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ABSTRACT 

With the continued accumulation of genomic data at ever increasing 
resolution, the challenge ahead lies in reading out meaningful 
clinical/biological information from the data that can contribute to a 
better understanding of the cancerous process. The need for novel 
approaches and new statistical methods is therefore strong.  
The present thesis aims to contribute to the field with three problem-
specific applications that hopefully will aid researchers in a better 
understanding of genomic data.  
The first paper exemplifies the adaptation of a piecewise-linear 
regression framework for integrative analysis of DNA copy number 
aberrations and gene expression (mRNA) data. The method helps to 
identify the association between copy number and gene expression, but 
it takes a further step and allows detection of changing patterns and 
changepoints that could serve as a proxy for the degree of genomic 
instability that causes disruptions in feedback-mechanisms.  
The second paper advocates the adaptation of a mediation analysis for 
a concomitant analysis of DNA copy number aberrations, mRNA and 
survival data. The paper offers ways of statistical inference by means 
of the Delta method applicable concomitantly on a large number of 
genes. If a mediation effect is observed for a specific gene, we 
hypothesize that the specific gene is a driver gene. If no mediation 
effect is observed, possible associations between DNA copy number 
aberrations and the outcome are likely to indicate passenger genes.    
The third paper is a more applied/clinical work using applied statistics 
which identified a novel panel of 12-genes that can serve as a 
prognostic tool for breast cancer specific survival.   



 

The thesis concludes with a methodological description in which we 
describe an easy permutation-based approach for testing the clonal 
origins of multiple tumors. The main assumption of the proposed 
method is that if two tumors that share a common origin, or if the 
alleged secondary tumor is clonally related to the primary tumor, they 
share a higher and tumor-specific amount of matching chromosomal 
aberrations (gains or deletions) than recurrent chromosomal 
aberrations can explain. 
Keywords: DNA copy number aberrations, messenger-RNA, breast cancer, 
regression, survival analysis, mediation, permutations 
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SAMMANFATTNING PÅ SVENSKA 

Med den fortsatta ackumuleringen av genetiska data med allt högre 
upplösning ligger utmaningen framför allt i att extrahera meningsfull 
klinisk/biologisk information som kan bidra till en bättre förståelse av 
cancer. Behovet av nya tekniker och statistiska metoder är därför stort. 

Denna avhandling syftar till att bidra till fältet med tre 
problemspecifika applikationer som förhoppningsvis kommer att 
hjälpa forskare till en bättre förståelse av genetiska data. 

Den första artikeln ger exempel på användbarheten av en styckvis 
linjär regression för analys av avvikelser i antal DNA-kopior och 
genuttryck (messenger-RNA). Metoden hjälper till att identifiera 
sambandet mellan antalet DNA-kopior och genuttryck och tar 
ytterligare ett steg och tillåter detektion av förändrade 
genuttrycksmönster och ombytespunkter som kan fungera som en 
proxy för graden av genomisk instabilitet som orsakar störningar i 
feedback-mekanismer. 

Den andra artikeln förespråkar en medieringsanalys för en samtidig 
analys av avvikelser i antal DNA-kopior, mRNA och överlevnadsdata. 
Detta delarbete presenterar en Delta metoden baserat statistiskt test för 
medieringseffekt som tillämpas parallellt på ett stort antal gener. Om 
en medieringseffekt observeras för en specifik gen, antar vi att den 
specifika genen är en driver-gen. Om ingen mediering observeras 
kommer det möjliga sambandet mellan antalet DNA-kopior och 
överlevnad sannolikt att indikera passagerargener. 

Den tredje artikeln är ett mer tillämpat/kliniskt arbete som har 
identifierat en ny panel av 12-gener som kan tjäna som prognostiskt 
verktyg för bröstcancerspecifik överlevnad. 

Avhandlingen avslutas med ett metodologiskt delarbete, där vi 
beskriver en enkel permutationstes för att undersöka det klonala 
ursprunget till multipla tumörer. Det huvudsakliga antagandet i den 
föreslagna metoden är att, om två tumörer som delar ett gemensamt 
ursprung eller om den påstådda sekundära tumören är klonalt relaterad 
till den primära tumören, de delar ett högre antal matchande 
kromosomavvikelser än vad återkommande kromosomavvikelser kan 
förklara. 
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1 BACKGROUND 
Chromosomal aberrations such as DNA losses (deletions), gains 
(duplications and amplifications), translocations, inversions or other forms of 
structural rearrangements have a major impact on tumor initiation and 
development. These types of genetic alterations often affect whole 
chromosomes, chromosome arms, and specific chromosome regions. The 
majority of these alterations may affect specific genes involved in key 
cellular pathways influencing patient clinical outcome and resistance to 
current treatment regimens. However, the biological mechanisms by which 
altered genes contribute to cancer pathophysiology and patient survival have 
not yet been fully elucidated. 

Genomic screenings are an efficient way to portray the global state of tumors 
and provide a comprehensive overview of this complex heterogeneous and 
polygenous illness. Furthermore, this method can pinpoint specific 
chromosomal changes that characterize tumors. With the continuously 
accumulating published array-comparative genomic hybridization (array-
CGH) and gene expression data, the challenge we face is to understand and 
find an efficient way to extract and summarize key biological information 
that can serve as novel prognostic markers and therapeutic targets. In this 
thesis I aim to contribute statistical tools applicable in integrative genomic 
settings. Specifically I look into how to integrate the two biological levels, 
DNA and RNA, and seek to provide insights into this complex relationship. 
Furthermore, I wish to ascertain the extent to which changes at the DNA and 
RNA levels manifest themselves in patients’ survival status.      

 

1.1 Cancer Etiology and Development 
Cancer, an illness of modern times, is one of the most important causes of 
human death. It is often regarded as a single disease, while in reality it is a 
complex of diseases affecting different organs. Tumors are not simply an 
aggregation of clonal cancer cells but “abnormal organs” of multiple cell 
types and extracellular matrix [1]. Development and progression of tumors is 
a long step-wise process and may even take several years depending on the 
rate and type of specific mutations that accumulate in the cells [2]. Mutations 
may emerge as a result of external factors such as chemicals, radiations or 
viruses as well as internal factors such as hormones, immune system, and 
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inherited mutations. It is likely that the effects of external and internal factors 
are intertwined and act together to initiate and promote tumor initiation, 
progression, and development by inducing changes in the gene regulation 
process. Gene regulation includes the processes that cells use to regulate the 
way that the information encoded in DNA is turned into gene products. 
Although a functional gene product can be an RNA molecule, the majority of 
known biological mechanisms are regulated by protein coding genes. Any 
step of the gene's expression may be modulated, from DNA-RNA 
transcription to the post-translational modification of a protein with 
transcription rate being the prevalent regulatory point of gene expression [3]. 
It is especially important to recognize that transcription factors have 
biological functions related to the control of cell proliferation and 
differentiation. Two large classes of genes involved in carcinogenesis are 
(proto)oncogenes and tumor suppressors that often encode for transcription 
factors. The third class of genes with a prominent role in tumor initiation and 
progression is the class of caretaker or DNA repair genes involved in the 
detection of DNA-damages and activation of repair mechanisms and possibly 
inactivation of mutagenic molecules [4].  

As Hanahan and Weinberg [5] noted in their seminal paper, normal cells 
evolve progressively towards a neoplastic state and acquire the characteristics 
that we call ‘hallmarks’ of cancer. The aforementioned paper and its 2011 
reincarnation [6] describe six hallmarks that have both distinctive and 
complementary capabilities that enable tumor initiation, development, and 
metastatic dissemination. These hallmarks are sustained proliferate signaling, 
evasion of growth suppressors, replicative immortality, sustained 
angiogenesis, evasion of apoptosis and activation of invasion and metastasis. 
Of these six hallmarks, the first five are a common feature of both benign and 
malignant tumors, while the sixth solely characterizes malignant solid tumors 
[7]. Tumors are routinely classified as malignant or benign, and beyond that 
they are traditionally classified on the basis of the tissue of origin, e.g. 
epithelial carcinomas (breast, prostate, lung or colon cancer), mesenchymal 
sarcomas (fat, muscle and bone) or cancer types like leukemia, lymphomas, 
and hematopoietic cell cancers affecting the central nervous system.  

Cancer may originate from one single somatic cell, but tumor progression 
results from the accumulation of genetic alterations within the original clone 
allowing a multistep clonal expansion of more aggressive cells. These cells 
ultimately acquire the capability of invasion and metastases and by means of 
the circulatory system spread inside the organ of origin, or to other organs. 
Metastasizing cells may form new tumors which sometimes can appear with 
a substantial time lag. Tumors may even redevelop from dormant cell clusters 
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left behind after an operation and subsequent therapy. Naturally, multiple 
tumors can develop independently from each other.    

 

1.2 Data for Integrative Genomics  
Efficient data management and data analysis constitute perhaps the greatest 
challenges in integrative genomic studies. The unprecedented amount of data 
alone confronts researchers with daunting tasks and the nature of the data 
adds an extra level of complexity. 

Cells of normal tissues typically contain two copies of DNA material, that is 
two copies of each gene. Biologists generally consider four different 
categories: i) loss with less than two copies of DNA; ii) normal with exactly 
two copies of DNA; iii) gains with three or four copies of DNA and iv) 
amplifications with more than four copies of a DNA segment. These changes 
are routinely measured by genome wide screening methods such as array-
comparative genomic hybridization (aCGH) [8]. Array-CGH measurements 
are continuous by nature and lack direct interpretation, and they represent the 
relative amount of genetic material of neoplastic cells compared to the 
normal genetic material extracted from x with a healthy tissue as reference. 
Similarly, gene expression is measured by expression microarrays that 
provide a continuous reading which is proportional to the true amount of 
messenger RNA (mRNA) present in tumor cells [9]. Patterns of gene 
expression are mostly described by two stages, down- or up-regulation. 
However, as DNA CNA and mRNA measurements are made on different 
platforms, matching the two is the most important preprocessing step of 
integrative genomic analysis. The most common difficulty researchers 
encounter is the differences in resolution between DNA and gene expression 
arrays. The Array-CGH platform uses artificial DNA constructs, Bacterial 
Artificial Chromosomes or BAC-clones, that characteristically cover several 
genes. Moreover, adjacent BAC-clones overlap; consequently the same 
chromosome fragment might be covered by two (or more) BAC clones, a 
BAC-clone can contain several genes and a gene can be covered by two or 
more BAC clones. Up to this point we lack well established and widely 
accepted procedures for matching the measurements from the two biological 
levels, though this represents an area of interest and systematic efforts have 
been undertaken to provide standardized procedures [10].  
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1.3 Statistics for Integrative Genomics 
In this section we will cover the statistical aspects of the present thesis. As a 
rule, more attention will be paid to details about the methods at the core of 
papers I, II and IV, while methods for paper III, which represents a more 
applied/biological orientation, will be addressed only briefly and the reader 
will be referred to the relevant literature.  

As the title suggests, our main goal is to integrate the two biological levels 
and to expose their effect on patient survival. To this end we commence with 
a brief review of the methodologies applied in integrative genomics. 
Thereafter, we describe a regression-based versatile approach for modeling 
the DNA copy number aberrations and mRNA relationship. Following this, 
we outline an approach for a mediation analysis in a survival analysis setting, 
where we assume that the effect of DNA copy number aberrations on 
survival is mediated by mRNA. We conclude the methodological description 
with a brief review of the methods used for assessing the 
similarities/differences between multiple tumors.   

Assume that we have preprocessed and matched data. For each patient, or 
each tumor, we have a pair of measurements { } 1

, n
i i ix y

=
 with ix denoting the 

copy number measurement and iy the mRNA gene expression measurement 
for the respective gene. Moreover, for each patient we know the follow-up 
time it  and their survival status, iδ . 

A large variety of statistical methods have been employed in the integrative 
analysis of DNA copy number aberrations and mRNA levels with a 
preponderance for correlation [11-17] and regression analysis [18-21]. Other 
studies commenced with the determination of DNA copy number aberrations 
and changes in mRNA expression separately and then matched the located 
aberrations together to determine if aberrations in mRNA levels follow DNA 
copy number aberrations [22-25]. This two-step analysis occasionally is 
augmented with an assessment of relationship strength [21-24, 26]. Schäfer 
merged these two approaches and derived a modified correlation coefficient 
to measure equally directed derivations of CNA and mRNA from the median 
values in the reference samples [27].   

Analyses employing correlation- or regression-based measures generally 
assume a simple linear relationship between DNA copy number aberrations 
and mRNA levels. However, this might not always be the case, and small 
scale changes in DNA CNA can result in unproportional changes in gene 
expression [28]. Moreover, genes displaying a linear DCN-mRNA 
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relationship in cancerous cells can be associated with substantially different 
biological processes from genes displaying a nonlinear relationship [29]. 

In the next step we integrate DNA copy number aberrations and mRNA 
levels with the survival status of the patients. Survival (overall, disease-
specific or distant disease-free survival) is the natural endpoint for most 
cancer studies and has been used in countless studies. However, generally the 
effect of few chosen markers (DNA copy number aberrations, mRNA or 
protein levels) of survival is studied over time with the help of Cox-
regression or survival plots. We are unaware of any efforts to model a DNA 
copy number aberrations - mRNA-survival pathway based on a biologically 
plausible model.  

 

1.3.1 Regression analysis 
Regression analysis in general assumes that the response Y (mRNA in our 
case) can be modeled as a function of the predictors X (DNA copy number 
aberrations here), with the general form for the model  

( )Y f X ε= +   

where f is an unknown function and ε is a mean zero error. Integrative 
genomics usually assumes a simple linear relationship, namely  

Y Xα β ε= + +   

where α represents the intercept and β the regression slope. Interpretation of α 
represents the intercept and β in classical analysis says that α is the value of 
the response when the predictor takes the value zero, while β represents the 
change in the response following a one-unit change in the predictor. Keeping 
in mind that both mRNA and DNA copy number aberrations measurements 
are log2ratios, it is easy to see that X will be zero only if the amount of 
genetic material in the cancerous cells equals the genetic material in the 
healthy cells used for normalization. Thus, α represents the amount of mRNA 
that cancerous cells would contain without chromosomal aberrations.  
Similarly, β denotes a unit change on the log2ratio scale. An increase from 
zero to one assumes double amounts of DNA in the cancerous cells compared 
to the healthy cells (approximately four copies), while an increase from one 
to two indicates a fourfold increase in the number of copies. The model 
parameters, α and β are estimated by minimizing the sum of squared errors 

( )2RSS Y Xα β= − −∑  



Szilárd Nemes 

9 

or by using the so called normal equations, 1( )T T−X X X y  , where X  is the 
predictor matrix and y  is the response vector.   

The aforementioned study by Solvang et al [29] introduced a second order 
term in the regression equation 

2
1 2Y X Xα β β ε= + + +   

which offers a more nuanced depiction of the relationship between DNA 
copy number aberrations and mRNA; however, the assumed structural form 
is somewhat restrictive. A positive second order term (β2) assumes an initial 
decrease in mRNA expression with accumulation of gene copies followed by 
a rapid increase. A negative second order term assumes a rapid initial 
increase in mRNA expression with accumulation of gene copies followed by 
a rapid decrease in expression when a threshold given by 1 2/ 2β β− is passed. 
While this model can be plausible for a number of genes, it is safe to assume 
that it does not apply to all possible non-linear DNA copy number 
aberrations-mRNA relationships. Naturally, one could consider adding even 
more higher-order terms to the equation  

1

m
k

k
k

Y Xα β ε
=

= + +∑ . 

However, this can lead to a serious over-fitting, and a high number of 
possible models complicates model selection. Estimation of regression 
coefficients by penalized least-squares will shrink non-important terms 
towards zero, though the estimated coefficients are largely biased and lack 
direct interpretability. 

So far we have only considered f to be a smooth and continuous function. In 
the following section we explore the idea of approximating a smooth and 
continuous function by a piecewise linear regression analysis.  

  

1.3.2 Segmented regression 
Segmented regression (also known as piecewise linear regression splines or 
two-phase regression) has a long history but with sparse application in 
genomics [18, 30]. Article I proposed the use of a framework based on 
segmented regression analysis to analyze DNA copy number aberrations-
mRNA relationships. The proposed framework is aimed at describing 
patterns of the relationship between abnormally expressed genes due to 
aberrant DNA copy numbers, specifically to determine if the variation of 
gene expression pattern changes over the domain of DNA copy number 
aberrations. Statistically, this change in gene expression pattern is expressed 
as a change in regression slopes. The segmented regression framework 
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assumed the existence of one or more identifiable point(s) where the 
relationship between the number of DNA copy aberrations and mRNA levels 
(i.e., the slope of the regression line) changes.  

Model formulation 
Generally the literature recognizes two structural forms of segmented 
regression equations. The difference between the two is whether the 
regression equations are built with a continuity constraint or if they are 
disjoint. Here we only consider segmented regression with continuity 
constraint, which assumes that the model parameters are estimated under the 
restriction of ( ) ( ) ( 1) ( 1)

1 1
k k k kα β τ α β τ+ ++ = + for the change-points τ  and 

segments 1,...,k K= . 

For a given chromosome fragment we denote with ,i jx  the log2ratio 
normalized DNA copy number aberration measurement at probe j for 
individual i  and we let ,i jy  denote the corresponding log2ratio normalized 
mRNA measurement. We assume that the pairs { } 1

, n
i i i

x y
=

are ordered so that 
1, ,...j n jx x≤ ≤ . For each probe j, we build a linear model for the relationship 

between DNA copy number aberration and relative mRNA levels 

, , ,i j j j i j i jy xα β ε= + +  

where for any given j, ,i jε  are independent and identically distributed normal 
errors with mean zero. We assume that for some probes the linear model is 
not adequate, and we approximate the unknown smooth and continuous non-
linear function  

, , ,( )i j j i j i jY f Xβ ε= +  

by a sequence of joined linear sub-models 

, 1 , 1 , 1 , ,

, ,

( ) ... ( )i j j j i j j i j j jk i j jk i j

i j i j

y x x xα β δ τ δ τ ε

µ ε

+ += + + − + + − +

= +
 

where , . , .( ) ( )i j j i j jx xτ τ+− = − for , .( ) 0i j jx τ− > , kτ ’s are unknown change-
points and , , , 1j l j l j lδ β β −= − .  

Parameter estimation 
The model coefficients, .1, 1( , , ... )j j j jkθ α β δ δ=  are estimated by minimizing 
the residual Sum of Squares,  

( )2

, ,
1

n

i j i j
i

RSS y µ
=

= −∑ . 
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Direct minimization of the RSS for segmented regression is not possible due 
to the existence of numerous local minima. The location of change-points, τ , 
can be set based on empirical knowledge and treated as known, in which case 
the estimation of model parameters is straightforward. If we cannot set a 
change-point without a reasonable doubt, we have to calculate it from the 
data. Estimating the change-point from the data is nontrivial and requires 
numerical optimization.   

Commonly applied optimization routines cannot be used due to the numerous 
local minima that might occur [31]. Lerman’s grid search is one of the first 
methods developed for parameter estimation [32] and is the method of choice 
of article I.   

The grid search is a stochastic search belonging to the class of exploratory 
Monte Carlo optimization methods. The general solution would be to explore 
the entire space for ( )Tτ  by simulating points over T according to an 
arbitrary distribution J, positive everywhere on T until a sufficient value of 

( )RSS τ is observed. In practice J is a uniform distribution over the domain T. 
Given a uniform distribution 1,..., m Tu u U  we use 

*
1min( ( ),..., ( ))m mRSS RSS u RSS u= as an approximation to the solution of RSS. 

For the change-point of the segmented regression the domain T consists of 
the possible values that the log2ratio normalized CNA measurements can 
take. Instead of using a uniform distribution ranging between the minimum 
and maximum values of the log2ratio normalized CNA measurements we 
directly use ,i jx , thus 1, ,( ) min( ( ),..., ( ))j n jRSS RSS x RSS xτ = . In summary, 
the change-point corresponds to the observed log2ratio normalized CNA 
measurement that gives the lowest possible RSS. An alternative to the 
Lerman’s grid search is Hudson’s continuous fitting algorithm [33]. Despite 
better asymptotic properties of the regression coefficients estimated by 
Hudson’s continuous fitting algorithm [34] we chose to adopt Lerman’s grid 
search at lower computational costs[35].  

Without loss of generality we now refer to one change-point problem and 
illustrate the details of parameter estimation. The residual sum of squares 
(RSS) for the two-segment regression equation for probe j  will be 

{ }2 2
, , , , , , , , , ,

1

( ) ( ) ( ) ( )
n

j i j j L j L i j i j i j j R j R i j i j
i

RSS y x I x y x I xα β τ α β τ
=

= − − ≤ + − − ≥∑
 where ,( )i jI x τ≤  and ,( )i jI x τ≥  are indicator functions that take the value 1 
if the condition is met, otherwise 0.  
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We defined the following design matrix for the segmented regression with 
parameters , , ,( , , )j R j L j Rα β β=β  with the indices L and R denoting if the 
segment positions were on the left or right side of the estimated change-point  

 

1,

2,

,

1,

1,

,

1
1
. . .
1
1 0
. . .
1 0
1 0

j

j

t j

t j

n j

n j

x
x

x
x

x
x

τ τ
τ τ

τ τ

+

−

− 
 − 
 
 

− =  
 
 
 
 
 
 

X   

 

and ( )1 1, ,,...,
T

j n jy y=Y . The parameters are estimated as 1ˆ ( )T T−=β X X X Y  
with , , , ,( )j L j R j R j Lα α τ β β= + −  . 

Feder [36] and Hinkley [37, 38] offer guidelines for statistical inference for 
the regression parameters of the segmented model. The approach advocated 
by Hinkley uses the standard errors computed without imposing the 
continuity constraint. Feder proposes deleting observations around the 
estimated change-point. For Lerman’s grid search this corresponds to 
deleting the observations equal to the estimated changepoint(s). Statistical 
inference for the constrained regression parameters relies on the consistency 
of the estimates, which implies that the constrained regression parameters are 
distributed asymptotically like the unconstrained ones. The variance of the 
slopes of the constrained regression is 

 
,

2
2

,
j L

xxCβ
τ

σσ =
 
and 

,

2
2

*
,

j R
xxCβ

τ

σσ =  

where 2σ is the variance of the unconstrained regression equation and ,xxC τ
and *

,xxC τ are the corrected sums of squares of the predictor in the segments 

( )2
, , ., , ˆ( )xx i j j i j

i

C x x I xτ τ= − <∑
 
and ( )2*

, , ., , ˆ( )xx i j j i j
i

C x x I xτ τ= − >∑ . 

Bai [39], Bai and Perron [40], Liu et al [41] and Kim & Kim [42] have 
proved the consistency of the change-point estimator for both the 
unconstrained and constrained case. For the constrained regression the 
change-point has an asymptotic normal distribution, for the unconstrained 
regression the change-point involves a step function with unknown 
distribution form [42]. Confidence intervals for the constrained changepoint 
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can be built using the likelihood ratio statistic [37] based on the residual sum 
of squares and the F distribution as 

1
1,

1ˆ: ( ) ( ) 1 r n p
rRRS RSS F
n p

ατ τ τ −
− −

  − ≤ +  −   
 

with r denoting the number of segments, n  the sample size and p the 
number of estimated parameters. 

Theoretically, the grid search can be applied on models with multiple change-
points, however the computational cost and the data requirements increase 
rapidly making the method unfeasible for genomic studies. Recently, an 
alternative approach emerged. Muggeo [43] proposed a re-parameterization 
of the changepoint that facilitates a straightforward iterative estimation. 
Moreover, simulation studies had shown that when the regression lines are 
continuous the algorithm proposed by Muggeo is superior to the alternatives 
[44].  

1.3.3 Survival analysis 
Researchers often augment their findings with the addition of a clinical 
endpoint, frequently survival status of the patients. This can result in study-
to-study differences where survival status can refer to cancer-specific 
survival, overall survival or distant disease-free survival. Independently of 
the outcome, the most common tool of analysis is Kaplan-Meier curves. 
Kaplan-Meier curves offer a vivid descriptive depiction of the survivor status, 
assuming discretized aCGH or gene expression readings. Combining aCGH 
and gene expression readings in one prognostic factor is not straightforward, 
but it can be achieved with multivariate network analyses [45]. However 
Kaplan-Meier curves have considerable limitations that can be addressed 
with regression analysis.  

The most common tool of choice for survival analysis is the Proportional 
Hazard Regression, or Cox-regression. Results of the Proportional Hazard 
Regression are summarized by calculating hazard ratios and associated 
confidence intervals. A hazard ratio greater than one indicates that a gene (or 
other marker) is positively associated with the event probability and is 
negatively associated with survival time.  

The Proportional Hazards model assumes that the covariates of interest act 
multiplicatively on the baseline hazard as follows 

0
1

( | ) ( )exp
p

j j
j

t X t Xα α β
=

  =  
  
∑  
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where β is a 1p×  vector of unknown parameters and  0 ( )tα  is an arbitrary 
non-negative function, the baseline hazard. The difficulty in applying 
Proportional Hazards Regression to genomic data lies in the high 
dimensionality of the data. Classical model selection techniques such as 
stepwise selection or even Bayesian methods cannot cope with the setting 
when p n . In order to reduce the set of predictors to manageable levels it is 
possible to fit a series of univariate models and retain the markers that show 
significance after adjustment for multiple testing and a multivariate model is 
fit on the preselected variables. Iterative Bayesian Model Averaging, a 
possible alternative, iterates through the predictor set in a fixed order. For 
each subset the Bayesian Model Averaging procedure retains variables with 
posterior probability greater than 0.5 [46]. The disregarded variables are 
replaced by new ones until the procedure iterated through the whole data set. 
Regularized/penalized regression methods have the advantage of being able 
to deal with high dimensionality. Panelized regression models shrink all 
regression coefficients towards zero and depending on the penalty exactly to 
zero, thus concomitantly performing estimation and variable selection. 
Regression parameters are estimated and defined in terms of penalized 
likelihood optimization { }ˆ arg max ( ) ( )l Pλβ β β= − where ( )l β is the log-
likelihood and the penalty term ( ) mPλ β λ β= with m≥1 denoting the vector 
norm of the regression coefficients. Applicability of the penalized 
Proportional Hazards Regression with different penalty definitions has 
proved their feasibility but there is no general consensus concerning the 
optimal penalty term [47-49]. Moreover, optimization of penalized regression 
models can be done with respect to the global predictive power [50, 51]. Here 
we chose to apply the elastic-net with  

( )2

1
( ) (1 )

p

j
j

Pλ β λ α β α β
=

= + −∑  

and selected the optimal value for the penalty parameter with cross-validation 
[52, 53].  

From a clinical-practical point of view penalized regression has the 
disadvantage of making largely biased estimates that make statistical 
inference meaningless and practical interpretation equivocal. Thus we used 
the elastic net as a diagnostic tool to detect estimation problems due to 
multicollinearity in the data.  

The predictive power of the models can be assessed as time dependent Area 
Under the Receiver Operatic Characteristic Curves (AUC(t)) and summarized 
by the concordance index (C-index) [54]. Predictive power can be validated 
by ten-fold cross-validation and the 0.632 bootstrap [55]. 
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Mediation and Aalen’s Additive Model 
Mediation analysis aims to identify and describe the structural form that 
underlines an observed relationship between an independent variable and the 
outcome by the inclusion of a third variable, the mediator. Mediation exists if 
the independent variable changes the mediator, and change in mediator is 
followed by change in the outcome when the independent variable is present 
[56].  Mediation explicitly assumes that the variables form a causal chain, 
and the mediator variable serves to clarify the nature of the relationship 
between the independent and outcome variables. Thus, the mediator accounts 
partially or totally for the relation between the independent variable and 
outcome, and the total effect of the independent variable on the outcome can 
be decomposed into effects due to mediated paths and effects due to non-
mediated paths [57].  

Decomposition of Cox-regression estimates into direct and mediated effects 
lack any straightforward analytical expression and there are no general 
measures for a mediated effect [58]. Lack of possibilities for decomposition 
implies that Proportional Hazard Regression can model the effect of DNA 
copy number aberrations and mRNA reading belonging to a gene as two 
independent predictors. If the effect of DNA copy number aberrations on 
survival is mediated by mRNA and there is no direct effect, a Cox-regression 
model will miss this effect and it will conclude that DNA copy number 
aberrations have no effect on survival status. In opposition to the Proportional 
Hazard Regression the model proposed by Aalen, the Additive Model [59], 
can be decomposed into direct and mediated effects. Aalen’s Additive Model 
assumes that the covariates add additively on the hazard  

0 ,( | ) ( ) ( ) ( )i j i j
j

t t t x tα β β= +∑x  

Here, 0 ( )tβ  is the baseline hazard and has similar interpretation to the 
intercept of any regression equation, namely the hazard rate of an individual 
when all covariates equal zero. The coefficients 0 ( )tβ represent the increase 
in the hazard at time t corresponding to a unit increase in the jth covariate; ijx  
denotes the value for the jth covariate for the ith patient. It might be hard to 
give intuitive biologically meaningful interpretations to the regression 
coefficients, but using the properties of hazards and survival functions allows 
for direct transformation to survival probabilities.  

The survival function can be expressed in terms of the hazard as  

{ }0
( ) exp ( )

t
S t u duα= −∫ . 
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Substitution of the hazard with the Additive model formulation leads to  

0 ,0
( ) exp ( ) ( ) ( )

t

j i j
j

S t u u x u duβ β
  = − + 
  

∑∫ .  

If we restrict our attention to one single covariate then we have 

{ }0 10
( ) exp ( ) ( ) ( )

t
S t u u x u duβ β= − +∫ . 

Now β1 equals zero, then the equation simplifies to  

{ }00
( ) exp ( )

t
S t u duβ= −∫ and { }0

exp ( ) ( )
t

u x u duβ−∫  

will be the excess probability of the event due to one unit increase in the 
covariate. Intuitively, 1,000 ( ( | 0) ( | 0))i iS t S tβ β× ≠ − =  will be the expected 
number of patients in a group of 1,000 that experiences the event due to the 
studied covariate.  

Returning to the problem at hand, the Additive Models coefficients can be 
interpreted as excess mortality due to one unit change on the DNA copy 
number aberrations or mRNA measurement scale.  

Yet another attractive feature of the Additive Model is the possibilities of 
decomposition of the total effect into direct and mediated effect, while 
decomposition of Cox-regression estimates into direct and mediated effects 
lacks any straightforward analytical expression and there are no general 
measures for a mediated effect [58].  

We assumed that mRNA levels are explained to a certain degree by DNA 
copy number aberrations and their relationship can be depicted as  

0 mmRNA DCNAα α ε= + +  

where ε is i.i.d. mean zero normally distributed noise with variance 2σ . This 
type of regression analysis has long served as an exploratory tool in 
integrative genomic analysis [21]. Furthermore we modeled the effect of 
DNA copy number aberrations and mRNA levels on the hazard as  

0( | )i m ct mRNA DCNAα β λ λ= + +x  

where mλ  is the effect of the mediator on the hazard (in our case mRNA 
levels) while cλ  is the effect of the covariate on the hazard (in our case DNA 
copy number aberrations). Simplifying these two equations leads to 
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0

0 0

0 0

( | )
( )

( )

i m c

m m c

m m m c

t mRNA DCNA
DCNA DCNA

DCNA

α β λ λ
β λ α α λ
β λ α α λ λ

= + +
= + + +
= + + +

x
 

where m mα λ  is the effect of DNA copy number aberrations on survival status 
mediated through mRNA, while m m cα λ λ+  is the total effect of DNA copy 
number aberrations on survival status. The residuals,ε , were omitted as they 
have an expected value of zero.  

Consequently, the effect of DNA copy number aberrations on survival status 
is decomposed in a direct effect cλ  (natural direct effect or pure direct effect) 
and the effect mediated by mRNA m mα λ  (natural indirect effect or pure 
indirect effect). Testing cλ and mλ  is straightforward and it is based on the 
martingale central limit theorem. Inference for the indirect effect can be 
based on Normal Product Distribution [60] or on asymptotic results based on 
the multivariate Delta method [61]. Preacher and Hayes provide a 
comprehensive review of the subject [62]. The Delta method provides a 
framework for establishing the asymptotic distribution of a differentiable 
function, and we propose an asymptotic statistical inference based on it [63].  

The Delta method 
The Delta method is a method for deriving an approximate probability 
distribution for a function of an asymptotically normal statistical estimator 
from knowledge of the limiting variance of that estimator. If 

( ) 2(0, )L
x xn x Nµ σ− →  then for a given function ( )f x  with existing 

first-order derivative 2 2[ ( ) ( )] (0, [ '( )] )L
x x xn f x f N fµ σ µ− → , assuming 

that '( )xf µ exists and it is non-zero [64]. The Delta method applies a Taylor 
expansion to linearize a non-linear relationship. If a function ( )f x  has 
derivatives of order k , then for a constant a  the Taylor series of order k  
about a  is 

( )

0

( )( ) ( )
!

jk
j

n
j

f aT x x a
j=

= −∑  . 

Generally, the statistical literature and practical applications are interested 
mainly in the first order Taylor expansion and to a lesser extent in the second 
order expansion.  

A second order expansion of ( )f x around xµ  gives 

2
3

1( ) ( ) '( ) ''( ) ( )
2x x x jf x f f x f x R xµ µ µ ≥= + − + − +  

where the reminder ( )
3 ( ) ( ) ( ) / !j j

j xR x x f jµ ξ≥ = − with ( , )xxξ µ∈  rapidly 
converges to zero. Following the notation of Preacher et al [65] we define the 
following parameters 
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1. θ̂  a column vector of regression coefficients used in the 
estimation of the mediated effect 

2. θμ  the expected values of the regression coefficients, 
ˆE  =  θμ θ  

3. ( )ˆf θ the effect of interest, the estimator for the mediation 
effect 

4. ˆˆ ( )Σ θ the estimated covariance matrix of θ̂  
5. ( )ˆfθ= ∂D θ  the first order derivatives of ( )ˆf θ evaluated at 

θμ , the Jacobian matrix of ( )ˆf θ  
6. ( )2 ˆfθ= ∂H θ the Hessian matrix of ( )ˆf θ evaluated at θμ  

The Delta method based variance is defined as  

( )2
2ˆ ˆ ˆ[ ( )] ( ) ( ) .Var f E f E f   ≈ −   θ θ θ  

By the Taylor theorem we have 

( ) ( ) ( ) ( )21ˆ ˆ ˆ
2

f f≈ + − + −θ θ θθ μ θ μ D θ μ H  

Without explicitly going through the algebra we give 

( ) ( )
( ) ( )

2
2 2

2

1ˆ ˆ ˆˆ ˆ( ) ( ) ( ( ))
4

1 ˆ ˆˆ ˆ( ( )) ( ( ))
2

TE f f tr

tr f tr

  = + + 

+ +

θ

θ

θ μ D Σ θ D HΣ θ

HΣ θ μ HΣ θ
 

and  

( ) ( ) ( ) ( ){ }2
2 2 2 1ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ,

4
E f f f tr tr  = + +  θ θθ μ μ HΣ θ HΣ θ  

consequently ( ) ( ){ }21ˆ ˆ ˆˆ ˆ( ) ( ) ( )
2

TVar f tr= +θ D Σ θ D HΣ θ   

Variance estimator and inference for the mediated effect 
As noted above m mα λ  is the effect of DNA copy number aberrations on 
survival status mediated through mRNA, while m m cα λ λ+  is the total effect 
of DNA copy number aberrations on survival status. Using the above 
outlined notation we have that ˆ ˆˆ ,

T

m mα λ =  θ and [ ], T
m mα λ=θμ and

( )ˆ ˆˆm mf α λ=θ . The gradient matrix of ( )ˆf θ  is ( )ˆfθ
µ

= ∂D θ and the Hessian 
matrix equals to 

( ) ( )
( ) ( )

2 2

2 2

ˆ ˆ

ˆ ˆ
m m m m

m m m m

f f

f f

α α α λ

α λ λ λ
µ

 ∂ ∂
 =   ∂ ∂ 

θ θ
H

θ θ
. 

As mα and mλ are independent from each other the estimator for the 
covariance matrix is 
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2

2

0
( )

0
m

m

α

λ

σ

σ

 
=   
 

Σ θ  while the Hessian, 
0 1
1 0
 

=  
 

H . 

Plugging in the estimators for the mediation effect into the algorithm of the 
Delta method leads to the following variance estimator for the mediation 
parameter  

( ){ }2
2

2 2 2 2 2 2

-

1ˆ ˆˆ ˆ( ) ( )
2

m m m m

T
Med

m m

first order second order

tr

λ α λ α

σ

α σ λ σ σ σ
−

= +

= + +

D Σ θ D HΣ θ

 

.  

The second order term is often omitted with the implicit assumption that it is 
small compared with the first order term [61]. The total effect is defined as

m m cα λ λ+ , a summation of the mediated and direct effect. Here, we can take 
advantage of the properties of variances, namely 2 2 2

,2
c cTot Med Medλ λσ σ σ σ= + + , 

however the Delta method leads to the same variance estimator. Under mild 
regularity conditions, ( , )c mλ λ are normally distributed and independent from

mα  , thus ,c m cMed mλ λ λσ α σ= leading to a variance estimator for the total effect 
of 2 2 2 2 2 2 2

c m m m cTot m m mλ λ α λ λσ σ α σ λ σ α σ= + + + . 

Approximate confidence intervals for mediation effect are calculated as
/2 /2( ;  )m m Med m m MedZ Zα αα λ σ α λ σ− + . The procedure is similar for the total 

effect and ratio, just with the suitable changes. Confidence intervals for the 
direct effect can be obtained in a similar way based on the output of the 
Aalen’s Additive model. 

As it is not a straightforward matter to know how to adjust confidence 
intervals for multiple testing, we need to calculate P-values. We test the null 
hypothesis of no effect 0 :  0m mH α λ =  against the alternative 1 :  0m mH α λ ≠ . 
Based on the approximately normal distribution of the estimates we can 
calculate a test statistics, Z-score as /m m Medα λ σ , with (0,1)Z N . Inference 
for the total effect proceeds with the same steps, while the inference for the 
direct effect is provided by the Aalen’s Additive model. 

1.3.4 Statistics of clonal origins 
The statistical challenge of clonal relatedness of two tumors is yet to be 
solved [66]. The complex nature of genomic data together with the 
dependency of two tumors belonging to the same patient poses considerable 
difficulties. Not only is it true that the data from two tumors belonging to the 
same patient are not independent, but the markers themselves tend to be 
correlated with each other. Independence of two events assumes that the 
probability of one is the same whether the other is given or not. While it is 
clear that two markers from the same chromosome cannot be considered 
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independent, the status of two markers from separate chromosomes is open to 
debate. Currently, studies of clonal origins assume that somatic changes 
occurring on different chromosomes are independent events. As we see it, 
this assumption is violated and one cannot ascertain without reasonable doubt 
the independence of markers. We argue that somatic changes of different 
chromosomes can be dependent, conditionally independent or random 
independent somatic changes. One cannot exclude the occurrence or random 
deletions or amplification, in which case markers affected by the observed 
somatic change will be independent from others. Additionally somatic 
changes of different chromosomes can be conditionally independent when 
their occurrence traces back to a common biological process and their 
initiation and development do not directly affect each other. Furthermore, 
markers of different chromosomes can be causally linked to each other when 
specific somatic changes trigger genomic events that cause further somatic 
changes on the same or different chromosomes propagating the genomic 
instabilities that characterize cancer cells. It is likely that when researchers 
consider markers from the whole genome spread on different chromosomes 
(whether one or a few markers per chromosome) they will have to deal with 
an array of complex relationships between markers ranging from 
independence to casual relationships.  The effect of violations of the 
independence assumption on test of clonal origins is yet to be elucidated. To 
circumvent this problem researchers have refrained from using full genomic 
profiles and have restricted their attention to specific markers, ordinarily 
being the most characteristic aberrations per chromosome [67, 68] or single 
selected markers from each chromosome [69, 70]. This approach not only 
reduces the multidimensional data to a few values but it assumes that 
readings from different chromosomes are independent. This assumption 
might be violated in cancer cells. Gains, deletions, and rearrangements 
(translocations) of DNA segments from different chromosomes develop 
concomitantly in cancer cells, though these aberrations may not be causally 
related. Additionally, several recurrent aberrations are frequently co-
identified in breast cancers such as those found on chromosome arms 1q/16p 
(gains and losses) and 8p/11q (losses and gains). The question is whether 
these coexisting aberrations should be classified as one event instead of two 
events. This makes the designation of a single characteristic aberration per 
chromosome arm difficult. Pre-selection of markers is rather subjective and 
will certainly influence the results.  
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AIMS 
The main aim of this work was to describe and formalize three statistical 
approaches that were inspired by statistical analyses undertaken by the PhD 
candidate in previous efforts.  

Specifically, the first goal was to describe a regression analysis-based 
approach for the integrative genomic analysis of DNA copy number 
aberrations and messenger RNA levels. The goal was not only to establish 
the association between the two biological levels but to describe the pattern 
of relationship between the two.  

Having done this, the aim was to augment the analysis of the two biological 
levels with a clinically relevant endpoint, survival time. Herein we aimed to 
offer a statistical framework applicable in a genome-wide setting to assess the 
possible mediation when the effect of DNA copy number aberrations on 
survival is mediated by messenger-RNA. This depicts mathematically a 
biologically plausible model.  

A third aim of the present work was to identify a novel panel of gene 
expression signatures predicting breast cancer-specific survival.  

The last goal differed somewhat from the previous three. In this paper we 
considered only DNA and we aimed to present a framework that facilitates 
making inferences about the clonal origins of tumor pairs.  
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2 PATIENTS AND METHODS 

2.1 Patients and genomic data 
Primary invasive tumors (n = 141) from 141 breast cancer patients (Table 1) 
were selected from the fresh-frozen tissue tumor bank at the Sahlgrenska 
University Hospital Oncology Lab (Gothenburg, Sweden) [71-73]. All 
samples were assessed for DNA content at the time of diagnosis from 1991 to 
1999 (data not shown) by flow cytometry at the Laboratory for Clinical 
Chemistry, Sahlgrenska University Hospital. The presence of malignant cells 
was assessed in all samples by evaluation of touch preparation imprints 
stained with May-Grünwald Giemsa (Chemicon). All procedures were done 
in accordance with the Declaration of Helsinki and approved by the Medical 
Faculty Research Ethics Committee (Gothenburg, Sweden).  

Array-CGH and Gene expression analysis 
Whole-genome tiling arrays with 38,043 reporters mapping to the UCSC 
May 2004 hg17: NCBI Build 35 were manufactured as previously described 
[74] at the SCIBLU Genomics DNA Microarray Resource Center (SCIBLU), 
Department of Oncology, Lund University. Images and raw signal intensities 
were acquired using an Agilent G2505B DNA microarray scanner (Agilent 
Technologies) and GenePix Pro 6.0.1.22 (Axon Instruments) image analysis 
software.  Data preprocessing and normalization were done using the web-
based BioArray Software Environment system (BASE) provided by SCIBLU 
(http://base2.thep.lu.se/onk/).  

The RNA samples were processed at SCIBLU using Illumina HumanHT-12 
Whole-Genome Expression BeadChips (Illumina), according to the 
manufacturer's instructions. The expression microarrays contained 
approximately 49,000 probes representing > 25,400 RefSeq (Build 36.2, 
Release 22) and Unigene (Build 199) annotated genes. Images and raw signal 
intensities were acquired using the Illumina BeadArray Reader scanner and 
BeadScan 3.5.31.17122 (Illumina) image analysis software, respectively.  

Data preprocessing and quantile normalization were applied to the raw signal 
intensities using BASE. Further data processing was done in Nexus 
Expression 2.0 (BioDiscovery) using log2-transformed, normalized 
expression values and a variance filter. Normalized values from five normal 
breast samples profiled with Illumina HumanWG-6 Expression Beadchips 
(GEO, accession number GSE17072) were used as reference [75]. Further 
details the reader will find in Parris et al [71] and its supplementary material.  
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Table 1. Clinical and pathological characteristics of the 141 breast cancer 
patients studied 

 Survivors Deceased 
Follow-up time 11 yrs 4 yrs 
Mean Age at diagnosis 61.5 57.0 
Tumor size 32.04 mm 32.38 mm 
Tumor status   
                        T1 21 15 
                        T2 29 32 
                        T3 15 16 
                        T4 1 4 
                Missing 6 2 
Histology   
                Ductal 53 45 
                Lobular 6 7 
                Other 7 13 
                Missing 6 4 
ER status   
                Positive 63 47 
                Negative 9 21 
                Missing - 1 
PR status   
                Positive 52 40 
                Negative 20 28 
                Missing - 1 
HER2 status   
                Positive 63 60 
                Negative 9 9 
Molecular subtype   
                Luminal A 1 0 
                Luminal B 64 45 
                HER2/ER-like 5 11 
                Normal 0 0 
                Basal-like 2 13 
Surgery   
                Lumpectomy 23 21 
                Mastectomy 36 36 
                Non 10 8 
                Missing 3 4 
Hormonal treatment   
                Yes 11 20 
                 No 10 12 
                Missing 51 37 
Radiotherapy   
                Yes 36 36 
                No 20 20 
                Missing 16 13 
Chemotherapy   
                Yes 38 39 
                No 17 18 
                Missing 17 12 
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2.2 Simulation studies 
In paper two we proposed an inference method for the mediation analysis in 
survival context. To assess the small sample behavior of the proposed 
method, we ran a Monte Carlo simulation. Through this Monte Carlo study 
we assessed the coverage probability of 95 % CIs at different sample sizes 
and compared the performance of the proposed approach to inferential 
procedures based on normal product distribution and non-parametric 
bootstrapping. 

First, we designed a study to estimate the coverage probability of the 
proposed 95% confidence intervals [76]. To this end, we simulated data sets 
of sample sizes varying between 100 and 1000 with increment 50. For each 
sample size we simulated 1000 data sets. In a second simulation we generated 
1000 samples of size 500. Based on these 1000 samples we constructed 
confidence intervals based on the Delta method, product normal distribution, 
and Monte Carlo confidence intervals, and for every sample we ran 1000 
nonparametric bootstrap resampling and constructed confidence intervals 
based on normal approximation, the base bootstrap, the percentile method, 
and Bias Corrected and Accelerated (BCa) bootstrap. Confidence intervals 
were compared for coverage probability and width aiming to find the 
narrowest confidence interval with coverage closest to the nominal 95%. 

Based on a previous analysis of 97 tumors [77] we estimated the mean 
log2ratio values for DNA copy number aberrations at µ= 0.248 and σ2= 
0.047. Thus, we simulated the DNA copy number aberrations as normally 
distributed at µ= 0.248 and σ2= 0.047. Furthermore, based on the same data 
we generated the relative mRNA log2ratio values by 

0.578 0.775DCNA +ε− +  with (0,0.158)Nε  . Survival times were 
generated according to the additive hazard model with 

0( | )i m ct mRNA DCNAα β λ λ= + +x , where 0.3mλ = , 0.1cλ = , leading to an 
indirect effect of 0.31 and a total effect of 0.41. The baseline 0β was set to 1 
and censoring was chosen to 0.9 to obtain a censoring around 60%, relevant 
for cancer studies. The coverage probability of the 95% CI was estimated as 
the proportion of confidence intervals covering the true values. Given that for 
every sample size we run 1000 simulations we would expect that the 
coverage lies between 0.936 – 0.9635. Lower or higher values indicate 
systematic under- or over-coverage.  
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3 RESULTS AND DISCUSSIONS 

3.1 Segmented regression 
The segmented regression approach proposed in paper I was intended to 
serve as an aid or enhancement. The versatility of the method arises from the 
possibility of a linear approximation to a large number of possible non-linear 
relationships. Naturally, it is desirable to find the true form of the structural 
relationship between DNA copy number aberrations and mRNA (or as close 
to the truth as possible). This is likely to be feasible if we restrict our 
attention to a single gene or marker. However, extended visual inspection or 
mathematical analysis of the DNA copy number aberrations-mRNA 
relationship for every gene is not practical or possible. A priori assumptions 
about the structural form of the relationship can lead to discovery of relevant 
biological/medical phenomena [29]; nevertheless this imposes a rigidity in 
assumptions that are likely to be violated. On the other hand, the increase in 
flexibility by adopting a segmented regression approach could easily lead to 
overfitting and could seriously impair any generalizations. Article I did not 
fully acknowledge these issues. The authors do test if a two-line segmented 
regression is better at describing the data than a simple one-line regression 
line; however the validity of the proposed approach is not fully explored. As 
noted by the authors, the testing procedure was a compromise due to 
limitation in computing power. Clearly significance testing based on 
permutations is the most appealing approach [78, 79]. However, adaptation of 
a permutation-based significance testing is hindered by the need for testing a 
large number of genes simultaneously. This latter aspect raises the question 
of multiple testing as well. Article I notes that based on biological reasoning 
we can expect two change-points, one on the limit between deletions and 
normal-like profiles and one between normal-like profiles and gains. So it is 
not only that we have to establish that mRNA-levels are related to DNA copy 
number aberrations but we have to decide if this relationship is best described 
by linear, one change-point or two change-point regression lines. This results 
in making it necessary for us to conduct six null-hypothesis tests for every 
gene, or four if we test sequentially in a predefined order from the simplest to 
the more complex relationships. This not only reduces statistical power, but 
adds an extra layer of complexity to an already complex problem.  

3.1.1 Information Criteria for segmented regression 
There is a vast body of literature on model selection procedures with 
Information Criterions (IC) occupying a prominent role. Information 
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Criterions trade-off fit and model complexity and the idea of parsimony 
suggest that one should prefer the least complex solution, and the IC offer 
mathematical justification for this major problem in the philosophy of science 
[80]. The two best known Information Criterions are the Aakike Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC). The 
theoretical motivations behind the AIC and BIC are distinct [81]. AIC does 
not assume the existence of a true model. Models are by definition only 
approximations to the unknown and unidentifiable truth and AIC searches for 
the best approximation. In contrast with this approach, BIC compares the 
probability of each model assumed to be the true model that generated our 
observations.  

Jones [82] used a modified version of the AIC for selection of change points. 
Liu et al [41] proposed a framework based on a modified version of the 
Bayesian Information Criterion. The authors [41] note that there is no  
reasonable way of picking the best information criterion other than that the 
one they proposed may also give consistent parameter estimators. We chose 
here to discuss the Akaike’s Information Criterion as a model selection tool. 
AIC can be estimated as ˆ2log ( ) 2AIC L pθ= − + , where ˆ( )L θ  is the 
likelihood and p the number of parameters in the model. AIC has been 
reported to find the “true” model more reliably than F-test [83, 84]. The 
model with lowest AIC value is considered to be closest to the unknown 
truth. If the sample size is small, one could consider further penalizing 
complex models to avoid overfitting [85].  For small sample sizes (e.g. 

/ ~ 40n p < ) AIC should be corrected as  

2( 1)( 2)
2C

p pAIC AIC
n k
+ +

= +
− −

. 

The correction term rapidly converges to zero with increasing sample size. 
Model selection proceeds with direct comparison of the estimated AIC values 
and the model with the lowest is preferred.  The drawback of AIC and 
Information Criterions in general is the lack of a straightforward universal 
interpretation and a proper scale with easily interpretable values. The lack of 
scale makes it hard to get insight into just how much statistical importance 
we can attach to a difference in AIC between two models. Raw comparison 
of AIC values does not provide sufficient evidence in favor of the chosen 
model. If the models considered have almost equal AIC values, raw 
comparison becomes even more difficult. In this case it is attractive to 
calculate the Akaike weights that serve as estimates for the conditional 
probabilities for each model. First we estimate the differences in AIC 
between models  
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( ) min( )i iAIC AIC AIC∆ = −  

Based on the results of Bozdogan [86] we can estimate the relative likelihood 
of model i given the data as  

{ }( | data) exp 0.5 ( )i iL M AIC∝ − ∆ . 

The normalized relative likelihoods function as Akaike weights ( iw ) 
{ }
{ }

exp 0.5 ( )
( )

exp 0.5 ( )
i

i
kk

AIC
w AIC

AIC
− ∆

=
− ∆∑

 

so that ( ) 1ii
w AIC =∑ . The interpretation is straightforward, the probability 

that the chosen model best describes the data given the candidate models 
considered. Dividing the Akaike weights of two competing models gives the 
strength of the evidence for choosing one model over the other [87, 88].  

AIC will not give a degree of belief about the model’s truthfulness; it merely 
gives us an objective tool we can use to compare the degree to which the data 
support the various models we wish to consider. This immediately highlights 
a practical issue that needs to be addressed before Information Criterions can 
be applied in integrative genomics. The classical null-hypothesis testing 
procedures have clear-cut widely accepted limits (significance levels). These 
significance levels have well known frequentist properties. While calculating 
Akaike weights facilitates direct comparison of competing models there are 
no guidelines for thresholds that would help us determine  how much better a 
more complex model has to be in order to be preferred over the simple ones. 
Moreover, it is not a straightforward matter to determine how to deal with 
multiple testing. The initial version of the article I used AIC as model 
selection tool. However, this approach was dropped in later stages due to the 
two concerns mentioned above. Nevertheless, the applicability of ICs for 
segmented regression in integrative genomics settings will be revisited in the 
more or less distant future. A recent paper by Leday revisited the idea of 
segmented regression as an exploratory tool for mRNA DNA copy number 
aberrations relationship with Information Criterions based model selection, 
reinforcing the idea of better feasibility of Information Criterions as selection 
tools over null-hypothesis testing [89].  

3.1.2 Biological meaning of the change-point(s) 
In article I we argue that the identified change-points and the pattern of 
relationship between DNA copy number and gene expression can generate 
additional hypotheses. To be specific, investigating what causes swift 
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changes in mRNA production, what causes over-production of mRNA, or the 
leveling out of the mRNA levels in spite of accelerated DNA accumulation in 
tumors could generate relevant research questions. Tumors characteristically 
consist of a mixture of cells, cells with aberrations in particular chromosome 
fragments, cells with high degrees of genomic instability and normal cells 
without copy number aberrations. In some cases, the change-point could 
simply divide the sample in subsets of tumors with high levels of normal 
cells without copy number aberrations and tumors with substantial copy 
number aberrations. As Chen et al. [90] demonstrated, segmented regression 
can simultaneously classify observations and provide statistical inference. 
More importantly, change-points could represent the degree of genomic 
instability that causes disruptions in negative-feedback mechanisms. Defects 
in feedback mechanisms might enhance proliferate signaling, thus inducing 
an ever increasing gene expression [6]. 

3.1.3  Application to breast cancer  
Multiple analysis 
We applied a segmented regression analysis of 1161 chromosome fragments 
from 97 tumors from the study of Parris et al [71]. Of the 1161 chromosome 
fragments examined after multiple adjustments, 341 showed significant 
associations between DNA copy number aberrations and relative mRNA 
levels. For 269 of the 341 significant relationships (78%), addition of change-
point and subsequent segmented regression provided no genuine 
improvement over linear regression, while for the remaining 72 chromosome 
segments the two-segment regression had a significantly better fit. For 59/72 
chromosome fragments (82%), we observed an initial increase in mRNA 
levels due to changes in DNA copy number aberrations. After the change-
point was passed, the mRNA levels reached a plateau and a further increase 
in DNA copy numbers did not induce further elevation in mRNA levels. For 
12 chromosome fragments, the change-point marked the point where mRNA 
production accelerated and accumulation was faster than DNA levels 
suggested.  

The case of gene HDGF  
The HDGF gene encodes a member of the hepatoma-derived growth factor 
family. HDGF increases the tumorigenic, mitogenic and angiogenic activity 
of a variety of cancer cells [91] and participates in the pathogenesis of breast 
cancer by promoting cell growth [92]. Overexpression of HDGF mRNA 
levels has been observed in nasopharyngeal carcinomas [93]. The mean 
log2ratio of the 1161 chromosome fragments we analyzed was –0.082, 
suggesting that neoplastic cells had mRNA levels similar to normal cells. 
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Compared with that the log2ratio relative mRNA levels for the HDGF gene 
was –0.954, indicating a down-regulation. The log2ratio relative mRNA 
levels for the HDGF gene were partially explained by copy number 
aberrations. We fitted three working models, the null model with only a 
single-line linear regression and a piecewise-linear regression with two 
segments. We observed that both the single-line linear regression and a 
piecewise-linear regression with two segments significantly improved fit (F-
test, p= 0.0000006 and p= 0.0000005). Moreover the two-segment regression 
line represented an improvement over the single-line regression (P-val=0.03). 
To gain a better insight into the appropriateness of the two-segment 
regression line over the competing models we calculated the Akaike weights. 
It turned out that with a probability of 0.789 the two segment-regression best 
describes the data. The single-line regression achieved a posterior probability 
of 0.21while the intercept model had a posterior probability close to zero.  

 

Figure 1. DNA copy number and messenger-RNA relationship for gene HDGF 
depicted by a two-segment regression equation. The image on the left side illustrates 
the Residual sum of squares over the domain of the change-point and the estimated 
change-point with the associated 95% Confidence Interval. The right side image 
depicts the changes in the regression line.  

Using the algorithms outlined in a previous section we estimated the change-
point and the regression parameters. We observed that the expression velocity 
changes over 0.232 on the normalized copy number scale (Figure 1). Below 
that limit, one unit increase on the normalized copy number scale resulted in 
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1.76 unit increase of mRNA levels (p= 0.0003). After passing the change-
point the mRNA accumulation slows down; one unit increase on the 
normalized copy number scale resulted in 0.432 unit increase of mRNA 
levels (p= 0.04). True, DNA copy number aberrations explain only 29% of 
the variation in mRNA levels.  

A non-parametric bootstrap analysis with 1000 resamplings with replacement 
revealed a small bias in the change-point estimation (0.004); however, the 
bias was 50-fold lower than the parameter estimate. The estimated standard 
error for the change-point was similar in magnitude, 0.006. Interestingly, 
confidence intervals based on bootstrapping were genuinely narrower than 
confidence intervals based on the F-distribution.  

3.2 Mediation analysis 
In this section we offer numerical results demonstrating the feasibility of the 
proposed inference algorithm. Additionally, we offer an extension for 
multiple mediator and multiple mediating pathways.   

3.2.1 Properties of the proposed confidence interval 
The coverage of the 95% confidence interval was close to the nominal value 
and was in between the acceptance limits at sample sizes as low as 100 
(Figure 2). Coverage of 95% confidence interval based on the Delta method 
was similar to confidence intervals based on non-parametric bootstrapping, 
Monte Carlo simulation and on the normal product distribution (Table 2). 
Moreover, the confidence interval based on the Delta method was 
symmetrical; intervals that failed to cover the true population value fell 
roughly equally into the lower and upper tail of the distribution. However, the 
estimated statistical power was low and achieved the generally accepted level 
of 0.8 only at sample sizes around 300. True, the choices we made in this 
simulation study directly influence the estimated statistical power, and  had 
we used other parameter values the power curve plotted in Figure 3 might 
have had steeper (or perhaps lower) slopes. Nevertheless, low power 
generally characterizes confidence intervals based on the Delta method. 
Somewhat surprisingly, confidence interval width based on the Delta method 
was superior to confidence intervals based on the alternatives. Bootstrapping 
is thought to be superior to the Delta method [94], however this is not always 
the case [95] and bias-corrected and accelerated bootstrap are known to have 
elevated Type I errors with sample sizes under 500 [96]. 



Szilárd Nemes 

31 

Table 2. Numerical results for coverage probability and confidence interval 
width of different types of 95% confidence intervals at different sample size 
for the mediation effect.  

 n=100 n=200 n=300 n=400 n=500 
 
 Cov Width Cov Width Cov Width Cov Width Cov Width 

Delta method   0.946      1.662    0.946   1.140   0.945   0.904   0.943   0.790   0.946   0.701 
Normal Product   0.942    1.687   0.942   1.149   0.945   0.909   0.942   0.793   0.945   0.703 
Monte Carlo   0.942   1.686   0.945   1.148   0.944   0.908   0.941   0.793   0.941   0.703 
Bootstrap: Normal   0.969   1.812   0.948   1.178   0.950   0.927   0.950   0.804   0.950   0.710 
                 Base   0.982   1.853   0.956   1.195   0.957   0.938   0.956   0.812   0.954   0.716 
                 Percentile   0.934   1.853   0.943   1.195   0.940   0.938   0.943   0.812   0.939   0.716 
                 BCa   0.945   1.843   0.943   1.193   0.939   0.938   0.948   0.811   0.941   0.715 

 

Moreover, based on asymptotic expansions it is known that the Delta method 
and bootstrap estimator of variance coincide at least at first order terms [97]. 

Figure 2. Evolution of the empirical statistical power as a function of the sample 
size.  

We believe that the normality assumption for the log2ratio DNA copy number 
aberrations and mRNA data is plausible. However, deviation from this 
assumption is likely at least for a number of genes, given that we might 
concomitantly study up to around 20,000 genes. Consequently, we simulated 
DNA copy number aberrations and mRNA data using non-normal 
distribution (t-distribution, Weibull and log-normal). Apart from small 
variations that can be attributed to randomness, the behavior of the 95% 
confidence intervals was similar to the ones based on DNA copy number 
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aberrations and mRNA with normal distribution with slight under-coverage 
at  sample sizes of 100 (data not shown). If the elements of the design matrix 
(in our case DNA copy number aberrations readings) are evenly spaced the 
overall error due to skewed distribution will be 1( )O n− , thus as n →∞  
normal approximation of the least squares regression slope estimates is 
appropriate [98]. Parameter estimation of Aalen’s Additive Model also uses 
least squares, however generalization of the above described results is not 
straightforward. Nonetheless, the asymptotic efficiency of the derived 
estimators is expected.  

 

3.2.2 Application to Breast Cancer 
Regression analysis of breast cancer tumors showed that in 128 out of 8,349 
chromosome fragments a significant DNA copy number aberrations -mRNA 
and subsequent mRNA-survival association exists. After adjusting for 
multiple testing, none of these 8,349 genes showed a significant mediation 
effect. If we had only tested the 128 genes with both DNA copy number 
aberrations -mRNA and mRNA-survival association, then all 128 genes 
would have shown significant mediation effects. Among these 128 genes, the 
mRNA levels for 124 genes mediated completely the effect of DNA copy 
number aberrations on survival, and no significant direct effect of DNA copy 
number aberrations on survival was recorded. For four fragments we 
observed that mRNA levels exhibited significant mediation effect but DNA 
copy number aberrations exerted an effect on survival that was not mediated 
by mRNA levels belonging to that specific fragment.  

3.2.3 Extension to more than one mediator 
In Article II we did not consider the case when more than one mediator or 
more than one mediation pathway is present. It is acknowledged that it is not 
mRNA but proteins that are the building blocks and functional elements of 
the human body. Thus, it would be natural to extend the DNA copy number 
aberrations-mRNA-survival pathway to DNA copy number aberrations-
mRNA-protein-survival. Moreover, it is natural to expect that proteins 
(especially enzymes) might affect the expression of other genes that influence 
the functionality of other proteins.  

The DNA copy number aberrations-mRNA-protein-survival 
pathway 
The information stored in the DNA is transcribed to mRNA which in turn is 
translated to proteins. As a result it would be desirable to consider this full 
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pathway, but due to technical limitations protein data are rarely available for 
the researchers. Reliable genome-wide protein expression patterns are yet to 
be developed. The extension of the mediation analysis advocated in paper II 
for this pathway is straightforward. In agreement with the methodology 
previously described we assume that we modeled the effect of DNA copy 
number aberrations, mRNA and protein levels on the hazard as  

0 1 1( | )i m m ct Prot mRNA DCNAα β λ λ λ= + + +x  

where .mλ  is the effect of the mediators on the hazard (in our case mRNA 
levels) while cλ  is the effect of the covariate on the hazard (in our case DNA 
copy number aberrations). Moreover we assume that levels are explained to a 
certain degree by DNA copy number aberrations and their relationship can be 
depicted as  

0 m mRNAmRNA DCNAα α ε= + +  

and protein levels are explained to a certain degree by mRNA levels 

0 .m ProtProt mRNAγ γ ε= + +  

Simplifying these equations leads to 

0( | ) ( ( ) )i m mRNA Prot m DCNAt DCNAα β α λ λ γ λ= + + +x  

where ( )m mRNA Prot mα λ λ γ+  is the effect of DNA copy number aberrations on 
survival status mediated through mRNA and protein, while 

( )m mRNA Prot m DCNAα λ λ γ λ+ +  is the total effect of DNA copy number 
aberrations on survival status. Applying the Delta method leads to a variance 
estimator for the mediated effect of 

( ) ( ) ( )2 2 22 2 2 2 2 2 .
mRNA m mmed m mRNA Prot m m m Prot m Protλ α γσ α σ λ λ γ σ α γ σ α λ σ= + + + +  

This assumed that mRNA might have an effect on survival that is not 
mediated through proteins. If we reject this assumption the estimator for the 
mediator effect simplifies to m Prot mα λ γ and its variance will be  

( ) ( ) ( )2 2 22 2 2 .
m mProt m m m Prot m Protα γλ γ σ α γ σ α λ σ+ +  

Multiple mediating pathways 
Following Fosen et al [99] we formalize the following notation. Let hjψ  be 
the regression coefficient when jX  is regressed hX  and jλ  the Aalen’s 
Additive regression coefficient when the survival status ( dY ) is regressed 
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onto .jX The direct effect of jX  on the survival is represented by jλ while 
the mediated effect is a path of length longer than one with one or more 
mediators . We assume that there are r  indirect paths for hX  to dY , and 
denote them as iP  with 1,..., .i r=  Then the indirect path iP  takes the 
following form 

( ) ( ) ( ){ }1 2 2 3
, ,  , ,...,  ,d

wii i i i i iP X X X X X Y=  

where iw  is the length of the path and the mediated effect will be  
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Again, if we assume that all mediators but the last on the path have no effect 
on the survival the formula simplifies to 
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It is easy to see that this formulation is identical with the Dynamic Path 
models formulation without time depending effects. The variance estimator 
for the mediated effect will be 
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While we did not attempt to assess the plausibility of normal approximation 
for the multiple pathways or multiple mediators setting, we assume that the 
estimator would work, but we recognize that the simple size requirement will 
be substantial.  

3.2.4 Mediation for ill-conditioned regression 
equations 

Epidemiological literature routinely warns against adjusting regression 
equations for variables that are chains in the causal link, e.g. the mediator 
itself. From a mathematical point of view, the reasoning behind this 
recommendation is straightforward; if the independent variable causes the 
mediator then a regression equation with the independent and mediator as 
predictors for the outcome will be more or less ill-conditioned.    

For the simple linear regression equation as we noted above the regression 
coefficients can be estimated by minimizing the residual sum of squares 

21

1

ˆ arg max
p

i ji j
i j

y xβ β
−

=

   = −  
   

∑ ∑  
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or by solving the normal equations, 1( ) .T T−X X X y  The least-squares 
estimates are not only the maximum-likelihood values for the parameter 
vector β  but also the best linear unbiased estimators (BLUE). However, if 
the regression equation contains an independent variable and a mediator that 
are highly correlated to each other then TX X  will have a determinant close to 
zero, making inversion imprecise and inflates the variance of the parameter 
estimates. If the mediator is a deterministic linear combination of the 
independent variable then TX X  will be singular and there are no unique 
least-squares estimates of β . If TX X is close to singular the problem is ill-
conditioned and we have to deal with collinearity and variance inflation. A 
possible solution would be to relax the desire for an unbiased parameter 
estimate and use an estimator which is biased but has considerably smaller 
variance. Here we seek to minimize the mean squared error of the model. The 
mean squared error assesses an estimator in terms of its variation and 
unbiasedness, 2ˆ ˆ ˆ( ) var( ) ( )MSE Eθ θ θ θ= + −  and for the ill-conditioned 
problems with inflated variance we seek a solution with lower MSE than the 
unbiased model, a bias-variance trade-off. We assume that inducing bias in 
parameter estimates yields a decrease in MSE, thus less variability in 
parameter estimates. Addition of a penalty term to the parameter estimates 
will inevitably shrink them towards zero and if the penalty term is properly 
used will lower their variability considerably. For the linear-regression 
equation the estimate will be 

21
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One of the oldest and most frequently applied penalties is the ridge penalty, 
1
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=

= ∑ . 

Addition of the penalty term will make possible the inversion of the TX X and 
1( )T T−+X X λI X y  will have unique solutions.  

So far we have focused on the linear regression problem; however in our case 
a survival regression equation will contain a pair of correlated predictors. 
Penalized estimation is applicable to the additive hazards model as well [100, 
101]. While in certain high dimensionality problems penalized regression is a 
must in the frame of mediation analysis, its feasibility has not yet been fully 
explored. The main drawback of penalized regression methods lies in the 
biased estimates themselves. Bayesian formulation can produce standard 
errors [102] and as always computer intensive methods can provide 
frequentist standard errors as well. However, as the parameter estimates are 
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inevitably biased, any effort to get inference about the value of the unknown 
true parameter is futile.  

Working with large scale genome-wide data will inevitably lead to situations 
when the independent variable (DNA copy number aberrations) and mediator 
(mRNA) will be highly correlated. In that case most likely the methodology 
outlined by article II will fail. The estimates of Aalen’s additive model will 
have vastly inflated variances and this inevitably inflates the variance of the 
estimated mediated effect as well. Considering a penalized regression 
framework might be a path worth exploring in a mediation context.  

3.2.5 Concluding remarks 
The methodology presented in article II is largely based, and expands on, the 
current advances in mediation analysis in a survival context [99, 103-105] 
and adheres to the effort to infer a causal association between genes and 
disease [106-110]. The core biological assumption is that significant 
mediation effect ensures implication of DNA copy number aberrations in the 
progression to the outcome. The absence of mediation effects coupled with a 
significant mRNA-outcome relationship could indicate the presence of genes 
with dosage-independent effects and might guide researchers to other 
relevant biological processes. Similarly, the absence of a mediation effect 
coupled with the presence of a significant direct DNA copy number 
aberrations-outcome relationship indicates possible passenger genes whose 
effect depends upon the physical proximity of genuine driver genes. The 
aforementioned article does not discuss the issue of multiple testing, but 
simply mentions that the false discovery rate was controlled with Benjamini 
& Hochberg adjustment. This issue deserves more attention. The low 
empirical power in the simulation study and the fact that after multiple 
adjustments none of the 8,349 genes showed a significant mediation effect 
clearly indicates problems with statistical power. Decreased statistical power 
due to multiple test adjustment is a known phenomenon in genomic studies 
[111]. Our simulation results showed that the proposed inference based on 
the Delta method is equivalent to inferential procedures based on normal 
product distribution or re-sampling, the staple methods of inference in 
mediation studies [112, 113]. Thus, it seems likely that independently of the 
chosen testing method we would end up with a large number of false negative 
results.  
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3.3 A novel 12-gene predictive panel for breast 
cancer specific survival 

3.3.1 Patients and data 
Based on sequence homology, differential expression of 12,252 transcripts 
was matched to corresponding altered DNA segments generated from 
corresponding tumors for the 141 tumors. Our primary concern was gene 
expression and its relation to cancer specific survival. Copy number 
aberration data were only used for depicting the complex relationships among 
genes.  

3.3.2 Results and interpretations  
Univariate Cox-regression analysis identified 54 genes that can stratify 
patients into groups with a favorable or an unfavorable disease course. These 
54 genes retained their significance and effect after adjustment for a set of 
clinicopathological variables (age at diagnosis, estrogen and progesterone 
receptor status, HER2 status, molecular subtypes, endocrine treatment, 
radiotherapy, and chemotherapy) suggesting an effect independent of 
prognostic factors and therapies. Due to the sample-size, the predictor-
number multivariate model based on these 54 genes did not produce 
interpretable effect sizes. By means of Bayesian Model averaging, we 
reduced the 54 genes to a panel of 12 for the sake of efficiency and 
interpretability. Naturally this reduction resulted in loss of predictive power 
which, however  proved to be marginal (Z=0.75, P= 0.588) and the two 
models had similar C-indexes (0.88 for the model with 54 genes and 0.83 for 
the model with 12 genes). The predictive power of the multivariate model 
based on the 12-gene signature was high, especially in the first five years 
following initial diagnosis, and remained at levels previously indicated by 
gene expression profiling [114, 115]. Internal validation showed that the 
predictive power of the model was stable.  

3.3.3 Concluding remarks 
Gene expression profiling is an efficient way to portray the global state of 
tumors and provides a comprehensive overview of this complex 
heterogeneous and polygenous nature of cancer and has led to important, but 
so far incremental and somewhat controversial clinical advancements [116, 
117]. The results outlined above are not free from controversies or 
contradictions. We observed that univariate and multivariate predictive 
models indicated opposing effects for specific genes. Moreover, findings 
about LETMD1 gene clearly contradict current knowledge. These issues are 
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not specific to the findings presented in paper III but they are more or less a 
general aspect of genomic studies. The 12-gene panel proposed in this paper 
will have to withstand external validation and will have to prove its worth 
against well-established gene signatures such as MammaPrint and Oncotype 
Dx. From the dawn of high-throughput data, hundreds if not thousands of 
gene signature panels have been proposed to stratify patients to predict 
clinical outcome. Many of these studies failed to have been validated on an 
external data set. Internal validation by the means of resampling or cross-
validation is feasible as a means of assessing the accuracy gain compared 
with known clinical predictors; however, it is in any case desirable to validate 
the model on an independent data set [118]. This is more easily said than 
done, partly because of the unavailability of clinical data, non-overlapping 
gene sets and the instability of model building in this high-dimensional 
setting [119]. As a consequence, translating the proposed gene panel (or other 
published gene panels) to clinical praxis is not straightforward task.  

Clinical-epidemiological thinking approaches validity from another angle but 
nevertheless its core requirements applies high-dimensional genomic settings. 
The hierarchical-step model by Steineck [120] identifies four key steps that 
influence the validity of a result. Confounding, the first of the four steps, is a 
likely candidate for problems in high-dimensional genomic studies. Both 
measured and unmeasured confounders are expected and controlling for them 
is nearly impossible. Misrepresentation is another source of error as patients 
are included more opportunistically than based on a rigorous selection 
procedure. Erroneous measurements, misclassified patients and misspecified 
prediction models further erode the validity. 

3.4 Testing clonal origin  
In the manuscript submitted as paper IV we present a combination of two 
well-proven and known strategies for testing the clonal origin of tumor pairs. 
The main assumption is that if two tumors share a common origin then they 
will both exhibit chromosomal aberrations at distinct locations. These are 
somatic changes such as deletions or gains of DNA material ranging from 
one single nucleotide mutation up to whole chromosomes [6]. This can be 
sporadic aberrations occurring in single patients’ tumors or recurrent 
chromosomal aberrations that are nonrandom changes preferentially 
involving particular chromosomes [121]. Inevitably, due to these recurrent 
aberrations two tumors developing independently of each other will share 
common chromosomal aberrations. Metastases or clonal secondary tumors 
tend to develop from dominant cell populations of a primary tumor [122], 
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thereby inheriting not only recurrent chromosomal aberrations characteristic 
for specific types of solid tumors but also patient-specific chromosomal 
aberrations that develop during the evolution of neoplastic cell populations. 
Indeed, we cannot rule out that secondary tumors originate from one or more 
cells  that deviate in genomic profile from the primary tumor. The 
heterogeneous nature of cancer explains why not all cells within a tumor 
mass harbor the same chromosomal aberrations [123].  

With this in mind we heuristically derived a simple index that offers insights 
into the similarities of two tumors and developed a permutation based 
significance testing. The testing procedure assesses if two tumors exhibit a 
higher percentage of common aberration that might be explained by recurrent 
chromosomal aberrations or randomness.    
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4 SUMMARY AND CONCLUSIONS 
 

Statistics, more specifically mathematical statistics and statistical 
inference, stand as a research field on its own and in addition serve as a 
backbone to many empirical studies. With the emergence of large-
scale, genome-wide studies, researchers faced amounts of data and 
research settings that cannot be handled with classical statistics. 
Cancer genetics and genomics is a relatively young branch of biology 
which blurs the distinction between theoretical statistical research and 
applied statistics and acts as a driver for the refinement of old and 
development of new techniques. This thesis aims to contribute to the 
literature with three novel tools that might find usefulness and 
applicability in cancergenetic and genomic studies.  

First, we proposed segmented regression analysis as a way to depict 
the possible complex DNA copy number aberration and messenger 
RNA relationships in an efficient way concomitantly for a large 
number of genes. This methodology enables researchers not only to 
model effectively possible non-linear DNA copy number aberration 
and messenger RNA relationships, but the detected changepoints can 
generate further hypotheses. Specifically, I can offer insights into the 
degree of genomic instability that induces altered gene expression 
patterns.  

Second, we extended the integrative analysis of DNA copy number 
aberrations and messenger RNA with the inclusion of an endpoint with 
direct clinical interest. This paper mostly focuses on 
statistical/methodological aspects. Namely, it describes a 
computationally efficient null-hypothesis testing procedure based on 
the Delta method for the mediation effect. The method offers the 
possibility for researchers to weed out passenger genes whose copy 
number aberrations depend on the proximity of driver genes. Driver 
gene copy number aberrations ought to manifest in altered gene 
expression patterns and ultimately affect patient survival.    

Third, we build a permutation-based procedure that might aid 
researchers who seek to elucidate the clonal origins of multiple tumors. 
This method is a computationally efficient straightforward way of 
testing tumor clonality that assumes that two clonal tumors have more 
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shared chromosomal aberrations than recurrent aberrations could 
explain.  

The thesis concludes with an applied biological study and provides yet 
another gene signature for survival prediction. In this study we 
identified 12 genes that together can predict with a good predictive 
power breast-cancer specific survival up to 1ten years after diagnosis. 
This gene panel has the potential to stratify patients to favorable and 
non-favorable prognosis groups. However, as with other similar 
studies its applicability needs to be validated on an independent data 
set.   
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