory measures, we found 22 ABO-
associated labs replicated at nominal levels (p value <0.05) with
five replicating after adjusting for the number of tests performed
(p value <0.05/32). We attribute a lack of statistical power to the
17 phenotypes that did not replicate after multiple testing cor-
rections. Effect sizes across ancestries were highly concordant
(slope= 0.87, 95CI [0.73, 1.01], p value= 1.66-13; see Methods;
Supplementary Data 12 and Supplementary Fig. 6), with no
individual gene/lab pair demonstrating evidence of significant
heterogeneity (p value <0.05/32). Considering the 40 clinical
phenotypes identified in participants of European ancestry, we
found none that replicated considering a Bonferroni-corrected
significance in African Ancestry individuals. This was largely due
to reduced statistical power from smaller sample sizes, as esti-
mated effect sizes were similar across ancestries (slope= 0.33,
95CI [0.25, 0.41], p value= 6.72E-10; see Methods;

Fig. 1 Study Overview. We performed a multilevel transcriptome-wide association study (TWAS) of genetically regulated expression (GReX) by
integrating gene, splicing, and proteome expression data with genome-wide summary statistics of COVID-19 hospitalization. For the significant genes
identified, we performed pathway analysis, allele-specific imbalance, and gene-based PheWAS of clinical phenotypes and LabWAS of clinical laboratory
measures using individual-level GReX values in Vanderbilt Biobank (BioVU). For the significant traits identified, we performed a second, SNP-based
PheWAS in multi-ancestry Pan-UKBiobank and Biobank Japan.
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Supplementary Data 11 and Supplementary Fig. 6). These cross-
ancestry analyses suggest similar effects of predicted expression
on relevant clinical and laboratory phenotypes.

We next sought to test cross-ancestry replication of identified
phenotypes in the Pan-UK Biobank and Biobank Japan. Briefly,
we performed PheWAS using LD-independent eQTL/sQTL SNPs
(see Methods) of TWAS-identified genes with significant
phenotype associations in GReX-based PheWAS from BioVU.
We identified 233 FDR significant SNP-phenotype results
dominated by the associations between ABO (214/233, 91.8%)
SNPs and blood differential tests such as basophils and

monocytes. A subset of 80/233 (34.3%) FDR significant associa-
tions also were nominally significant in at least one population of
non-European ancestry (p value <0.05; Supplementary Data 13,
14). There were six instances of FDR significant effect estimate
heterogeneity across ancestries, all of which involved ABO SNPs
and the biomarker alkaline phosphatase or erythrocyte properties.
We next tested how significant EUR effect estimates reflect SNP
effects across ancestries. We found that EUR SNP effects
significantly predicted SNP effects in six global ancestry groups
(maximum prediction in AMR; Supplementary Data 15 and
Supplementary Fig. 7).

Fig. 2 TWAS. A Manhattan plot of genes associated via multiple-tissue TWAS. Each data point represents a gene grouped by chromosome (x-axis) and
lowest p value (y-axis) of the gene across significant tissues. B Distribution of z-scores across significant gene-tissue pairs. Genes are grouped based on
chromosomes (y-axis) and respective tissues (x-axis). Significant genes are shown as pink triangles, wherein triangles facing up and down represent
positive and negative z-scores, respectively.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24824-z

4 NATURE COMMUNICATIONS |         (2021) 12:4569 | https://doi.org/10.1038/s41467-021-24824-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Discussion
COVID-19 disease is characterized by wide variability in pre-
sentations and severity. We integrated multitiered regulatory
information with publicly available variant-level data to identify
genes associated with COVID-19 related hospitalization. To

investigate the potential clinical relevance of these findings, we
performed a phenome-wide and lab-wide assessment of the
genetically predicted mRNA expression value of each gene that
was significantly associated with COVID-19 related hospitaliza-
tion. We further examined these associations across diverse

Fig. 3 Splicing TWAS. AManhattan plot of genes associated via multiple tissue spTWAS. Each data point represents a splice site grouped by chromosome
(x-axis) and lowest p value (y-axis) of the splice site for each gene across significant tissues. The annotated genes to the splice site are labeled. Significant
splice sites are shown as pink diamonds. B Distribution of splice sites across significant site-tissue pairs. The genes annotated to splice sites are grouped
based on chromosomes (y-axis) and respective tissues (x-axis).
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Fig. 4 PheWAS Manhattan Plot. Each data point represents phenotypic associations with the genetically regulated expression of gene-tissue pairs. The
data points are grouped and color-coded by phenotype groups (x-axis) and −log10(p value) (y-axis). The dashed line represents the Bonferroni threshold,
and the most significant gene-phenotype associations across all significant tissues are text-labeled.

Fig. 5 LabWAS Manhattan Plot. Each data point represents laboratory-trait associations with genetically regulated expression of gene-tissue pairs. The
data points are grouped and color-coded by clinical laboratory-test groups (x-axis) and −log10(p value) (y-axis). The dashed line represents the Bonferroni
threshold, and the most significant gene-laboratory trait associations across all significant tissues are text-labeled.
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ancestries and found nominal replication of blood cell traits in
diverse ancestral cohorts of Pan-UKBB, BBJ, and an African
American population in BioVU.

All three TWAS approaches (mRNA expression, splicing, and
protein expression) identified two genes—ABO at 9q34.2 and
OAS1 at 12q24.13 (Supplementary Fig. 8) PheWAS results
implicated ABO in several thrombotic and coagulation-related
phenotypes. Thrombotic complications are reported to be both
risk factors and sequelae to COVID-19 diagnosis. For example,
coagulopathic conditions such as venous thromboembolism12,13,
deep vein thrombosis14, and pulmonary heart disease and
embolism15,16 constitute of more than 30% prevalent disorders in
hospitalized COVID-19 patients. Abnormal blood cell indices are
a common denominator shared by severe COVID-1917 and
thrombotic disorders18. These phenotypic observations are fur-
ther supported by lab-trait associations which showed predicted
expression of ABO was associated with coagulation factor VIII.
This factor is critical for thrombotic homeostasis regulated by its
carrier protein—von Willebrand factor19,20. Analysis in indivi-
duals of both European and African ancestry supported predicted
ABO expression associating with blood differential tests including
mean corpuscle volume, monocyte count, and erythrocytes. ABO
gene encodes for blood type, and several genes have reported
association of blood groups with COVID-19 infection risk21–26.
ABO variants affect the von Willebrand factor and factor VIII
levels27. Studies have also reported differing prevalence of
thrombotic and vascular dysfunction in different blood groups,
making the relationship of ABO with COVID-19 difficult to
ascertain28–30. Furthermore, we also observed KEAP1, which is a
regulator of cholesterol synthesis31. The ACE2 receptor for SARS-
Cov-2 viral binding and uses lipids as docking sites32. Increased
viral binding affects the instability of the arterial vasculature. Our
identification of KEAP1 through splicing regulation in heart tis-
sue and transcriptomic-phenotype association with cholesterol
traits aligns with the hypothesized role of cholesterol in COVID-
19 pathogenicity32. Furthermore, several studies have reported
obesity as a causal risk factor to COVID-19 severity33–35.

We observed that associated phenotypes and gene functions
converged on cytokine–cytokine receptor signaling involved in
inflammatory response (e.g., CXCR6, CCR9, CCR5, XCR1,
IFNAR2, IL10RB), and on JAK-STAT signaling pathways
involved in antiviral host response (e.g., IFNAR2, OAS1, OAS3).
IFNAR2 encodes the interferon-alpha/beta receptor beta chain
and is responsible for stimulating interferon response which is
critical for antiviral immunity previously observed in influenza
viral infection36. IFNAR2 is hypothesized to modulate the
immune response to COVID-1937–39 and interferon deficiency is
reportedly associated with severe symptoms of COVID-1940–42.
These findings are reinforced by results showing that reduced
expression (observed in 14 of the 16 significant tissues) of
IFNAR2 is associated with COVID-19 related hospitalization.
Given its known function43, evidence supports a direct role of
IFNAR2 in an innate antiviral response to COVID-1937–42.
Genetically predicted expression of IFNAR2 was associated with
migraine in BioVU patients without severe COVID-19. Given
that more than 10% of the COVID-19 diagnosed individuals
requiring hospitalization reported migraine and headache
symptoms44,45, reduced host expression of IFNAR2 may also
modulate risk for migraine symptoms in the context of severe
COVID-19 infection.

For the pathways identified, we observed a negative TWAS
association signal on average for genes in lung tissues, reflecting
downregulation for all 13 pathways except the JAK-STAT sig-
naling pathway. The IL10RB and IFNAR2 share an inverse rela-
tionship for viral infection, wherein macrophages have been
reported to secrete higher IL10 in comparison to IFNAR246.

Interestingly, we found cytokine and chemokine genes (CCR2,
CCR3, IFNAR2, and OAS1)47 were downregulated48 in lung and
whole blood, while IL10RB and OAS3 presented the opposite
directions of dysregulation (Supplementary Fig. 4). These
inflammatory pathways are further supported by a gene-
regulatory network of immunomodulating TFs—NRF1 and IRF
that target identified genes (Supplementary Fig. 5). Furthermore,
we found evidence for GNL3 eQTL colocalizing with pulmonary
function traits such as FEV and FVC which are decreased in
COVID-19 patients49. GNL3 is involved in Wnt-B-catenin sig-
naling and affects epithelial-mesenchymal transition, and
increased expression is associated with lower survival in lung
carcinoma50.

In summary, our findings are consistent with a model where
genetic variations in immunogenetic loci reported by the previous
GWAS6,8,9, are associated with hospitalization of COVID-19 via
their impact on transcriptomic regulation and its downstream
consequences. Furthermore, the transcriptome-wide analysis
identified six novel loci, among others, consisting of genes—
IFIT3, KEAP1, and GNL3 demonstrating their putative associa-
tion with COVID-19 hospitalization outcome. We further vali-
dated previous and novel associations in a multi-ancestry cohort
from Vanderbilt BioVU, showing that regulatory variation of
identified targets is associated with clinical markers of inflam-
mation, muscle weakness, and pulmonary events. Our cross-
ancestry analysis showed how regulatory variants present corre-
lated effect sizes among COVID-19-related phenotypes, expand-
ing our understanding of the interpopulation variability in the
susceptibility to the disease.

Previous studies have identified ACE2 and TMPRSS2 as targets
of SARS-Cov-2 entry and pathogenesis4. While we did not
observe a significant association between genetically regulated
expression of ACE2 and TMPRSS2 with COVID-19 hospitaliza-
tion in our data, this difference can be explained by the different
phenotypic definitions. Our study focused on the severity in the
host response to SARS-Cov-2 infection instead of the presence/
absence of COVID-19 diagnosis. Furthermore, we investigated
expression attributed to QTLs, instead of overall gene expression
as captured by RNA-sequencing or microarray studies. This may
indicate ACE2 and TMPRSS2 transcriptomic changes are related
to the consequences of SARS-Cov2 and not to the molecular
predisposition to develop severe COVID-19 symptoms.

Our results are consistent with previous studies investigating
the impact of inflammation on severe COVID-19 outcomes;
however, we note there are limitations. First, TWAS analyses rely
on SNP-based predictive models of mRNA and alternative spli-
cing trained using mostly European-ancestry individuals in GTEx
v851–53. While consistent with the ancestry makeup of COVID-19
HGI GWAS5 (https://www.covid19hg.org/), applying these
models to non-European individuals (e.g., African Americans in
BioVU) will result in loss of power or bias due to different
underlying linkage disequilibrium patterns. Second, TWAS uses
mRNA, alternative splicing, or protein levels in bulk tissue, with
cell-type effects likely to be missed54. Third, TWAS assumes
additivity of SNP effects on gene expression and downstream
hospitalization risk, which ignores the possibility of epistatic and
gene-environment interactions contributing to COVID-19 related
hospitalization risk. Fourth, while it would be ideal to compare
risk and severity prediction using the measured expression, our
study leverages large-scale functional datasets to maximize sta-
tistical power for TWAS using predicted gene expression. Fifth,
our work integrates eQTL from multiple tissues in a joint model
to increase statistical power55–57. Multiple lines of evidence have
demonstrated shared regulatory architectures across tissues;58–60

however, we note that tissues unrelated to the pathophysiology of
COVID-19 related hospitalization do not necessarily harbor risk,
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but reflect expression patterns correlated with those found in
disease-relevant tissues. Finally, our study focuses on the host
genetic factors that contribute to severe COVID-19 but did not
incorporate the social determinants of health that are known to
influence risk for severe COVID-19. The biological insights
identified here should not be interpreted as explanatory factors
for the disparity, but instead as key genomic pathways potentially
modulating host response to SARS-Cov-2 across populations.

Functional studies of key genes identified are needed to identify
mechanisms through which these genes influence COVID-19
related hospitalization. Additionally, while well-powered mole-
cular genetic datasets in diverse populations often lag behind
European-ancestry counterparts, massive collaborative science
efforts such as the HGI-19 continue to accumulate new datasets
to address this discrepancy. Leveraging population eQTL/spQTL/
pQTL data with ancestry-matched COVID-19 GWAS will be
crucial in identifying and understanding mechanisms underlying
COVID-19 related hospitalization. In conclusion, our work raises
specific hypotheses relating host genetic variation to the symptom
and lab-trait profiles thereby focusing efforts for future drug
repurposing and therapeutic discovery research.

Methods
COVID19-HGI genome-wide association summary statistics. We downloaded
GWAS summary statistics for severe COVID-19 outcomes meta-analyzed across
21 studies (hospitalized N= 7885; population N= 961,804). A detailed description
of the contributing studies, meta-analyses, and primary GWAS results for several
COVID-19-related phenotypes are presented at https://www.covid19hg.org/results/,
specifically the Freeze 4-October 2020 results File: COVID19_HGI_B2_ALL_
leave_23andme_20201020.txt.gz. Summary statistics did not include 23&Me cohort
results, and their sample size was removed from the final sample reported. Genome-
wide association statistics consisted of inverse-variance meta-analyzed log-odds
ratios and their standard errors to compute a final Wald statistic and p value. Most
of the individuals of the contributing studies to meta-analysis genomic study were of
European descent (93%). We performed strict quality control on GWAS data, by
filtering statistics at palindromic variants, harmonizing variants with GTEx v8
European-panel genotypes51. Our quality control procedure resulted in a final count
of 10,340,768 autosomal genetic variants with summary statistics.

TWAS and spTWAS using models of predicted gene and alternative splicing
expression. To perform TWAS and spTWAS we leveraged pretrained prediction
models fitted in GTEx v8 data (49 tissues, N= 838) using the fine-mapping software
DAP-G with a biologically informed prior, Multivariate Adaptive Shrinkage in R
(MASHR). For detailed information regarding molecular, genetic, and phenotypic
data in GTEx v8, please see ref. 51. Prediction models for each tissue were integrated
with COVID19-HGI GWAS data using the software S-PrediXcan56. In total, we tested
655,563 and 1,728,429 models of total expression and alternative splicing, respectively
for association with severe COVID19 outcomes, however, owing to the significant
amount of correlation across tissues, we used a per-tissue Bonferroni correction
threshold in our multi-tissue analyses (see Supplemental Data 2). To combine asso-
ciation statistics across all tissues while adjusting for tissue–tissue correlation, we used
S-MultiXcan55. For 22,206 genes, we also performed a joint multi-tissue approach
using S-MultiXcan which accounts for tissue correlation and boosts statistical power.
Here, we applied a single Bonferroni correction of 0.05/22,206.

PWAS using models of predicted expression. To perform a protein-wide
association study (PWAS) using predicted protein expression, we fitted predictive
models using genetic and plasma proteins from European-ancestry individuals in
the INTERVAL study (N= 3301)10. We performed quality control on genotype
data and kept only biallelic SNPs with MAF ≧0.01, HWE p > 5e-5, imputation
quality INFO >0.6, and were annotated in HapMap3. Plasma proteins had
undergone strict quality control and adjustment in the original study10. We fit
predictive 3222 predictive models for 3170 proteins using genotypes within 1 Mb
flanking the gene body (i.e., ±500 kb gene start and stop). For measured proteins
consisting of multiple monomers (i.e., dimer, trimer, etc.), we fit multiple pre-
dictors, each restricted contributing gene’s region. We included the following
covariates into all downstream models of protein abundance: age, sex, duration of
blood processing, the top three genotyping PCs, contributing cohort, and top four
protein PCs). To reduce the number of tests and increase statistical power, we
restricted to genes whose protein levels exhibited evidence of genetic control by
testing for nonzero cis-heritability (p value <0.05) using GCTA. Our final set of
local/cis-based predictors resulted in 1031 models of protein with significant cis-
SNP heritability (p value <0.05). We fit penalized linear models using SuSiE61 and
performed downstream PWAS using the tool FUSION52 using quality-controlled
COVID19-HGI genome-wide association statistics.

Allelic specific expression. To determine the allelic effect of GWAS SNPs (p value
<5e-5) on identified susceptibility genes, we used haplotype-level ASE data with
WASP filtering62 from the GTEx v8, containing 15,253 samples spanning over 49
human tissues and 838 individuals51,63. We used haplotype-aggregated allelic
expression generated by phASER64. To assess the cis-acting regulatory effect of
expression imbalance between the alleles in heterozygous individuals, we compared
allelic imbalance between the individuals homozygous and heterozygous for each
SNP. All individuals with minimum coverage of eight reads (with one pseudocount
added) were included. An allelic imbalance was quantified as the log-ratio between
the two allelic counts or log allelic fold change (log aFC)65 and to ensure robustness
to rare variant effects and phasing errors the absolute value of log aFCs are
compared, using a one-sided rank-sum test. We used a gene-level Bonferonni
correction for the total number of genes tested (p value <0.05/21).

Pathway identification using GSEA and TF-gene network. We tested 27 genes
for statistical overrepresentation of pathways using GSEA11. We analyzed gene sets
of KEGG pathways using ShinyGO66. Significance was determined based on a false
discovery rate of 5%. To identify the regulatory network, we extracted TF-gene
targets using RegNetwork67 and created a minimum network, which connects most
of the query genes by computing the shortest path between each pair of TF nodes
with R packages—igraph and network.

Colocalization of identified eQTL loci with traits. We investigated novel genes
identified in this study and colocalized traits using OpenTarget Genetics68, wherein
posterior probability (PP) of hypothesis (H4) that two loci are shared under a
single causal variant. We report colocalizing traits, only if the phenotype had the
keyword “lung” among traits, and H4:PP of >80%. The colocalization was per-
formed using a coloc-R package and described elsewhere68.

Calculating predicted expression in BioVU. To examine the clinical implications
of the genes identified in our TWAS analysis in an independent population, we
calculated genetically regulated expression for 85,613 individuals in the Vanderbilt
biobank, BioVU. The BioVU population consists of individuals who receive care at
Vanderbilt University Medical Center and choose to opt-in to the BioVU research
study. A detailed description of program operations, ethical considerations, and
continuing oversight and patient engagement have been published69. Individuals
within our BioVU population have an average age of 55.17 years old (median= 59,
range= 3 to 112) and 56.9% are female (43.1% male). Genotype information, as
well as de-identified electronic medical records, are available for research purposes
for these individuals, including information such as International Classification of
Diseases, ninth and tenth editions (ICD9/10) billing codes, physician notes, and lab
results. Genotype data for the BioVU population was generated using the Illumina
MultiEthnic Genotype Array (MEGAEX) for 94,474 individuals. The genotype data
were imputed into the HRC reference panel using the Michigan imputation server.
Imputed data and the 1000 Genome Project data were combined to carry out
principal component analysis (PCA) to identify individuals of European and
African ancestry for analysis. We used the best-performance models from Pre-
diXcan, UTMOST, and JTI approaches to impute the expression of 27 genes across
49 tissues53,70,71. These models were trained using the GTEx version 8 data51.

BioVU PheWAS. To better understand the phenotypic consequences of dysregu-
lated mRNA expression across our genes of interest, we performed a PheWAS72

including patients in the Vanderbilt EHR and linked biobank, BioVU. Phenotypes
in BioVU are represented as phecodes, which are assigned as a dichotomous trait
and are a hierarchical clustering of the International Classification of Diseases
(ICD9/ICD10) codes. For each phenotype, we required a minimum number of 100
cases for inclusion in our PheWAS analyses, which resulted in testing 1404 phe-
codes in 70,439 individuals of European ancestry and 740 phecodes in 15,174
individuals of African ancestry. We used the PheWAS package in R to perform
logistic regression to identify the phecodes that are significantly associated with
imputed gene expression after adjusting for sex, age, and the top ten principal
components from genetic data to control for population stratification (Denny et al.
2010, 2013). We corrected for the number of tests (i.e., 0.05/1404= 3.56e-05) to
determine statistical significance.

BioVU biomarker LabWAS. The lab-wide association scan (LabWAS)73 allows us
to screen clinical lab tests from the Vanderbilt University Medical Center EHR. For
each gene identified in the TWAS analyses, we tested the association between its
predicted gene expression and all clinical labs. We applied the QualityLab cleaning
pipeline73 with settings to yield median age-adjusted (residual taken after regres-
sing the cubic splines of age with four knots) inverse normal quantile transformed
lab values (to control for skewness and non-normality). We screened across all labs
with measurements for at least 100 individuals, which resulted in testing 323 labs in
70,337 individuals of European ancestry and 241 labs in 15,123 individuals of
African ancestry. The lab tests are divided into 12 subcategories; blood, metabolic,
endocrine, kidney, immune, liver, urinary, OB/gyn, toxicology, cardiovascular, and
cancer. Our analyses included the covariates age, sex, and top ten principal com-
ponents from genetic data to adjust for genetic ancestry. We used a Bonferroni-
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corrected threshold accounting for the number of labs present in the associations
tested (i.e., 0.05/323= 1.55e-04).

PheWAS and LabWAS category enrichment analyses. We tested for enrich-
ment of association signals across the clinical categories of phenotypes (labora-
tories) in PheWAS (LabWAS) in two ways. First, we performed a hypergeometric
test using phenotypes/labs that were labeled as significant/not-significant per
category. Second, we performed a relaxed test that considers the average magnitude
of the association signal in a given category. Here, we computed the mean χ2

association statistic per phenotype (laboratory) category and bootstrapped its
standard error using 2000 bootstraps. Our enrichment (depletion) statistics for a
phenotype (laboratory) category were the difference between its mean χ2 from 1
(the expected χ2 under the null) divided by the bootstrapped standard error. We
used a Bonferroni adjusted p value <0.05/k to determine enrichment or depletion
for either aproach, where k= 17 for PheWAS category enrichment tests and k= 12
for LabWAS category enrichment tests.

Cross-ancestry gene effects. We compared effect-sizes of predicted expression
on phenotypes and laboratories estimated in European-ancestry patients from the
BioVU with estimates obtained from of African-ancestry records. To do so, we
performed a weighted linear regression, β̂A;i ¼ β̂E;iαþ ϵi, where β̂�;i are the effect-
sizes estimated for the ith gene/phenotype or gene/laboratory pair in African- (A)

or European-ancestry (E) patients, α is the cross-ancestry relationship, and ϵi �

N 0; σ2 � SE β̂A;i

� �2
� �

is the gene/phenotype-specific (gene/laboratory) noise

parameterized by the overall variance σ2 and squared standard-error around the
African-ancestry-based estimate. We report estimates of α̂ and its 95% confidence
intervals assuming normality.

Cross-ancestry SNP effects. We investigated BioVU phenotypes and laboratory
measures significantly associated with TWAS-associated loci for heterogeneous
effects in the trans-ethnic Pan-UK Biobank (Pan-UKB). The Pan-UKB represents a
multi-ancestry analysis of 7221 phenotypes in six continental ancestry groups:
African (AFR N= 6636), Admixed American (AMR N= 980), Centra/South Asian
(CSA N= 8876), East Asian (EAS N= 2709), European (EUR N= 420,531), and
Middle Eastern (MID N= 1599). The Pan-UKB consists of 16,119 GWAS of
biological assays, health status, behavioral information, and lifestyle factors. We
clumped SNPs in PLINK using eQTL/sQTL p values (q value ≦0.05) reported in
GTEx v8 and limited pair-wise SNP correlations to r2= 0.1 over 250 kb windows.
Per-tissue clumping resulted in 27 SNPs (ABO, IFNAR2, CCR1, and SLC6A20) that
were tested with respect to 1571 Pan-UKB phenotypes from the same trait domains
detected by PheWAS in BioVU (e.g., circulatory system, digestive disorder, neu-
rological). We used linear models to test for consistency of EUR effect estimates at
FDR significant and high confidence SNPs with those estimated in AFR, AMR,
CSA, EAS (Pan-UKB and Japan Biobank), and MID populations. Additionally, we
used Biobank Japan to verify associations between EUR and EAS-based SNP effects
in the Pan-UKB due to increased sample size in the latter. Biobank Japan consists
of genetic data for over 200,000 participants and ~120 disease states and quanti-
tative measures (cell type percentage, body mass index, etc.).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Complete TWAS, spTWAS, PWAS, and allelic imbalance summary statistics results
can be accessed here: https://doi.org/10.5281/zenodo.4292567. Covid19 HGI
summary statistics: https://www.covid19hg.org/results/r4/. PrediXcan predictive
models: https://github.com/hakyimlab/MetaXcan/blob/master/README.md.
FUSION PWAS predictive models: https://mancusolab.com/projects/pwas/. Pan-UK
Biobank summary statistics: https://pan.ukbb.broadinstitute.org/downloads. Biobank
Japan summary statistics: http://jenger.riken.jp/en/result.
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