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Summary 

Defining cell types requires integrating diverse measurements from multiple experiments and biological 

contexts.  Recent technological developments in single-cell analysis have enabled high-throughput 

profiling of gene expression, epigenetic regulation, and spatial relationships amongst cells in complex 

tissues, but computational approaches that deliver a sensitive and specific joint analysis of these 

datasets are lacking.  We developed LIGER, an algorithm that delineates shared and dataset-specific 

features of cell identity, allowing flexible modeling of highly heterogeneous single-cell datasets. We 

demonstrated its broad utility by applying it to four diverse and challenging analyses of human and 

mouse brain cells. First, we defined both cell-type-specific and sexually dimorphic gene expression in the 

mouse bed nucleus of the stria terminalis, an anatomically complex brain region that plays important 

roles in sex-specific behaviors.  Second, we analyzed gene expression in the substantia nigra of seven 

postmortem human subjects, comparing cell states in specific donors, and relating cell types to those in 

the mouse.   Third, we jointly leveraged in situ gene expression and scRNA-seq data to spatially locate 

fine subtypes of cells present in the mouse frontal cortex. Finally, we integrated mouse cortical scRNA-

seq profiles with single-cell DNA methylation signatures, revealing mechanisms of cell-type-specific gene 
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regulation.  Integrative analyses using the LIGER algorithm promise to accelerate single-cell 

investigations of cell-type definition, gene regulation, and disease states. 

 

Introduction 

The function of the mammalian brain is dependent upon the coordinated activity of highly specialized 

cell types.  Advances in high-throughput single-cell RNAseq (scRNAseq) analysis (Klein et al., 2015; 

Macosko et al., 2015; Rosenberg et al., 2018; Zheng et al., 2017) have provided an unprecedented 

opportunity to systematically identify these cellular specializations, across multiple regions (Saunders et 

al., 2018; Tasic et al., 2016; Zeisel et al., 2018), in the context of perturbations (Hrvatin et al., 2018), and 

in related species (Hodge et al., 2018; Lake et al., 2016; Tosches et al., 2018).  Furthermore, new 

technologies can now measure DNA methylation (Luo et al., 2017; Mulqueen et al., 2018), chromatin 

accessibility (Cusanovich et al., 2018), and in situ expression (Coskun and Cai, 2016; Moffitt and Zhuang, 

2016; Wang et al., 2018), in thousands to millions of cells.  Each of these experimental contexts and 

measurement modalities provides a different glimpse into cellular identity. 

Integrative computational tools that can flexibly combine individual single-cell datasets into a unified, 

shared analysis offer many exciting biological opportunities.   For example, systematic comparisons of 

similar cell types across related brain regions, or homologous tissues from different species, could clarify 

conserved elements of cell type function, and nominate molecular pathways involved in unique 

specializations.  Additionally, cross-modality analyses—integration of gene expression with spatial 

information, or epigenomic measurements—could shed important light on the molecular determinants 

of tissue patterning, and the key mechanisms governing cell-type-specific gene regulation.   

The major challenge of integrative analysis lies in reconciling the immense heterogeneity observed 

across individual datasets.  Within one modality of measurement—like scRNA-seq—datasets might 
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differ by many orders of magnitude in the number of cells sampled, or in the depth of sequencing 

allocated to each cell. Across modalities, datasets may vary widely in dynamic range (gene expression 

versus chromatin accessibility), direction of relationship (RNA-seq versus DNA methylation), or in the 

number of genes measured (targeted quantification versus unbiased approaches). To date, the most 

widely used data alignment approaches (Butler et al., 2018; Haghverdi et al., 2018; Johnson et al., 2007; 

Risso et al., 2014) implicitly assume that the differences between datasets arise entirely from technical 

variation and attempt to eliminate them, or map datasets into a completely shared latent space using 

dimensions of maximum correlation (Butler et al., 2018). However, in many kinds of analysis, both 

dataset similarities and differences are biologically important, such as when we seek to compare and 

contrast scRNA-seq data from healthy and disease-affected individuals, or when there are differences 

cell type composition, with large differences in proportional representation or even cell types missing 

from some datasets.  

To address these challenges, we developed a new computational method called LIGER (Linked Inference 

of Genomic Experimental Relationships). Our approach allows simultaneous, unsupervised discovery of 

cell types from multiple single-cell experiments, and characterizes both similarities and differences in 

the properties of these cell types across datasets.  We show here that LIGER is extremely robust, 

enabling the identification of shared cell types across individuals, species, and multiple modalities (gene 

expression, epigenetic or spatial data), offering a unified analysis of heterogeneous single-cell datasets.   

Results 

Comparing and contrasting single-cell datasets with shared and dataset-specific factors 

The intuition behind LIGER is to jointly infer a set of latent factors that represent the same biological 

“signals” in each dataset, while also retaining the ways in which these signals differ across datasets. 

These shared and dataset-specific factors can then be used to jointly identify cell types, while also 
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identifying and retaining cell-type-specific differences. LIGER takes as input multiple single-cell datasets, 

which may be scRNA-seq experiments across different individuals, time points, or species. The inputs to 

LIGER may even be measurements from different molecular modalities, such as single-cell epigenome 

data or spatial gene expression data (Figure 1A).  

 
Figure 1: LIGER approach to integration of highly heterogeneous single cell datasets. (a) LIGER takes as input two or more 

datasets, which may come from different individuals, species, or modalities, that share corresponding gene-level features. (b) 

Integrative nonnegative matrix factorization (Yang and Michailidis, 2016) identifies shared metagenes across datasets, as well 

as dataset-specific metagenes. (c) Building a graph in the resulting factor space, based on comparing neighborhoods of 

maximum factor loadings (Methods), allows integration that is highly robust to dataset differences. The schematic shows cells 

numbered by their maximum factor loadings and connected to their nearest neighbors within each dataset. The shared factor 

neighborhood graph leverages the factor loading values of neighboring cells to provide additional robustness against noisy 

factor loadings and prevent the spurious integration of cell types that do not correspond across datasets (such as the yellow 

cells shown). 

LIGER begins by employing integrative non-negative matrix factorization (iNMF) (Yang and Michailidis, 

2016) to learn a low-dimensional space in which each cell is defined by one set of dataset-specific 

factors, and another set of shared factors (Figure 1B).  Each factor, or metagene, represents a distinct 

pattern of gene co-regulation, often corresponding to biologically interpretable signals—like the genes 

that define a particular cell type. The dataset-specific metagenes allow robust representation of highly 

divergent datasets; for example, in a cross-species scRNA-seq analysis, dataset-specific factors will 

capture differences in coexpression patterns of homologous genes. The factorization can also 

accommodate missing cell types by generating a factor with a very large dataset-specific component for 
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each cell type. A tunable term in the factorization objective function penalizes the contributions of 

dataset-specific metagenes, allowing large or small dataset-specific effects depending on the divergence 

of the datasets being analyzed.  After performing the factorization, we employ a novel clustering 

strategy that increases the robustness of our results. We first leverage the parts-based nature of the 

factorization to assign each cell a label based on the factor with the highest loading.  We next detect 

shared clusters across datasets by building a shared factor neighborhood graph (Figure 1C), in which we 

connect cells that have similar neighborhoods of maximum factor loading patterns (Methods).   

We derived an efficient algorithm that converged in fewer iterations than the standard approach to 

NMF optimization (Figures S1A, S1B, and Methods), enabling performance that scales well with the size 

of modern high-throughput single-cell datasets.  To aid in selecting the main parameters of the 

analysis—the number of factors 𝑘 and the tuning parameter 𝜆—we developed heuristics based on 

factor entropy (measuring the extent to which the information about a cell is encoded in a small number 

of factors), and dataset alignment (Methods). Overall, these heuristics performed well across different 

analyses (Figure S1C), though we have observed that manual tuning can sometimes improve the results.  

Additionally, we derived novel algorithms for rapidly updating the factorization to incorporate new data 

or change the k and 𝜆 parameters (Methods and Figure S1D). By using the factors already computed as 

a starting point for the optimization procedure, we can add new data much more efficiently than simply 

re-computing the analysis from scratch (Figure S1E). So-called “online learning” approaches have proven 

extremely useful for analyzing massive and continually accumulating data such as internet content, and 

we anticipate that our approach will be similarly useful for leveraging a rapidly growing corpus of single-

cell data.    
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LIGER shows robust performance on highly divergent datasets 

We assessed the performance of LIGER through the use of two metrics: alignment and agreement. 

Alignment (Butler et al., 2018) measures the uniformity of mixing for two or more samples in the aligned 

latent space by calculating the proportion of nearest neighbors that come from the same versus a 

different dataset.  This metric should be high when datasets share underlying cell-types, and low when 

attempting to integrate datasets that do not share cognate populations. The second metric, agreement, 

quantifies the similarity of each cell’s neighborhood when a dataset is analyzed separately, versus when 

it is analyzed jointly with other datasets by LIGER.  A high agreement value indicates that the 

information about cell types within each dataset is preserved, with minimal distortion, in the joint, 

integrated analysis. 

We calculated alignment and agreement metrics using published datasets (Baron et al., 2016; Gierahn et 

al., 2017; Saunders et al., 2018), comparing the LIGER analyses to those generated by a recently 

described method of alignment based on canonical correlation analysis and implemented in the Seurat 

package (Butler et al., 2018).  We first ran our analyses on a pair of scRNA-seq datasets from human 

blood cells that were prepared by two different technologies and show large-scale, systematic technical 

variations (Gierahn et al., 2017).  Because these datasets measure gene expression from nearly the same 

cell types, an integrative analysis should yield a high degree of alignment.  Indeed, LIGER and Seurat 

show similarly high alignment statistics (Figures 2A-C), with LIGER producing a joint clustering result that 

is concordant with the published cluster assignments for the individual datasets. LIGER and Seurat 

performed similarly when integrating human and mouse pancreatic data, with LIGER showing slightly 

higher alignment (Figure 2C).  

In both analyses, we measured considerably higher agreement in the LIGER analysis (Figure 2D), 

suggesting better preservation of the underlying cell-type architectures when the datasets were brought 
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together in a shared, integrated space. We expected that this advantage should be especially beneficial 

when analyzing very divergent datasets that share few or no common cell populations. To confirm this 

advantage of LIGER, we jointly analyzed profiles derived from hippocampal oligodendrocytes and 

 

Figure 2: Benchmarking LIGER performance. (a) Two-dimensional visualization (t-SNE) of a Seurat/CCA (Butler et al., 2018) 

analysis of two scRNA-seq datasets prepared from human blood cells.  (b) t-SNE visualization of a LIGER analysis of the same 

dataset analyzed in (a). (c) Alignment metrics for the Seurat and LIGER analyses of the human blood cell datasets, human and 

mouse pancreas datasets, and hippocampal interneuron/oligodendrocyte datasets. Error bars on the LIGER datapoints 

represent 95% confidence intervals across 20 random initializations. (d)-(e) t-SNE visualizations of Seurat/CCA (d) and LIGER (e) 

analyses of 3,212 hippocampal interneurons and 2,524 oligodendrocytes. (f) Agreement metrics for Seurat and LIGER analyses 

of the datasets listed in (c). (g)-(h) Alignment and agreement for varying proportions of oligodendrocytes mixed with a fixed 

number of interneurons. (i) Riverplot comparing the previously published clustering results for each blood cell dataset with the 

LIGER joint clustering assignments. 
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interneurons (Saunders et al., 2018).  These cell classes display different developmental trajectories and 

perform different functions, and thus should not be merged in a joint analysis.  The LIGER analysis 

generated minimal false alignment and demonstrated a good preservation of complex internal 

substructure (Figures 2D-F, S2A-C), allowing clear resolution of many subpopulations, even across 

considerable changes in dataset proportion (Figures 2G-H).  To provide an intuitive representation of 

the sometimes-complex relationships between different clustering results, we used river plots, also 

called Sankey diagrams, to connect  “streams” of cells with the same assignments across cluster 

analyses.  In each of the three analyses described above, the joint LIGER clustering result was highly 

concordant with the published cluster assignments for the individual datasets (Figures 2I, S2D-E).  

Together, these analyses indicate that LIGER shows high sensitivity for discovering common populations 

without spurious alignment and preserves complex substructure, even when datasets have very few 

shared signals. 

Interpretable factors unravel complex and dimorphic expression patterns in the bed nucleus 

An important application of integrative analysis in neuroscience is to quantify cell-type variation across 

different brain regions and different members of the same species.  To examine LIGER’s performance in 

these tasks, we analyzed the bed nucleus of the stria terminalis (BNST), a subcortical region comprised 

of multiple, anatomically heterogeneous subnuclei (Dong and Swanson, 2004) that are implicated in a 

diverse combination of social, stress-related, and reward behaviors (Bayless and Shah, 2016).  To date, 

single-cell analysis has not yet been deployed on BNST; the robust ability to compare and contrast 

datasets with LIGER provided an opportunity to clarify how cell types are shared between this structure 

and datasets generated from related tissues. 
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Figure 3: LIGER reveals region-specific and sex-specific cellular specialization in the bed nucleus of the stria terminalis. (a) t-

SNE visualization of 30,684 bed nucleus neurons analyzed by LIGER, colored by cluster, and labeled by a highly exclusive ma 

rker. (b) Top, feature plots showing expression of Sh3d21 and Vipr2, in the LIGER BNST analysis.  Bottom, sagittal images of ISH 

for Sh3d21 and Vipr2 from the Allen Brain Atlas, showing restricted expression of both markers to the oval nucleus of BNST. (c) 
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t-SNE visualization of a LIGER analysis of 139 BNST nuclei in cluster BNST_Vip, and 550 CGE-derived interneurons from frontal 

cortex (Saunders et al., 2018).  On top, points are colored by dataset; bottom shows LIGER-generated cluster assignments. (d). 

Dot plot showing the relative expression of genes, by dataset, in clusters 1 and 2 of the analysis shown in (c).  Each dataset is 

scaled separately to reconcile differences in sampling between whole cells and nuclei (Methods).  (e) Sagittal ISH images from 

the Allen Brain Atlas for Vip, Lamp5, and Id2; arrows highlight signal present in the BNST.   (f) t-SNE visualization of a LIGER 

analysis of 2,811 BNST nuclei, drawn from three clusters positive for the SPN marker Ppp1r1b (Figure S3), and 5,084 striatal 

SPNs (Saunders et al., 2018).  The striatal SPNs are colored according to their previous clustering into three major 

transcriptional categories (direct, indirect, and eccentric). (g) Dot plots showing expression of canonical SPN genes in the 

clusters defined in (f).  Markers include those of iSPN identity (Adora2a), dSPN identity (Drd1) and the recently described eSPN 

identity (Tshz1, Otof, and Cacng5), as well as two markers of the BNST-specific cluster 4 (Pde1c and Hcn1).  (h) Coronal ISH 

image of Pde1c from the Allen Brain Atlas, showing strong localization to the rhomboid nucleus of the anterolateral BNST.    

Abbreviations in ISH images:  ac, anterior commissure; fx, fornix; st, stria terminalis; CP, caudate putamen; HY, hypothalamus; 

LS, lateral septum; SI, substantia innominata. (i) Bar plot showing number of dimorphically expressed genes per BNST neuron 

cluster. Note that the two BNSTpr clusters (leftmost 2 bars) show the most dimorphic genes. (j) Cell factor loading values (top) 

and word cloud plot of top loading dataset-specific and shared genes (bottom) for factor 1, which loads primarily on one of the 

BNSTpr clusters. The sizes of the gene symbols in the word cloud indicate the strengths of the gene factor loadings. X/Y 

chromosome genes are colored red, and known dimorphic gene Greb1 is colored blue. Note that Greb1 expression is restricted 

to the BNSTpr, and thus Greb1 is both a shared cell type marker in males and females and a dimorphically expressed gene. (k) 

Genes ranked by degree of dimorphism; positive values indicate increased expression in males, while negative values indicate 

increased female expression. Positions of previously validated dimorphic genes and X/Y chromosome genes are indicated in 

blue and red, respectively. (l) Feature plots showing expression patterns of known (Cartpt and Greb1) and novel (Pdzrn4 and 

Pde11a) dimorphic genes across BNST neurons. 

We isolated, sequenced, and analyzed 64,000 nuclei enriched for the BNST region (Figure S3A, 

Methods).  Profiling nuclei rather than whole cells from brain has several advantages, including more 

faithful representation of cell-type proportions (Habib et al., 2017) and a faster, more systematic 

isolation approach that avoids transcriptional artifacts associated with cell dissociation (Lacar et al., 

2016; Saunders et al., 2018).  Initial clustering of these nuclei identified 29,547 neurons; 60.3% of these 

were localized to BNST by examination of marker expression in the Allen Mouse Brain Atlas (Lein et al., 

2007) (Figure S3B).  Clustering analysis of the BNST-localized neurons revealed 28 transcriptionally 

distinct populations (Figure 3A).  In agreement with previous quantification of neurotransmitter identity 

in this structure (Kudo et al., 2012), 92.4% of the clusters were inhibitory (expressing Gad1 and Gad2), 

while the remaining 7.6% of clusters were positive for Slc17a6, a marker of excitatory cell identity 

(Figure S3C).  Examination of markers of these clusters in the Allen Brain Atlas showed that many 

localized to very distinct BNST substructures, including the principal, oval, rhomboid and anterior 

commissure nuclei (Figure S3C and S3D).  For example, we identified two very molecularly distinct 

subpopulations present in the oval nucleus of the anterior BNST (ovBNST) (Figure 3B), a structure known 

to regulate anxiety (Kim et al., 2013), and to manifest a robust circadian rhythm of expression of Per2 
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(Amir et al., 2004), similar to the superchiasmatic nucleus (SCN) of the hypothalamus.  Interestingly, one 

of the two ovBNST-localized populations shows specific expression of the VIP receptor Vipr2, a gene 

implicated in circadian rhythm maintenance and male reproduction, suggesting possible functional roles 

for this specific ovBNST cell type (Dolatshad et al., 2006). 

In addition to identifying cell types that were quite unique to BNST, we found clusters whose marker 

expression suggested relationships to canonical cell types present in other tissues.  One cluster, 

BNST_Vip, expressed Vip and Htr3a, two markers of the caudal ganglionic eminence (CGE)-derived 

interneurons found in cortex and hippocampus.  Previous work has shown that at least part of the BNST 

has embryonic origins in the CGE (Nery et al., 2002), further suggesting that this structure may harbor 

cell types with similarities to CGE-derived types present in other structures.   To examine this possibility, 

we used LIGER to jointly analyze the 139 nuclei in the BNST_Vip cluster with 550 CGE interneuron cell 

profiles sampled from a recent large-scale dataset of adult mouse frontal cortex (Saunders et al., 2018).  

Two clusters in the LIGER analysis showed meaningful alignment between BNST nuclei and cortical CGE 

cells (Figure 3C).  Cluster 1 expressed Vip, Htr3a, Cck, and Cnr1, likely corresponding to VIP+ basket cells 

(Rudy et al., 2011) (Figure 3D).  Examination of in situ hybridization images for Vip revealed sparse 

positivity in both the anterior and posterior BNST (Figure 3E).  The second population, which was Vip-

negative, expressed Id2, Lamp5, Cplx3, and Npy, all markers known to be present in cortical 

neurogliaform (NG) cells (Tasic et al., 2016) (Figure 3D).  In situ hybridization for two of these markers, 

Id2 and Lamp5, demonstrated localization of these cells to the principal nucleus (BNSTpr) in the 

posterior division of BNST (Figure 3E).  Although, to our knowledge, NG cells have not been described in 

the BNST before, cells with NG-like anatomy and physiology have been observed within the amygdala 

(Manko et al., 2012), a structure with related functional roles in cognition and behavior. 

SPNs are the principal cell type of the striatum, a structure just lateral to the BNST, but cells expressing 

the canonical SPN marker, Pppr1r1b, have also been documented in multiple BNST nuclei in the 
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anterolateral area (Gustafson and Greengard, 1990).   The molecular relationship between striatal SPNs 

and these BNST cells is not known.  We identified three Ppp1r1b+ populations—two that we annotated 

as specifically BNST-localized, and a third without BNST-specific localization (Figures S3B and S3D).  To 

relate these putative SPNs in our dataset to striatal SPNs, we used LIGER to jointly analyze these three 

clusters (2,811 nuclei, Figure S3D), together with 5,084 published SPN profiles from striatum (Saunders 

et al., 2018).  Many of the nuclei from our dataset aligned to clusters 1 and 2 (Figure 3F) corresponding 

to canonical striatal SPNs of the iSPN and dSPN types, respectively.  A second population of BNST nuclei 

aligned to cluster 3, containing the striatal eSPNs, a subset of molecularly defined SPNs that was 

recently described by scRNA-seq (Saunders et al., 2018).   A fourth population, cluster 4, expressed 

markers localizing it to the rhomboid nucleus of BNST (BNSTrh), suggesting it is a BNST-specific cell type.  

These results indicate that the BNST likely contains a combination of SPN-like neurons with high 

homology to striatal SPNs, while also harboring at least one Ppp1r1b+ population with unique, tissue-

specific specializations. 

In addition to its high molecular and anatomical diversity, BNST also displays significant sexual 

dimorphism: in both rodents and primates, it is ~2-fold larger in males compared to females (Allen and 

Gorski, 1990; Hines et al., 1992), while several studies have observed gene expression changes in bulk 

tissue analyses or by in situ hybridization for candidate genes. One such study confirmed sexually 

dimorphic expression in BNST of 12 genes, implicating several of them in regulating sex-specific 

behaviors (Xu et al., 2012).  To better characterize BNST dimorphism at a cell-type-specific level, we 

jointly analyzed female and male BNST profiles using LIGER, examining the dataset-specific factors to 

characterize sex-specific differences. We observed that each factor generally loads on only a single 

cluster; this interpretability allowed us to identify dimorphic expression using the dataset-specific 

metagenes produced by the factorization. Reassuringly, X- and Y-chromosome genes such as Xist, 

Eif2s3y and Uty also showed high loading values on dataset-specific factors, reinforcing that these 
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factors were capturing sexually dimorphic gene expression with cell-type-specific resolution. We then 

used the dataset-specific factor loadings to quantify the number of cell-type-specific dimorphic genes 

for each cluster (Methods).  

Our analysis revealed a complex pattern of dimorphic expression involving differences across many 

individual cell types. Clusters BNSTpr_Brs3 and BNSTpr_Esr2, both localized to the BNST principal 

nucleus, showed the highest number of dimorphic genes (Figure 3I), consistent with previous studies 

showing the BNSTpr to be particularly dimorphic (Hines et al., 1992; Xu et al., 2012). To illustrate the 

interpretability of the factorization and the complexity of the dimorphism patterns it reveals, we show 

the loading pattern and cell-type-specific dimorphic genes derived from a particular factor (Figure 3J). A 

single factor (factor 1) loads strongly on the BNSTpr_Esr2 cluster; among the top dimorphic genes for 

this factor are Xist, Eif2s3y, Uty, and Greb1, one of the 12 previously validated dimorphic genes (Xu et 

al., 2012). The top loading genes on the shared component of this factor represent cell-type markers, 

including Moxd1, a recently validated marker of BNSTpr (Tsuneoka et al., 2017). Greb1 itself also loads 

highly on the shared component of factor 1, reflecting the fact that Greb1 is a cell-type marker 

(restricted to the BNSTpr) in both sexes, in addition to showing dimorphic expression. We devised a 

metric from the LIGER analysis to rank genes by their cell-type-specific dimorphism (Figure 3K and 

Methods), flagging genes that are expressed at higher levels in male or female within a specific 

population. Reassuringly, among the 12 genes previously confirmed to be dimorphic in BNST (Xu et al., 

2012), we found that most had high cell-type-specific expression metrics. We also identified new genes 

with proportional and cell-type-specific dimorphism. The expression patterns of several of the known 

and new markers that we identified illustrate the complexity of the dimorphism across the many BNST 

subpopulations (Figure 3L).   

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2018. ; https://doi.org/10.1101/459891doi: bioRxiv preprint 

https://doi.org/10.1101/459891
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 

Integration of substantia nigra profiles across different human postmortem donors and species  

Recent developments in nuclei profiling from archival human brain samples (Habib et al., 2017; Lake et 

al., 2016) provide an exciting opportunity to comprehensively characterize transcriptional heterogeneity 

across the human brain, both to understand how specific cell types vary across individual people, and to 

relate these patterns to large-scale datasets that have been generated from mice.  These analyses, 

however, are challenging. The nuclei are prepared from postmortem samples (fresh ex vivo human 

tissue is only available in very rare circumstances and only for a select few brain regions), which show 

complex technical variation in gene expression, arising from the influences of many ante- and 

postmortem variables. The analysis must be capable both of identifying shared cell types across these 

disparate samples, and of uncovering biologically meaningful changes in cell states, in spite of the 

significant technical noise. 

To explore how well LIGER can deliver an integrated analysis across individual human postmortem 

samples, we isolated and sequenced 44,274 nuclei derived from the substantia nigra (SN) of seven 

individuals who were annotated by the brain bank as being neurotypical controls (Methods).  The SN is a 

subcortical brain structure with important roles in reward and movement execution, and is known to 

preferentially degenerate in Parkinson’s disease.  Despite considerable inter-individual variation (Figure 

S4A), LIGER successfully delivered an integrated analysis in which each of the cell-type substituents of 

the SN was accurately aligned across datasets (Figure 4A). Specifically, we identified 24 clusters that 

included all known resident cell classes: astrocytes, fibroblasts, mural cells, microglia, neurons (including 

TH+ dopaminergic neurons and multiple inhibitory types), oligodendrocytes, and oligodendrocyte 

progenitor cells (polydendrocytes) (Figure 4B-C).   
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Our integrated analysis offered an opportunity to assess the variation of cell-type-specific expression 

across individual tissue donors.  Glial activation is an important hallmark and driver of many brain 

diseases, including neurodegeneration and traumatic brain injury.   To uncover datasets with atypical 

 

Figure 4: LIGER allows analysis of substantia nigra across individuals and species. (a)-(b) Two-dimensional UMAP 

representation of a LIGER analysis of 44,274 nuclei derived from the substantia nigras of 7 human donors, colored by donor (a) 
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and major cell class (b).  (c) Violin plots showing expression of marker genes across the 25 human SN populations identified by 

two rounds of LIGER analysis. (d)-(f) UMAP plots showing cell factor loading values (top) and word cloud plots (bottom) for a 

factor corresponding to an acutely activated polydendrocyte state (d), an activated microglia state (e) and a reactive astrocyte 

state (f). In the word clouds, the size of gene text in the word clouds represents the relative contribution of that gene to the 

shared or dataset-specific metagenes.  Genes in the yellow box load on the metagene specific to tissue donor MD5828, who 

suffered a traumatic brain injury at the time of death; genes in the pink box load highly on the metagene specific to tissue 

donor MD5840, who was diagnosed with cerebral amyloid angiopathy.  Genes in the orange box load on the shared metagene 

common to all datasets; genes mentioned in the text are highlighted red.  (g) GO terms enriched in homologous genes with 

strong expression correlation across substantia nigra clusters in the LIGER comparative analysis of human and mouse.  (h) GO 

terms enriched in homologous genes with weak expression correlation. 

glial expression patterns, we searched the dataset-specific metagenes of glial cell types for evidence of 

altered states. Examination of the polydendrocyte-specific factor 28 showed that subject MD5828 had 

high expression of immediate early genes (Figure 4D), including FOS, ARC, IER2, and EGR1, consistent 

with an acute injury (Dimou et al., 2008). Although this subject was coded as a control, examination of 

cause of death revealed a very strong likelihood of brain trauma (Methods).  In addition, the MD5828-

specific metagene for factor 5, a microglia-specific factor, showed high loadings of TMSB4X and CSF1R, 

both of which play important roles in the acute response to traumatic brain injury (Luo et al., 2013; 

Xiong et al., 2012).  By contrast, in subject 5840, the dataset-specific loadings on the microglial factor 5 

included genes known to be upregulated in microglia in response to amyloid deposition, such as APOE 

and TREM2 (Figure 4E).  Review of this subject’s postmortem report revealed a histological diagnosis of 

moderate-severity cerebral amyloid angiopathy (CAA), a disease in which amyloid deposits within the 

walls of CNS vasculature.  Intriguingly, two of the three genes known to cause hereditary CAA (Biffi and 

Greenberg, 2011), CST3 and ITM2B, were also strong contributors to the MD5840-specific factor 5 

metagene. In an astrocyte-specific factor (factor 20), subject MD5840 showed remarkable upregulation 

of multiple genes involved in protein misfolding response (Figure 4F), including UBC, HSPA6, HSPB1, 

HSPH1, HSP90AA1, HSPB8, HSPD1 and PPP1R15A, a master regulator of the protein misfolding response 

pathway (Tsaytler et al., 2011). Several of these genes have been directly implicated in the reactive glial 

response to amyloid accumulation in cerebral vessels (Bruinsma et al., 2011).   
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A deeper understanding of cell types often arises from comparisons across species.  For example, cell 

types with similar morphologies and even functions have occasionally been found, through comparative 

molecular analyses, to have surprisingly divergent evolutionary origins (Arendt et al., 2016).  We 

therefore used LIGER to compare the SN across species, integrating our newly generated human data 

with a recently published single-cell dataset from the mouse SN (Saunders et al., 2018). This is an 

especially challenging analysis: first, mice and humans are separated by 96 million years of evolution, 

causing widespread deviations in gene regulation within homologous cell types.  Second, the human 

data derive from frozen, post-mortem nuclei, while the mouse data were prepared from whole 

dissociated cells extracted from fresh, perfused brain tissue. Despite these challenges, LIGER was able to 

successfully identify both the corresponding broad cell classes across species, and subtler cell types 

within each class after a second round of analysis (Figures S4B-S4F).  In our subanalysis of the neurons, 

we found that LIGER avoided false positive alignments of human profiles to mouse cell types outside the 

dissection zone of the human tissue (Figures S4G and S4H), reinforcing LIGER’s ability to perform very 

noisy, complex integrative analyses across species. Overall, we observed strong concordance between 

mouse and human cell clusters, consistent with another recent comparative single-cell analysis of 

mouse and human cortex (Hodge et al., 2018).  The only two clear species-specific populations in our 

analysis could be attributed to differences in dissection between human and mouse (Figures S4F-H). 

Understanding how expression of homologous genes within the SN differs across species could give 

insight into differences in how these genes function within the tissue.  Using the set of joint clusters 

assigned by LIGER, we aggregated gene expression across each cluster, for each species, and computed 

pairwise Pearson correlation values for each mouse gene and its human homolog. We performed a gene 

ontology (GO) term enrichment analysis to evaluate whether genes with the highest and lowest 

correlation share any functional relationships.  We found that the homologous gene pairs with high 

expression correlation were enriched for GO terms related to brain cell identity and basic molecular 
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functions, including ion channels, transcription factors, transmembrane receptors, and extracellular 

matrix structural components (Figure 4G). In contrast, the least correlated homologous gene pairs were 

enriched for basic metabolic processes, including macromolecule metabolism, protease activity, and 

DNA repair (Figure 4H). Intriguingly, genes involved in chromatin remodeling (sharing the GO function 

“chromatin organization”) also showed less expression conservation, hinting at species differences in 

epigenetic regulation.   

Integrating scRNA-seq and in situ transcriptomic data locates frontal cortex cell types in space 

Spatial context within a complex tissue is an important aspect of a cell’s identity. Knowing where a cell is 

located can give important insights into functions within a tissue and signaling interactions with nearby 

cells. Additionally, spatially resolved transcriptomic data provide an invaluable opportunity to confirm 

the significance of cell clusters defined from scRNA-seq data, because transcriptomic distinctions that 

also correspond to unique spatial localization patterns likely represent biologically relevant differences. 

Integrated analysis of spatial transcriptomic and scRNA-seq data using LIGER could offer two potential 

advantages compared to separate analyses of the two data modalities: (1) assigning spatial locations to 

cell clusters observed in data from dissociated cells; and (2) increasing the resolution for detecting cell 

clusters from the in situ data.  

To explore how well LIGER can successfully integrate spatial and whole-transcriptomic datasets, we 

jointly analyzed frontal cortex scRNA-seq data prepared by Drop-seq (Saunders et al., 2018) and in situ 

spatial transcriptomic data from the same tissue generated by STARmap (Wang et al., 2018).  These two 

datasets differ widely in many respects, including in number of cells (71,000 scRNA-seq vs. 2500 

STARmap) and genes measured per cell (scRNA-seq is unbiased, while STARmap assays only selected 

markers). Nevertheless, LIGER was able to correctly define joint cell populations across the datasets 

(Figure 5A-B), with expression of key marker genes confirming the correspondence of cells across these 
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different modalities (Figure 5C). Reassuringly, only one population in the scRNA-seq data was dataset-

specific, corresponding to cells from the claustrum, an anatomical structure that was not included in the 

 

Figure 5: Locating cortical cell types in space using scRNAseq and STARmap. (a)-(b) t-SNE visualizations of a LIGER analysis 

of 71,000 frontal cortex scRNAseq profiles prepared by Drop-seq (Saunders et al., 2018) and 2,500 cells profiled by 

STARmap (Wang et al., 2018) colored by technology (a) and LIGER cluster assignment (b). Labels in (b) derive from the 

published annotations of the Drop-seq dataset.  (c) Dot plot showing marker expression for STARmap cells (top line of each 

gene) and Drop-seq cells (bottom line) across LIGER joint clusters. (d) Spatial locations of STARmap cells colored by LIGER 

cluster assignments. (e) Density plot showing proportion of cells in which each gene is detected for the Drop-seq (red) 
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tissue assayed by STARmap. Because the spatial locations of the STARmap profiles are known, our 

integrated analysis using LIGER allowed us to spatially locate each of the jointly defined populations 

(Figure 5D). Our results accorded well with the known spatial features of the mouse cortex, including 

meninges and sparse layer 1 interneurons at the surface, excitatory neurons organized in layers 2-6, and 

oligodendrocyte-rich white matter below the cortex (Figure 5D). One replicate of the STARmap data also 

showed a chain of co-localized endothelial cells running through the cortex, presumably a contiguous 

segment of vasculature (Figure 5D). The success of this integrative analysis is especially noteworthy 

given the very different global distributions of gene expression values in the scRNA-seq data compared 

to the STARmap data—the scRNA-seq data are sparse, with many zero values, while the STARmap data 

show no zero-inflation (Figure 5E).  

Incorporating the scRNA-seq data, which contained whole-transcriptomic measurements from more 

than 28 times as many cells as the STARmap data, allowed us to identify cell populations with greater 

resolution. We performed a second round of clustering on subsets of cells that were grouped together 

in the coarser first-round clustering, of inhibitory interneurons (Figure 5F), excitatory neurons (Figure 

5G), and glia (Figure 5H).  We identified 7 interneuron clusters and 5 glial clusters compared to 4 and 2 

clusters, respectively, in the initial STARmap analysis. These additional populations accorded well with 

cell-type distinctions defined in the original scRNA-seq analysis. The 5 glial clusters we identified 

included two astrocyte clusters, polydendrocytes, and two clusters of oligodendrocytes (Wang et al., 

2018). The two astrocytic subpopulations expressed patterns of marker genes consistently between 

both the scRNA-seq and STARmap datasets (Figure 5F). The larger population expressed high levels of 

Mfge8 and Htra1, while the second population showed high expression of Gfap (Figure 5F). We found 

and STARmap (blue) datasets. (f)-(h) t-SNE plots and spatial locations for LIGER subclustering analyses of interneurons (f), 

pyramidal neurons (g) and glia (h). (i) Violin plots of marker genes for two astrocyte populations identified in subclustering 

analysis of glia. (j) Spatial coordinates for Gfap expressing astrocyte populations (two STARmap replicates shown). (k) Gfap 

staining data from the Allen Brain Atlas showing localization of Gfap to both meninges and white matter layer below cortex. 
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that the Gfap-expressing astrocyte population is located outside the cortical gray matter, in both the 

meningeal lining and the white matter below layer 6 (Figure 5G, 5H), consistent with a more fibrous  

identity. In contrast, the larger second population of astrocytes was spread uniformly throughout the 

cortical layers, consistent with a protoplasmic phenotype. Identifying the localization pattern of the  

Gfap-expressing astrocyte population also helped to clarify a finding from our human-mouse substantia 

nigra analysis (Figure S4E), suggesting that this same Gfap-expressing population is likely missing from 

the human data because of dissection differences.   These results show the clarifying power of jointly 

leveraging large-scale scRNA-seq and in situ gene expression data for defining cell types in the brain.  

LIGER defines cell types using both single-cell transcriptome and single-cell DNA methylation profiles 

Methods of measuring epigenomic regulation in individual cells provide a new means of characterizing 

cellular heterogeneity beyond gene expression, as well as several exciting but relatively unexplored 

analytical opportunities if they can be linked with scRNA-seq data. First, the congruence between 

epigenome-defined cell populations and scRNA-seq-defined populations remains unclear; it is unknown 

whether clusters defined from gene expression reflect epigenetic distinctions and vice versa. Second, 

integrating single-cell epigenetic and transcriptomic data provides an opportunity to study the 

mechanisms by which epigenetic information regulates gene expression to determine cell identity. 

Finally, integrating single-cell epigenetic profiles with scRNA-seq data may improve sensitivity and 

interpretability compared to analyzing the epigenetic data in isolation, since scRNA-seq technology can 

offer greater throughput and capture more information per cell. 
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Figure 6: Defining cortical cell types using both scRNAseq and DNA methylation. (a)-(b) t-SNE visualization of LIGER analysis of 

single-cell RNAseq data (Saunders et al., 2018) and methylation data (Luo et al., 2017) from mouse frontal cortex, colored by 

modality (a) and LIGER cluster assignment (b). (c) River plot showing relationship between published cluster assignments of 

RNA and methylation data and LIGER joint clusters. (d) Expression and methylation of two claustrum markers. (e) t-SNE 

representation of the LIGER subcluster analysis of MGE interneurons. (f) Expression and methylation of 4 marker genes for 

different MGE subpopulations. (g) Boxplots of expression and methylation markers for Sst-Chodl cells (cluster MGE_12). 

To investigate these possibilities, we performed an integrated analysis of two single-cell datasets 

prepared from mouse frontal cortical neurons: one that measured gene expression using Drop-seq 

(55,803 cells) (Saunders et al., 2018) and another that measured genome-wide DNA methylation (3,378 

cells) (Luo et al., 2017). We reasoned that, because gene body methylation is generally anticorrelated 

with gene expression (Mo et al., 2015), reversing the direction of the methylation signal would allow 

joint analysis.  Although multiple epigenetic mechanisms regulate gene expression, and the relationship 

between expression and methylation for individual genes may be weak or even reversed, a generally 

inverse relationship between methylation and expression across many genes should enable joint 

identification of cell types across modalities. The number of cells, large imbalance in dataset sizes, 
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different modalities, and inverse relationship between methylation and expression pose significant 

challenges to data integration. Despite these challenges, LIGER successfully integrated the datasets, 

producing a joint clustering that identified the dominant neuronal cell types of the frontal cortex and 

accorded very well with the published analyses of each dataset (Figure 6A-C).  

Annotation of clusters defined solely by methylation data can be challenging, because most known 

markers of cell-type identity are mRNAs or proteins. Our joint analysis, utilizing small correlations across 

thousands of genes, allowed us to clarify the identities of some of the originally reported methylation 

clusters.  First, we found that a cluster annotated as “deep layer cluster 3” aligned uniquely to an RNA-

seq cluster that we previously had annotated as claustrum (Saunders et al., 2018) (Figures 6C, D). 

Second, a cluster annotated as “layer 6 cluster 1” aligned with a cluster that we identified as layer 5b. 

The canonical marker genes have relatively low overall methylation levels, making it challenging to 

assign the identity of this cell type from methylation alone. However, the expression of several specific 

layer 5b marker genes, most notably Slc17a8 (Sorensen et al., 2015), and their corresponding low 

methylation pattern in the aligned cluster mL6-1 cells, enabled us to confirm this assignment (Figure 

S5A). 

Consistent with previous large-scale, whole-tissue single-cell studies (Saunders et al., 2018), we found 

that a second level of clustering yielded additional substructure that was not visible in the global 

analysis. We performed four sub-analyses of the dominant cell types in the frontal cortex: CGE-derived 

interneurons, MGE-derived interneurons, superficial excitatory neurons, and deep-layer excitatory 

neurons (Figures S5C-S5E). From this second round of analysis, we identified a total of 37 clusters across 

the cortex.  We found especially interesting substructure in the analysis of MGE-derived interneurons, 

where we identified 11 distinct populations, considerably more than was possible using the methylation 

data alone (Figure 6E). Examining expression and methylation of marker genes confirmed that these 

populations are real and not simply forced alignment (Figure 6F). The inclusion of the scRNA-seq dataset 
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gave greater power to detect, within the methylation dataset, very rare cell types described by previous 

scRNA-seq studies of cortex. We were able to credibly identify 25 methylation profiles corresponding to 

an interneuron population defined by expression of Pvalb and Th (Figure S5B), as well as 5 profiles 

aligning to the cluster expressing Sst and Chodl (Figure 6G). The Sst/Chodl cells showed low methylation 

of Nos1 and the very specific marker Chodl, and high methylation of Reln, consistent with this 

population’s previously established transcriptional phenotype (Figure 6G). Together, these results 

indicate that epigenetic and expression data produce highly concordant neural cell-type definitions, and 

even the finest distinctions among neural cell types defined from gene expression can be reflected by 

DNA methylation. Additionally, our increased sensitivity to detect methylation populations underscores 

the power of our integrative approach. 

Our joint cluster definitions offer an opportunity to investigate the regulatory relationship between 

expression and methylation at cell-type-specific resolution. We first aggregated the gene expression and 

methylation values within each cluster, then calculated correlation between the expression of each gene 

and its gene body methylation levels across the set of clusters. Consistent with previous reports, we 

found an overall negative relationship between methylation and expression (Figure 7A). We observed a 

slight relationship with gene length: longer genes showed stronger negative correlation with gene 

expression (Figure 7A). This length relationship fits the pattern expected from a known mechanism of 

gene repression by DNA methylation, in which the MECP2 protein binds methylated nucleotides 

(Fasolino and Zhou, 2017). The degree of MECP2 repression has been shown to be proportional to the 

number of methylated nucleotides, which is strongly related to gene length (Kinde et al., 2016). 

However, the length of a gene also affects the amount of measured methylation signal, because long 

genes with more nucleotides are more likely to be captured in the sparse sampling of sequencing reads 

from a given cell, so we cannot completely rule out the influence of technical factors in this observed 

length relationship.  
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We observed a wide range of global methylation levels across our set of clusters, with inhibitory 

interneurons exhibiting the highest amount of methylation, as noted in the original analysis of the 

methylation data alone (Luo et al., 2017) (Figure 7B). Reasoning that this large dynamic range provides 

an opportunity to investigate the basic molecular machinery involved in regulating methylation, we 

correlated the expression of several key genes with the total amount of methylation per cell. We found 

that expression of Mecp2 correlates strongly (𝜌 =  0.46, 𝑝 = 0.0039) with total methylation level 

(Figure 7C). This pattern supports a model in which MECP2 represses gene expression by specifically 

binding to methylated nucleotides (Kinde et al., 2016), creating a stoichiometric requirement for 

increased Mecp2 expression in cells with higher overall methylation levels. In addition, we found that 

Tet3, a gene involved in demethylation by conversion of 5mC to 5hmC, is strongly anticorrelated (𝜌 = −0.57, 𝑝 = 0.0002) with global methylation level (Figure 7D). Intriguingly, the other TET genes do not 

show any anticorrelation with global methylation despite similar overall expression levels to Tet3 (Figure 

S6A and S6B). This suggests that Tet3 could be the dominant TET protein involved in actively regulating 

global methylation in mature neurons. Gadd45b, a gene with a well-established role in demethylating 

DNA in neurons (Bayraktar and Kreutz, 2018), also shows a strong negative relationship (𝜌 =  −0.30, 𝑝 = 0.0685) with total methylation. Consistent with our observation that both Tet3 and Gadd45b are 

anticorrelated with total methylation, Gadd45b is thought to regulate DNA demethylation by recruiting 

TETs (Bayraktar and Kreutz, 2018). By contrast, none of the DNA methyltransferase enzymes (DNMTs) 

are strongly related to overall methylation level (Figures S6C-S6E). These analyses show the value of an 

integrated analysis to formulate hypotheses about the mechanisms by which expression and 

methylation are regulated.  
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Figure 7: Investigating the connection between DNA methylation and gene expression. (a) Density plot of the correlation between 

gene body methylation and expression for short, medium, and long genes. (b) Violin plots showing the wide range of global 

methylation levels across neural cell types defined by the LIGER analysis in Figure 6. (c)-(e) Scatter plots of global methylation and 

aggregate expression for (c) Mecp2, (d) Tet3, and (e) Dnmt3a across our joint neural cell clusters. (f)-(g) Heatmaps of transcription 

factor expression (f) and methylation of intergenic regions predicted to be bound by these transcription factors (g). (h) Genome 

browser view showing locations of differentially methylated regions near the Arx locus and their correlation with the expression of 

Arx. The bars indicate sign and magnitude of the correlation. The 3 bottom panels show zoomed-in views of three clusters of DMRs. 
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Our integrated single-cell methylation and gene expression analysis could also enable the identification 

of intergenic regulatory elements that regulate cell-type-specific gene expression. Although previous 

studies have identified regulatory elements in uniform cell populations using bulk ChIP-seq, ATAC-seq, 

and bisulfite sequencing data (Consortium, 2012), our knowledge of cell-type-specific regulation in a 

complex tissue like brain is limited. Deciphering how epigenetic modification of specific sequence 

elements regulates gene expression is fundamental to understanding the establishment and 

maintenance of cell identity. In addition, locating enhancers and linking them to specific populations of 

brain cells is an important first step for unraveling the effects of genetic variants—many of which fall in 

intergenic regions—linked to neuropsychiatric disorders.  

We identified a set of sequence elements that: (1) showed no overlap with any annotated genes or 

promoters; (2) showed significant cell-type-specific DNA methylation; (3) contain a conserved sequence 

element; (4) contain a binding motif for a transcription factor that is expressed in the dataset; and (5) 

have a methylation profile that is anticorrelated with the expression of the transcription factor whose 

binding motif occurs in the region (Figure 7F; Methods). Figure 7G shows the expression of the 

transcription factors and methylation of the top corresponding sequence elements for each TF. These 

intergenic elements represent strong candidates for cell-type-specific transcriptional regulatory 

elements, with available, unmethylated transcription factor binding motifs in the cell types where the 

corresponding transcription factors are most highly expressed.  

Finally, our integrated definition of cell types from methylation and expression allowed us to examine 

the relationship between intergenic methylation and the expression of nearby genes. Identifying 

promoters or enhancers that drive expression of cell-type-specific genes is an essential part of designing 

adeno-associated viruses (AAVs) that target specific neuronal populations (Chan et al., 2017; 

Dimidschstein et al., 2016). We examined the expression of the Arx gene and methylation of neighboring 

loci across our joint clusters. Since Arx is a transcription factor that is specifically expressed in MGE-
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derived interneurons, identifying enhancers that regulate Arx could prove a useful tool for targeting this 

specific neuronal population. The Arx locus is remarkable in that 8 ultraconserved elements (UCEs)—

long stretches of sequence showing perfect conservation among human, mouse, and rat (Bejerano et 

al., 2004; Colasante et al., 2008)—are located in the < 1 megabase region around the gene. Several distal 

regulatory elements, including some located within neighboring UCEs, have recently been demonstrated 

to regulate Arx expression (Colasante et al., 2008; Dickel et al., 2018). To nominate putative elements 

regulating Arx, we correlated Arx expression and methylation of nearby differentially methylated 

regions (DMRs) across our joint clusters (Figure 7H). We observed several clusters of DMRs whose 

methylation is anticorrelated with Arx expression, a pattern expected if hypo-methylation within certain 

cell types makes available a regulatory element that enhances Arx expression. One of these 

anticorrelated DMRs is a validated Arx enhancer (Dickel et al., 2018) that overlaps with an 

ultraconserved element just downstream of the end of the Arx gene (Figure 7H, middle). Another pair of 

DMRs strongly correlated with Arx expression overlap a UCE further downstream of Arx (Figure 7H, 

right). A third group of DMRs upstream of the Arx site lies in a region of very high conservation (though 

not a UCE), with three clear spikes in conservation that align precisely with the locations of the DMRs 

(Figure 7H, left). In summary, these DMRs represent strong candidates for putative elements regulating 

Arx expression, highlighting the value of our integrative approach for investigating gene regulatory 

mechanisms. 

Discussion 

A credible definition of cell type requires distinguishing the invariant properties of cell identity from the 

dispensable across a myriad of settings and measurements. LIGER promises to be a broadly useful 

analytical tool for such efforts because of several key technical advantages. First, the nonnegativity 

constraint (i.e., metagene expression levels are never negative) yields interpretable factors, such that 

each factor generally corresponds to a biologically meaningful signal, like a collection of genes defining a 
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particular cell type. The dataset-specific metagenes readily provide important biological insights into 

cell-type-specific differences across datasets, as we have shown in our analyses of sexual dimorphism in 

the bed nucleus of the mouse and in our comparative analysis of substantia nigra cell types across 

individual human postmortem donors.  Second, the inclusion of dataset-specific terms allows us to 

identify dataset differences, rather than attempting to force highly divergent datasets into a completely 

shared latent space. This feature was especially useful in comparing and contrasting cell populations in 

the bed nucleus with related populations in the frontal cortex and striatum, as it allowed increased 

sensitivity to detect corresponding cell types from a small shared signal, while also reducing the 

inference of spurious connections between datasets.  Finally, LIGER’s inference of both shared and 

dataset-specific factors enables a more transparent and nuanced definition of how cells correspond 

across datasets. In cases where complete correspondence is not necessarily expected—such as 

connecting fully differentiated cells to progenitors or relating pathological cells to healthy 

counterparts—a characterization of the metagenes that both unite and separate such populations is 

crucial. 

We envision LIGER serving several important needs in neurobiology, beyond its capacity to better define 

cell types.  First, a key opportunity in single-cell analysis is the identification of cell-type-specific gene 

expression patterns associated with disease risk, onset and progression in human tissue samples.  Early 

efforts at such investigation have yielded some exciting results (Keren-Shaul et al., 2017), but increased 

discovery is likely possible with robust integrative analysis of many tissue donors.  In addition to the 

identification of disease-relevant cell states, such analyses will also be indispensible to the localization of 

genetic risk loci for neuropsychiatric diseases to specific human cell types.  Second, the integration of 

data from epigenomic and transcriptomic datasets provides a path towards nominating functional 

genomic elements important in cell-type-specific gene regulation.  Such elements are compelling 

candidates for cell-type-specific enhancers to drive expression of genetic tools in specific subsets of 
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brain cells.  Their identification may also prove to be a valuable means of narrowing the search for 

causative alleles at specific genetic risk loci.  Finally, as efforts to develop in vitro models of complex 

brain tissues continue to become more sophisticated (Birey et al., 2017; Quadrato et al., 2017), single-

cell gene expression measurements, together with an integrative analysis like LIGER, will help provide 

systematic, information-rich comparisons of such models with their in vivo counterparts.  To facilitate 

adoption of the tool in the community, we have developed an R-package that supports analysis of large-

scale datasets and includes ancillary functions for tuning algorithmic parameters, visualizing results, and 

quantifying integrative performance.  We hope its widespread deployment opens many exciting new 

avenues in single-cell biology. 
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Methods 

LIGER Workflow 
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A typical workflow for Integrating multiple single-cell datasets using the LIGER software package consists 

of the following steps: 

 Dataset preprocessing to produce a raw digital gene expression (DGE) matrix. 

 Variable gene selection (Saunders et al., 2018), normalization by number of UMIs, and scaling of 

individual genes.  We scale but do not center gene expression because NMF requires non-

negative values. 

 Identifying shared and dataset-specific factors through integrative non-negative matrix 

factorization (iNMF). 

 Jointly clustering cells and normalizing factor loadings. 

 Visualization using t-SNE or UMAP and analysis of shared and dataset-specific marker genes.  

The important components of each step are described in greater detail below, while vignettes which 

describe specific commands for analyses included in Figure 2 are available online at 

https://macoskolab.github.io/liger/. 

Performing Integrative Nonnegative Matrix Factorization Using Block Coordinate Descent 

We developed a novel block coordinate descent algorithm for performing integrative non-negative 

matrix factorization (Yang and Michailidis, 2016). This approach learns a set of latent metagene factors, 

each with both shared and dataset-specific components, to approximate the original datasets. To 

estimate these matrix factors, we minimize the following 

objective: arg min𝐻≥0,𝑊≥0,𝑉≥0 ∑ ‖𝐸𝑖 − 𝐻𝑖(𝑊 + 𝑉𝑖)‖𝐹2 + 𝜆 ∑ ‖𝐻𝑖𝑉𝑖‖𝑑𝑖𝑑𝑖 𝐹2 (1) 

This approach attempts to reconstruct each of the original datasets 𝐸𝑖  (of dimension 𝑛𝑖 × 𝑚) using 

lower dimensional matrices 𝐻𝑖, 𝑊, and 𝑉𝑖, such that 𝐸𝑖 ≈ 𝐻𝑖(𝑊 + 𝑉𝑖), where all factor matrices are 
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constrained to be non-negative. Note that 𝑊 is shared across all datasets 𝑖 =  1. . . 𝑑, while the 𝐻𝑖 and 𝑉𝑖 matrices are unique to each dataset. The inner dimension 𝑘 of these factors can be interpreted as the 

number of “metagenes” (or conversely “metacells”) used to represent the datasets. 

We divide the variables into 2𝑑 + 1 blocks (corresponding to 𝐻 and 𝑉 for each dataset, as well as 𝑊) 

and perform block coordinate descent, iteratively minimizing the objective with respect to each block, 

holding the others fixed. We iterate: 

1. 𝑊 = arg min𝑊≥0 ‖(𝐻1⋮𝐻𝑑) 𝑊 − ( 𝐸1 − 𝐻1𝑉1⋮𝐸𝑑 − 𝐻𝑑𝑉𝑑)‖𝐹
2

  

2. 𝐻𝑖 = arg min𝐻𝑖≥0 ‖(𝑊𝑇 + 𝑉𝑖𝑇√𝜆𝑉𝑖𝑇 ) 𝐻𝑖𝑇 − ( 𝐸𝑖𝑇𝟎𝑔×𝑛𝑖)‖𝐹
2

 

3. 𝑉𝑖 = arg min𝑉𝑖≥0 ‖( 𝐻𝑖√𝜆𝐻𝑖) 𝑉𝑖 − (𝐸𝑖 − 𝐻𝑖𝑊𝟎𝑛𝑖×𝑔 )‖𝐹
2

  (𝟎𝑐×𝑑 is the zero matrix of dimension 𝑐 × 𝑑). 

until convergence. Each of the optimization subproblems above requires solving a nonnegative least 

squares problem; we use the fast block principal pivoting algorithm developed by Kim et al. (Kim, 2014) 

to solve each of these subproblems exactly. As described in Kim et al, our block coordinate descent 

algorithm satisfies the requirements of the theorem of Bertsekas (Bertsekas, 1999), because each of the 

subproblems is convex with respect to the block of variables being optimized. Thus, the algorithm is 

guaranteed to converge to a fixed point (local minimum). In contrast, the multiplicative updates often 

used for NMF-like optimization problems do not have a convergence guarantee. Additionally, because 

we solve each subproblem exactly at each iteration, the algorithm converges very quickly; previous 

empirical benchmarks (Kim, 2014) and our own have shown that block coordinate descent algorithms 

for NMF generally converge in many fewer iterations than multiplicative updates (Figure S1A-B). We 

developed an efficient implementation of the algorithm using the Rcpp package in R. 
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Efficient Updating for New K, New Data, and New 𝜆 

We adapted a method, previously developed for regular NMF (Kim, 2014), for rapidly updating a 

factorization given new data or new values of 𝑘 or 𝜆. Suppose we have optimized (1) with 𝑘1 factors to 

give matrices 𝐻𝑖(𝑛𝑖×𝑘1)
, 𝑉𝑖(𝑘1×𝑔)

, and 𝑊(𝑘1×𝑔). To efficiently compute a factorization with 𝑘2 factors, we 

consider two cases: 𝑘2 > 𝑘1 and 𝑘2 < 𝑘1. If 𝑘2 > 𝑘1, we initialize the 𝑘2 − 𝑘1 new factors to factorize 

the residual from the previous solution, then solve using alternating nonnegative least squares as 

before. For 𝑘2 > 𝑘1, we pick the 𝑘2 factors that make the largest contributions to the factorization and 

solve as before. The following algorithm formalizes this approach. 

Algorithm 1: Updating the factorization with a new 𝒌 

1. Initialize 𝑊𝑛𝑒𝑤, 𝑉𝑖𝑛𝑒𝑤, 𝐻𝑖𝑛𝑒𝑤 with random nonnegative values. 

2. If 𝑘2 > 𝑘1: 

𝑊𝑛𝑒𝑤 = arg min𝑊≥0 ‖(𝐻𝑖𝑛𝑒𝑤⋮𝐻𝑑𝑛𝑒𝑤) 𝑊 − ( 𝐸1 − 𝐻1(𝑊 + 𝑉1) − 𝐻1𝑛𝑒𝑤𝑉1𝑛𝑒𝑤⋮𝐸𝑑 − 𝐻𝑑(𝑊 + 𝑉𝑑) − 𝐻𝑑𝑛𝑒𝑤𝑉𝑑𝑛𝑒𝑤)‖𝐹
2

 

𝐻𝑖𝑛𝑒𝑤 = arg min𝐻𝑖≥0 ‖((𝑊𝑛𝑒𝑤)𝑇 + (𝑉𝑖𝑛𝑒𝑤)𝑇√𝜆(𝑉𝑖𝑛𝑒𝑤)𝑇 ) 𝐻𝑖𝑇 − (𝐸𝑖𝑇 − (𝑊𝑇 + 𝑉𝑖𝑇)𝐻𝑖𝑇𝟎𝑔×𝑛𝑖 )‖𝐹
2

 

𝑉𝑖𝑛𝑒𝑤 = arg min𝑉𝑖≥0 ‖( 𝐻𝑖𝑛𝑒𝑤√𝜆𝐻𝑖𝑛𝑒𝑤) 𝑉𝑖 − (𝐸𝑖 − 𝐻1(𝑊 + 𝑉1) − 𝐻𝑖𝑛𝑒𝑤𝑊𝑛𝑒𝑤𝟎𝑛𝑖×𝑔 )‖𝐹
2

 

Set 𝐻𝑖 =  (𝐻𝑖 𝐻𝑖𝑛𝑒𝑤), 𝑉𝑖 =  ( 𝑉𝑖𝑉𝑖𝑛𝑒𝑤), 𝑊 =  ( 𝑊𝑊𝑛𝑒𝑤) 

3. If 𝑘2 < 𝑘1: 

Let 𝛿𝑘 = ‖𝐻𝑖,𝑘(𝑊𝑘 + 𝑉𝑖,𝑘)‖𝐹2 . Choose the factors with the largest 𝑘2 values of 𝛿𝑘. Call the 

corresponding elements of 𝑊, 𝐻𝑖, and 𝑉𝑖    
Set 𝐻𝑖 =  (𝐻𝑖𝑛𝑒𝑤), 𝑉𝑖 =  (𝑉𝑖𝑛𝑒𝑤), 𝑊 =  (𝑊𝑖𝑛𝑒𝑤) 
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4. Perform block coordinate descent optimization using alternating nonnegative least squares until 

convergence. 

Similarly, we can efficiently compute a factorization with a new 𝜆 value. Assume a previous optimization 

with 𝑘 factors and 𝜆1, and with matrices 𝐻𝑖(𝑛𝑖×𝑘)
, 𝑉𝑖(𝑘×𝑔)

, and 𝑊(𝑘×𝑔).  To compute a new factorization 

with 𝜆2 >  𝜆1 , we can use the matrices 𝐻𝑖 and 𝑊 and simply reoptimize with the new 𝜆 value.  

Empirical benchmarks for updating factorizations with new 𝑘 and 𝜆 values are shown in Figure S1C-D. 

Suppose we have optimized (1) with 𝑘 factors to give matrices 𝐻𝑖(𝑛𝑖×𝑘)
, 𝑉𝑖(𝑘×𝑔)

, and 𝑊(𝑘×𝑔). To 

efficiently compute a factorization incorporating new data from the same condition as an existing 

dataset, we use the previous 𝑊 and 𝑉 matrices as initial values and find the optimal 𝐻 given this 

starting point. Given a new dataset altogether, we initialize the 𝑊 and 𝑉 matrices using the values from 

the dataset that we expect a priori to be the most similar and find the optimal 𝐻 given these values. To 

re-run on a subset of the data, we use the 𝑊 and 𝑉 matrices as a starting point and simply drop the 𝐻 

rows corresponding to the omitted data. For each case, we subsequently perform optimization using the 

same block coordinate descent strategy as described above. Algorithm 2 summarizes this approach. 

Empirical benchmarks for updating factorizations with subsets of data and new data are shown in Figure 

S1E-F. 

Algorithm 2: Adding new data to the factorization  

1. Given new data from one of the datasets already factorized or a completely new dataset, 

initialize 𝑊 and 𝑉𝑖 to their previously found values (if a completely new dataset, choose 𝑉𝑖 from 

the dataset that is expected to be most similar), then solve: 

𝐻𝑖𝑛𝑒𝑤 = arg min𝐻𝑖≥0 ‖(𝑊𝑇 + 𝑉𝑖𝑇√𝜆𝑉𝑖𝑇 ) 𝐻𝑖𝑇 − ((𝐸𝑖𝑛𝑒𝑤)𝑇 𝟎𝑔×𝑛𝑖 )‖𝐹
2
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Set 𝐻𝑖 = ( 𝐻𝑖𝐻𝑖𝑛𝑒𝑤) .  

2. To update the factorization for only a subset of the data, initialize 𝐻𝑖 by simply dropping the 𝐻𝑖 
rows corresponding to the omitted data. 

3. Perform block coordinate descent optimization using alternating nonnegative least squares until 

convergence. 

Heuristics to guide choice of 𝒌 and 𝝀 

We devised novel heuristics to aid in selecting the number of factors 𝑘 and the tuning parameter 𝜆. To 

choose 𝑘, we calculate the Kullback-Leibler divergence (compared to a uniform distribution) of the 

factor loadings for each cell and plot the median across cells as a function of 𝑘.  We then try to observe a 

saturation point in the curve, corresponding to the point at which more factors do not significantly 

change the sparsity of the factor loadings or correspondingly increase the median KL divergence. The 

intuition behind this heuristic is that, if the number of factors is too low, factors will encode 

combinations of clusters, and thus cells will load on multiple factors, with the distribution of factor 

loadings for a particular cell approaching a uniform distribution. As the number of factors approaches 

the “true” number of clusters in the dataset, each cell will generally be expected to load on only a few 

factors. To select an appropriate lambda, we plot the alignment metric (after performing factorization 

and basic alignment with default parameters) as a function of lambda and again choose the minimum 

value at which the alignment metric saturates. KL divergence curves and alignment-lambda curves for 

two benchmark datasets are showing in Figures S1G-H.  

Shared factor neighborhood clustering and factor normalization 

After optimizing the iNMF objective function, we use the factor space to identify corresponding cell 

types across datasets (Figure 1C). Because of the parts-based nature of the factorization, cells can be 
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clustered by simply assigning each cell to the factors on which they have the highest loading. This is a 

common way of performing clustering using NMF representations (Xu, 2003). If we perform such simple 

assignment, we get clusters that correspond across datasets, because the factors represent the same 

signal in each dataset. However, we noticed that simple maximum factor assignments sometimes 

produced spurious alignments in highly divergent datasets. Therefore, we developed a novel clustering 

strategy that better leverages the dataset-specific information in the factorization to increase the 

robustness of the joint clustering results. We build a shared factor neighborhood graph in which we 

connect cells across datasets that have similar factor loading patterns, then identify joint clusters by 

performing community detection on this graph.  

More specifically, we build the shared factor neighborhood (SFN) graph as follows: 

1. Build 𝑘-nearest neighbor graphs separately for each dataset using the 𝐻 factor loadings 

2. Annotate each cell 𝑖 with the 𝐻 factor on which the cell has the highest loading; call this 𝐹(𝑖). 

We scale each factor to unit variance before assigning 𝐹(𝑖) values, as is standard with NMF (Xu, 

2003). 

3. For each cell 𝑖, collect the “factor neighborhood” vector 𝐹𝑁(𝑖) by computing a histogram of 𝐹(𝑖) for each of its 𝑘 nearest neighbors.  

4. Calculate Manhattan distance between pairs of cells (𝑖, 𝑗) across (and within) datasets using the 

factor neighborhood vectors 𝐹𝑁(𝑖) and 𝐹𝑁(𝑗) 

5. Connect pairs of cells with low distance; these represent cells with shared factor neighborhoods. 

We then perform Louvain community detection on the graph to jointly identify cell clusters across 

datasets.  

One intuition behind this construction is that, within an individual dataset, it is much more likely for an 

individual cell to have a spurious maximum factor loading than for an entire neighborhood of cells to be 
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incorrectly assigned. Thus, leveraging the neighborhood of a cell in assigning it to a cluster increases the 

robustness of the assignment. This approach is synergistic with iNMF, which reconstructs each dataset 

separately, accurately preserving the structure of individual datasets. A recent paper used a related idea 

to refine cluster assignments from NMF by taking into account the neighborhood of each data point 

(Tripodi, 2016). Additionally, our graph construction greatly reduces the chances of spurious matches 

across datasets, because even if a cell type spuriously loads on the same factor as a different cell type in 

another dataset, they are unlikely to have the same factor neighborhoods. 

After performing SFN clustering, we choose a reference dataset (by default the dataset with the largest 

number of cells) and normalize the quantiles of the factor loadings for each joint cluster in the other 

datasets to match the quantiles of the reference dataset for that joint cluster. We require that each 

dataset have a minimum number of cells assigned to a particular cluster (default: 2 cells); cells not 

satisfying this requirement are not normalized.  

Calculating alignment and agreement metrics 

We calculated the alignment metric as defined in Butler et al. (Butler et al., 2018). To quantify how well 

the integrated factor space respects the geometry of each individual dataset, we calculate an 

“agreement metric” as follows. We first apply a dimensionality reduction technique to each dataset 

separately. Using these low-dimensional representations, we build a k-nearest neighbor graph for each 

dataset. We also build 𝑘-nearest neighbor graphs for each dataset using the joint, integrated space—the 

normalized 𝐻 factor loadings from LIGER or the aligned canonical components from Seurat. We then 

count how many of each cell’s nearest neighbors in the graphs built from the separate low-dimensional 

representations are also nearest neighbors in the graphs built from the integrated low-dimensional 

representations. We found that PCA and NMF produced significantly different graphs for different joint 

dimensionality reduction and alignment techniques, so to ensure a fair comparison, we compared the 
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graphs built from the aligned Seurat space (CCA-based) with graphs built from PCA, and compared the 

graphs built from the aligned LIGER factor loadings (iNMF-based) with NMF.  

For comparisons with Seurat, we followed all documented procedures for running the method, including 

choosing the number of canonical components. For the PBMC and pancreas datasets, we reproduced 

the analyses as described by Butler et al. and subsequent Seurat tutorials (Butler et al., 2018). 

Analysis of bed nucleus data 

We performed a first round of LIGER analysis on BNST nuclei to identify neurons, then restricted 

subsequent analyses to neuronal cells. We next assigned neuronal populations to anatomical locations 

using in situ staining data from the Allen Brain Atlas (Figure S3), then performed a second round of 

clustering on neurons we could assign to the bed nucleus. Clustering of bed nucleus neurons identified 

32 populations, four of which were removed because of doublet signatures. We found that it was not 

necessary to quantile normalize the factor spaces for the bed nucleus analyses, as iNMF alone provides 

sufficient batch effect correction in this case. We used the iNMF factorization to identify genes with 

dimorphic expression by simply taking the genes with nonzero loadings on the dataset-specific factors 𝑉. 

As an additional filtering step, for gene 𝑖 loading on dataset-specific factor 𝑗, we removed 𝑖 if it had a log 

fold change of less than 0.75 or fewer than 30 UMIs in the cells with their highest factor loading values 

on factor 𝑗. Noting that each factor generally loads on only a single cluster, we then assigned dimorphic 

genes to the cluster on which the corresponding factor had the highest average loading. To rank 

dimorphic genes by their degree of dimorphism (as shown in Figure 3K), we calculated the difference, 

for each gene, between male and female dataset specific factor loadings for the factors on which the 

gene is dimorphic. 

For the comparison of BNST_Vip nuclei with CGE-derived cortical interneurons, we randomly sampled 

50 cells from each of the 11 published subclusters of frontal cortex global cluster 1 (Saunders et al., 
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2018), to maintain cell-type diversity in the downsampled set.   These 550 CGE neurons were analyzed 

with the 139 BNST_Vip profiles with LIGER according to parameters in Table S1.     For the comparison of 

the Ppp1r1b+ BNST populations with striatal SPNs, we sampled 2000 dSPNs (published global cluster 

10), 2000 iSPNs (published global cluster 11), and 1,084 eSPNs (subclusters 1-5 of global cluster 13).  

These 5,084 SPNs were analyzed with the 3,652 Ppp1r1b+ nuclei from the BNST analysis using LIGER 

with the parameters in Table S1. 

Analysis of substantia nigra data 

To analyze the human substantia nigra data across donors, we used a separate dataset-specific factor 

matrix for each human donor. We performed two rounds of clustering with LIGER, first identifying the 

main cell classes (neurons, endothelial cells, astrocytes, oligodendrocytes, and microglia), then 

clustering each cell type again to identify additional substructure within these classes (Saunders et al., 

2018). For the cross-species analysis, we determined homology relationships using Jackson Laboratories 

annotations (http://www.informatics.jax.org) and included only genes with one-to-one homologs. We 

used LIGER to integrate each broad cell class separately, and used two dataset-specific factor matrices 

(one for each species), rather than treating the data from each human donor as a separate dataset. For 

the cross-species analysis, we performed variable gene selection on each species separately, then took 

the union of variable genes across both species.  

For the identification of gene ontology categories with conserved patterns of expression across species, 

we used GOrilla (Eden et al., 2009) in ranked gene list mode, using default settings, to perform gene 

ontology enrichment analysis and ReviGO (Supek et al., 2011) to summarize and visualize the results.  

Analysis of STARmap data 

We downloaded the published STARmap expression data and segmented cell boundaries, then 

normalized and scaled the STARmap gene counts in the same manner as the Drop-seq data of mouse 
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frontal cortex (Saunders et al., 2018). Because the STARmap data assays pre-selected markers, we did 

not perform variable gene selection, but used all genes that were present in both the Drop-Seq and 

STARmap data. We used the entire frontal cortex dataset from a previously published Drop-Seq atlas of 

mouse brain. We performed two levels of analysis using LIGER, first jointly identifying broad cell classes, 

then performing a second round of LIGER analysis on excitatory neurons, inhibitory neurons, and glia.  

Analysis of methylation data 

We downloaded the publicly available gene-level mCH fractions from 3378 frontal cortex profiles (Luo et 

al., 2017). Because gene expression and gene body mCH are generally anticorrelated, we created gene-

level methylation features that correspond to gene expression features by calculating  

𝑚𝑎𝑥(𝑋) − 𝑋 

where 𝑋 is the matrix of mCH values. Because the data from Luo et al. contains only neuronal cells, we 

used only cells annotated as neurons from the Saunders et al. frontal cortex Drop-seq dataset. 

Because the distribution of methylation values is very different from scRNA-seq data, we selected genes 

by performing a Kruskal-Wallis test on methylation and RNA data separately using the published 

clusters, then taking the intersection of the top 8000 RNA and methylation markers. We found that, 

since the methylation data are not sparse (i.e., very few values are exactly 0), the NMF factor loadings 

need to be centered as well as scaled during the SFN clustering procedure. We also noted that the NMF 

algorithm converges extremely slowly compared to our ALS implementation when running on the non-

sparse methylation data. We used the methylpy Python package to calculate methylation levels for the 

set of differentially methylated regions identified in the original analysis of the methylation data (Luo et 

al., 2017). We performed an analysis of transcription factor binding using FIMO (Grant et al., 2011) with 

default settings and the mouse transcription factor binding motifs from the latest version of the non-

redundant JASPAR database (Khan et al., 2018). We annotated the DMRs according to the nearest gene 
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using the annotate R package 

(https://www.bioconductor.org/packages/release/bioc/html/annotate.html) 

Generation of BNST nuclei profiles 

All experiments were approved by and in accordance with Broad Institute IACUC protocol number 0120-

09-16.  Mouse brains (four male replicates, two female replicates) were perfused and flash frozen in 

liquid nitrogen, and mounted on a cryostat.  Tissue was sliced from the anterior until reaching the target 

region of interest (Figure S3A).  To dissect a tissue segment, the block face was punched with a 1 mm 

biopsy punch, and a 400-micron slice was made to liberate the circular tissue segments from the 

remaining brain.  Nuclei were extracted from frozen tissue according to a protocol generously provided 

by the McCarroll lab (http://mccarrolllab.com/no-access/protocols/), and loaded into the 10x Chromium 

V2 system.  Reverse transcription and library generation were performed according to the 

manufacturer’s protocol.  

Generation of profiles from human substantia nigra 

Substantia nigra (SN) tissue from seven de-identified human donors was obtained from the University of 

Maryland Brain Bank, through the NIH Neurobank (exempted from human subjects research by ORSP, 

project number NHSR-4235).  Although all seven donors were coded as neurotypical controls, 

information provided with the tissue revealed that donor 5828 suffered a traumatic brain injury at the 

time of death, while donor 5840 was diagnosed at autopsy with cerebral amyloid angiopathy.   

Frozen tissue samples were sectioned on a cryostat to visualize pigmentation of the pars compacta, and 

manually dissected to remove as much surrounding tissue as possible.  Nuclei from the dissected tissue 

segments were then immediately isolated (Saunders et al., 2018) and profiled on the 10x Chromium V2 

system, according to the manufacturer’s protocol. 
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