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This paper presents a framework for simulating the flight dynamics and control strategies of the fruit fly
Drosophila melanogaster. The framework consists of five main components: an articulated rigid-body simulation, a
model of the aerodynamic forces and moments, a sensory systems model, a control model, and an environment model.
In the rigid-body simulation the fly is represented by a system of three rigid bodies connected by a pair of actuated
ball joints. At each instant of the simulation, the aerodynamic forces and moments acting on the wings and body of the
fly are calculated using an empirically derived quasi-steady model. The pattern of wing kinematics is based on data
captured from high-speed video sequences. The forces and moments produced by the wings are modulated by
deforming the base wing kinematics along certain characteristic actuation modes. Models of the fly’s visual and
mechanosensory systems are used to generate inputs to a controller that sets the magnitude of each actuation mode,
thus modulating the forces produced by the wings. This simulation framework provides a quantitative test bed for
examining the possible control strategies employed by flying insects. Examples demonstrating pitch rate, velocity,
altitude, and flight speed control, as well as visually guided centering in a corridor are presented.

1. Introduction

LIGHT, like all forms of locomotion, involves a complex
interaction between an animal and its environment. Although
neural circuits, muscles, and wings make up the central physical
plant of an animal’s motor system, flight behavior does not result
from a simple set of feed-forward commands. For example, most of
an insect’s nervous system is dedicated to the sensory information
that is generated as the animal moves through its environment [1].
The insect’s brain rapidly processes and fuses this rich information
stream to create a motor code that can modify wing motion on a
stroke-by-stroke basis [2]. Sensory feedback is essential, both for
short-term stability as well as long-term guidance and navigation.
What we view as behavior, such as a fly flitting across the room to
land on the window, represents the output of a complex set of
sensory-motor circuits that operates through the dynamics of
muscles, skeleton, aerodynamics forces, and the environment.
Although biologists have appreciated the central role of feedback in
flight [3], conventional biological disciplines such as neurobiology
or biomechanics are not endowed with the mathematical framework
to deal with the feedback in a rigorous manner. Fortunately, recent
progress in insect aerodynamics has fostered new engineering
approaches such as the application of control theory to animal flight
[4,5]. Such work will be critical in further developing an integrative
view of flight biology, if for no other reason than it will provide a
rigorous framework for incorporating observations from multiple
disciplines within a single context, as well as permit experiments that
are not possible on areal animal. Indeed, the very nature of feedback-
dominated systems is that they are robust to ablation and
perturbation, a fact that renders them resistant to standard
reductionist methods.
In this paper we present our first attempts at constructing a 3-D
dynamic model of the flight system of a flying insect, the fruit fly,
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Drosophila melanogaster. Similar work has recently emerged to
model artificial mechanical flappers [6,7], small, fixed wing aircraft
[8], and hovercraft [9]. Flies provide a convenient scaffold for an
integrated control model, because they have been subject to
extensive investigations of aerodynamics, sensory processing, and
motor control [10-25]. In constructing this model, we target both
short-term and long-term goals. Immediately, we can ask if our
understanding of fly aerodynamics, neurobiology, and biophysics is
sufficient to create a simulated entity that can fly stably in a manner
that captures some of the salient features of a real fly. Toward this
end, we must be careful not to bias our conclusions by deliberately
choosing free parameters that result in satisfactory performance but
are not justified physiologically. The challenge here is that certain
features of our model are well constrained by detailed observation
and experiment and easily formulated (e.g., wing and body
aerodynamics), whereas other components are poorly understood
and may be only roughly hewed in mathematical terms (e.g., neural
circuitry and wing hinge mechanics). Despite this limitation, we feel
that enough is known regarding this particular organism to warrant
such an attempt. The long-term goal, which is not contingent on
immediate success, is to construct a model that will serve as a
framework for future studies. As research on flight biology
continues, black box simplifications that are currently necessary will
be replaced by more rigorous “bottom-up” formulation, advancing
both the predictive power and physical reality of the model. The most
satisfying result would be to create a useful research tool that, in
conjunction with experiments on real animals, provides new insight
into the underlying biology.

Our model is based on a framework that combines a simulation of
insect flight dynamics, a model of insect sensory systems, and a
model of the flight environment. Using this framework, control
strategies can be evaluated by allowing the outputs of the sensory
systems to modulate the forces produced by the wings and the results
assessed in a quantitative manner. The simulation framework
consists of five main components (as shown in Fig. 1).

1) Sensory systems model: Asitis not currently practical to attempt
to model all of the sensory systems of a fruit fly, our model focuses on
the two key sensory systems that are arguably most important for
flight control, the visual system, and the halteres. These systems can
provide information concerning the rate of change of key variables
such as pitch, roll, and yaw as well as indicating the presence of ap-
proaching obstacles or distant targets. They thus make up the basis of
both a control and a navigation system. Additional components, such
as an olfactory system, could be readily incorporated in the future.

2) Articulated rigid-body simulation: A system of rigid bodies is
used to model the dynamics of the fly. A two-winged insect, such as a
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Fig. 1 Block diagram illustrating the overall architecture of the simulation framework.

fruit fly, is modeled as three separate rigid bodies representing the
wings and the body. The wings are connected to the body with
actuated ball joints that enable the wings to track the desired
kinematics. Whereas the framework has been developed using a two-
winged insect, it is easily modified to deal with four-winged animals.

3) Aerodynamic model: The aerodynamic model provides
estimates of the aerodynamic forces and moments during flight. The
force and moment model is derived from experimental measure-
ments obtained using a dynamically scaled robotic model. A quasi-
steady blade element model is used to estimate the forces and
moments produced by the wings. The model of the forces and
moments acting on the body of the fly was developed from force and
moment coefficients measured using a dynamically scaled body
model in a tow tank.

4) Control model: The control model consists of a set of control
laws specifying the behavior of the insect with regard to sensory
input. The control model provides a means by which the outputs of
the sensory system modulate the wing kinematics thus providing
actuation. Using this framework, different control strategies can be
systematically evaluated and compared with the results of laboratory
experiments to provide insight into insect flight control and behavior.
Although the changes in wing motion generated by the control model
are based on observations of real flies [23], the control model
nevertheless represents the most coarsely rendered component of the
model. No attempt was made, for example, to accurately model
neural circuitry or musculoskeletal dynamics.

5) Environment model: The environment model provides input to
both the sensory systems and the aerodynamics model. By
simulating arbitrary visual surroundings with a computer graphics
engine, we have the flexibility of placing the model fly in different
virtual environments, including more naturalistic fieldlike habitats
and simpler conditions such as those used in the laboratory for
experiments on the fly visual system. We can also add physical
features such as wind gusts to provide realistic or arbitrary
perturbations.

II. Simulation Framework

The simulation framework consists of four separate software
components encapsulating the aerodynamics, sensory, control, and
environmental models. In addition, the framework provides an
application programming interface (API) through which the model
parameters can be accessed and the interaction among the various
components can be specified. An overall goal is to provide a unified
interface for rapidly developing insect flight mechanics, control, and
sensory simulations. In this section we briefly describe the models
underlying the main components of the simulation framework.

A. Sensory Systems
1. Visual System

The visual guidance of fly flight has been an active research area
for many years. We sought to faithfully capture much of the known
biology of the Drosophila visual system to provide input for the

guidance of our model. In the present work, the visual modeling is
limited to a relatively simple implementation of motion-detection
circuitry for the purposes of heading control.

Two related questions motivate much of this work, although the
results and discussion presented here are insufficient to resolve such
general issues. Numerous features of the fly motion-detection
pathway are nonlinear and function quite differently than most
engineered computer vision systems (for a review, see [16,26]). For
example, rather than extracting accurate velocity estimates of image
features, the fly visual system responds to local motion in a way that
is sensitive to contrast and spatial pattern in addition to velocity. Is
this due to fundamental constraints imposed by the available neural
computational hardware, or (not mutually exclusively) is the nature
of the problems faced by flies such that these properties are, in fact,
advantageous from a computational or algorithmic perspective?

In this work we modeled a single wide-field integrator, inspired by
the matched filter hypothesis [27], using a scheme outlined next.
Although not described here, our model framework is capable of
more detailed simulations such as implementation of more detailed
models of lobula plate neurons. Such models are capable of quite
accurately predicting neural responses to a variety of simple or more
naturalistic visual stimuli [28-31].

When considering motion detection, it is important to note that the
velocities of image features moving across the retina cannot be
transduced into neural responses directly, but must be computed
through subsequent processing of luminance signals as encoded by
photoreceptors. A brief outline of the present understanding of the
nature of these computations is presented here. For these purposes, it
is important to compute visual estimates of local velocity in a
biologically realistic manner rather than simply using direct readouts
of local angular velocity made possible by use of a modeling
environment and often employed in analytic analyses of visual
motion (e.g., [32]).

To attain sensitivity to motion over their large receptive fields, the
outputs of many elementary motion detectors (EMDs), each
sensitive to input from a small angular region of space, are summed
spatially on the input dendrites of the lobula plate tangential cells
(LPTCs). Although the anatomical underpinnings of these EMDs are
still unresolved, physiological results from numerous experiments
are in close agreement with predictions of elaborations of the
Hassenstein—Reichardt correlator model for motion detection [33].
The various components of this model and a brief summary of the
current biological understanding are outlined here.

The inputs to each correlator consist of two channels carrying
visual information from nearby regions in visual space. These inputs
originate as luminance encoded by photoreceptors but are further
processed by additional neural elements. Insects have rather course
spatial resolution, and as a general rule, each facet lens provides a
significantly blurred image to its photoreceptors. Such blurring
reduces the potential for spatial aliasing. A detailed eye map for
Drosophila was made by Buchner [34] (as plotted in Fig. 2 of [35]).
To a first approximation, the angular separation between adjacent
photoreceptors ranges from about 4.5 to 6 deg. In our model,
Buchner’s data for all 699 visual elements were used to generate the
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orientation of each input and its spatial blur for each simulated
photoreceptor of the two compound eyes.

Ateach time point in the simulation, six images spanning the entire
visual world from the fly’s point of view are taken from the simulated
environment (see Sec. IL.D). The blurred photoreceptor input
luminances are formed by spatial low-pass filtering of these images
with a Gaussian kernel. The Gaussian filter is given by

—4 10g(2)§2]

G = exp[ Ay M

where ¢ is the angle from the optical axis of the photoreceptor, and
Apis the acceptance angle [36]. We use Ap = kA¢p, where A¢is the
angle between adjacent elements and £ = 1.1 as found by Buchner
[37] for Drosophila. A rapid algorithm for performing this filtering
was used [38]. A Mercator projection of the intensity and color of
light falling on each photoreceptor in the simulated fly is shown in
Fig. 2. As seen, the photoreceptors are arranged around the unit
sphere, creating a panoramic visual system similar to that of
Drosophila.

The transduction of light energy into neural signals filters out high
temporal frequencies. For each facet lens in our model, we simulated
a photoreceptor with temporal dynamics given by a linear filter that
closely matches the temporal dynamics of a fly photoreceptor
response [39]. The impulse response of this filter is given by

(0g 1)°
| @
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where ¢, is the time to peak and o specifies the width. For the
simulations presented here, t, =20 ms and 0 = 0.355, values fit to
light-adapted photoreceptor impulse responses measured in
Drosophila [40].

The outputs of adjacent simulated photoreceptors were then used
as inputs to a simple implementation of a Hassenstein—Reichardt
correlator. The correlator model works in the following way.
Consider the time-varying output of two photoreceptors V,(f) and
V(). Such a signal, when filtered with a linear, first-order low-pass
filter, will be delayed and is denoted V', (¢) or Vi (¢). Thus, V, (£) V(¢)
is the product of the temporally delayed photoreceptor output, V/ (7),
with the undelayed output, V(7). The first-order delay filter is of the
form:

f0 = Lexp (— %) ®)

where the time constant 7 is set to 35 ms. Although regional
differences in temporal properties are known to exist across the retina
of another species of fly [41], we use only a single value for our
Drosophila model. The output of an EMD is defined to be two such
mirror-symmetric subunits subtracted as

Vemp (1) = Vi) V(1) — Va(0) V(1) “4)

left eye right eye

= L

Fig. 2 A simulated fly’s eye view. The intensity and color of light falling
on each photoreceptor of the two compound eyes are plotted on a
cylindrical (Mercator) projection. The precise direction of each visual
element is denoted by a small circle.

The correlator model shares several properties with those found
experimentally. In particular, output is dependent on contrast and
spatial patterns of the stimulus in addition to velocity.

For each model eye (left and right) of 699 photoreceptors, there are
2059 possible EMDs between adjacent inputs. At each time step of
the simulation, the activity of each EMD is computed.

2. The Halteres

In Diptera, including fruit flies, the pair of hind wings is modified
into pair of dumbbell-shaped organs with a knoblike end and a stiff
stalk. These organs are called halteres and play an import role in flight
stabilization. It has long been known that flies are unable to fly when
their halteres are removed or immobilized [42]. During flight, the
halteres oscillate in antiphase with the wings in planes that are tilted
back from the sagital plane by approximately 30 deg. The stalk of the
haltere is heavily innervated with approximately 400 mechanor-
eceptors [43—46]. A subset of these mechanoreceptors transduces
information concerning the rotational velocity of the fly because they
are exclusively sensitive to the lateral deflections of the haltere within
its stroke plane. Lateral forces are not caused by the back and forth
beating of the haltere, but are generated by Coriolis forces caused by
the angular rotation of the fly [47]. An expression for the Coriolis
force acting on the haltere of a fly during flight is given by [44]

F=-=2m(w XV) 5)

where m is the mass of the haltere end knob,  is the angular velocity
of the fly in a body frame, and v is the velocity of the end knob of the
haltere relative to the fly [47]. Note, a subscript L or R will be used
when referring specifically to left or right halteres, respectively.

The haltere model assumes that the mass of the haltere is located in
the end knob which is approximated as a point mass. The angular
position of the haltere within the stroke plane is given by the periodic
function A(#) which is antiphase with the wing stroke position. The
velocities of the left and right haltere end knobs relative to the fly are
given by

v, (1) = [);(t)d sinesin A (1), X(t)d cosesinA(), );(t)d cos A(1)]T
(6)

and

ve() = [);(t)d sinesin A(), —);(t)d cosesinA(1), X(t)d cos A(1)]"
(7N

respectively, where d is the length of the haltere and ¢ is the angle
between the haltere stroke plane and the sagital plane. In this
description the roll, pitch, and yaw axes of the fly are given by the x
(longitudinal), y (transverse), and z (dorsoventral) body axes,
respectively. Using Eqs. (5-7), the lateral components of the Coriolis
forces acting on the left and right halteres are then found to be given
by

F,(1) = —2mA(t)d[q () cos & cos A(f)
— r(t)sin A(t) + p(¢) sinecos A(1)] (8)

and

Fp(t) = —2mA(1)d[q() cos & cos A(f)
+ r(1) sin A(f) — p(?) sinecos A(7)] )

respectively, where ¢, r, and p are the x, y, and z components of the
angular velocity vector. From Eqgs. (8) and (9) it is apparent that the
Coriolis force acting on the haltere is a complex waveform whose
value at any given instant depends upon the velocity of the haltere,
the stoke position of the haltere, and the three components of the
angular velocity vector.
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A region of the haltere stalk, called the basal plate, contains
numerous fields of companiform sensilla near the base of the haltere.
One field, in particular (dF2), is known to be particularly sensitive to
lateral deflection and is thought to act as the Coriolis detector [44,48].
In this manner the fly is able to sense the lateral component of the
Coriolis forces. The neural processing of these signals is poorly
understood. However, it is thought that flies can sense all three
components of the angular velocity vector using both of their halteres
[49,50]. To use the halteres for sensory feedback in our integrated
flight control model a scheme for converting the forces sensed by the
halteres into changes in wing kinematics is required. As the neural
processing by which this is done in the fruit fly is in general not well
understood, it is necessary for us to posit a plausible scheme instead.
A first step in such a scheme is an estimate of the angular velocity
from the Coriolis forces or resulting strains. Next we outline a
method for extracting the three components of the angular velocity
vector using the lateral components of the Coriolis force from both
halteres. Although this method cannot be viewed as an accurate
model of sensory processing in the fly, it does provide a method that
is at least theoretically possible given the sensory information
available.

Examining Eqgs. (8) and (9), it is apparent that by adding the lateral
components of the Coriolis forces of the left and right halteres, the
roll p and yaw r components of the angular velocity cancel. Thus, we
can solve for the pitch rate g as follows:

Fi(t) + Fr@®)
4md (1) cos e cos A(1)

q() =~ (10)

The denominator in Eq. (10) is equal to zero only at stroke reversals
when A(7) is equal to zero and at mid-half-stroke when cos A(7) is
equal to zero.

Subtracting the lateral components of the Coriolis forces of the left
and right halteres, Eqgs. (8) and (9), yields an expression containing
only the roll p and yaw r rates:

F (1) — Fg(t) = 4m);(z)d[r(t) sinA(r) — p(f) sinecos A(r)] (11)
The roll and yaw rates, p(¢) and r(¢), can be estimated from Eq. (11)

using a series of lagged measurements from a window of length §z.
The measurement window is divided into N + 1 time points:

iot
where i =0, ..., N. In the measurement window the roll and yaw

rates are approximated by the kth order polynomials:

k
Py~ Y at (13)
i=0
and
k
r(t)~ Y byt (14)
i=0

Inserting Egs. (13) and (14) into Eq. (11) for t =1, ..., ty yields a
set of N + 1 linear equations with 2(k + 1) unknowns that can be
solved for the unknowns a; and b;. The estimate for the roll and yaw
rates at time # = ¢, is then given by r(z,) and p(t,), respectively.
Values of k = 1 and N = 20 have been found to yield good results.

Temporal aspects of the neural processing of haltere sensory
information are approximated with a filter based on observations of
the haltere mediated responses of Drosophila [51]. The transfer
function of the filter is given by

1.873s + 10.08

G = 72055 1 1343

s)

which has complex poles at —10.26 & 5.41i and is based on a fit
to experimental data [51]. This filter is applied to the roll, pitch, and

Fig. 3 Rendering of the articulated rigid-body structure used to
represent a Drosophila.

yaw rates estimated from the lateral components of the Coriolis
forces.

B. Articulated Rigid-Body Dynamics

The dynamics of the fly are provided by an articulated rigid-body
simulation, in which body components are attached to each other
using joints [52,53]. Several different types of joints can be used to
connect the bodies. Joints differ from each other in the degrees of
freedom of relative motion allowed. Examples of possible joints
include ball joints, universal joints, and hinges with 3,2, and 1 degree
of freedom, respectively. In our simulation, a two-winged insect such
as a fly is represented by a system of three separate rigid bodies
representing the wings and the body. A rendering of the articulated
rigid-body system used to represent a Drosophila is shown in Fig. 3.
In our simulation the wings are connected to the body using ball
joints that are actuated to provide relative motion between the bodies
in the rigid-body system. The ball joints representing the wing hinges
are actuated by virtual angular motors to allow the wings to track the
desired kinematics. In real flies, wing motion is achieved through
complex and not particularly well understood interactions between
the neural, muscular, and skeletal systems in addition to the
aerodynamics and mechanics [54]. For this reason we have chosen to
use a highly simplified actuation system to achieve wing motion.

1. Physics Engine

At the heart of the articulated rigid-body simulation is a high
performance physics library or physics engine. The physics engine
provides a simulation of Newtonian physics for the rigid-body
systems. For an introduction to the mathematical methods used in
physics engines and articulated rigid-body dynamics, the reader is
referred to [52,53]. Physics engines are commonly used in the
computer gaming industry for developing interactive games as well
as by the engineering community for studying manipulation and
control strategies for robotic systems. For this reason there are many
high-quality physics engines available both commercially (Havok,
Meqon, Novodex) and as open source software (Open Dynamics
Engine, Dynamechs).

Several criteria were evaluated when selecting a physics engine for
the project including the existence usable API, good documentation,
bindings to high-level languages such as Python or Ruby, an active
developer community, and the availability of source code. Open
Dynamics Engine (ODE) developed by Russell Smith and released
under the GNU Lesser General Public License (LGPL) open source
license was found to be an excellent fit to these criteria.? ODE is a
full-featured industrial-quality physics engine that includes many
advanced joint types, integrated collision detection, and a C/C++
API. Bindings to ODE are available in both Python and Ruby,
enabling rapid scripting using high-level languages. In addition to
several commercial computer games, ODE has been used in both
biomechanics and robotics research [55-57]. The equations of
motion for rigid-body systems are derived from a Lagrange
multiplier velocity-based model [58].

*Data available online at http://www.ode.org/ [retrieved 11 January 2008].
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2. Mass Properties

To generate an accurate simulation of the flight dynamics of an
insect, it is necessary to have an accurate estimate of the mass
properties of the rigid bodies used in its representation. The mass
properties of a rigid body are the total mass, center of mass, and
inertia tensor. Thus for our fruit fly model, based on three rigid
bodies, we need to estimate the mass, center of mass, and inertia
tensor for each of the three bodies in the representation. In addition,
to facilitate rapid changes in configuration, a systematic approach to
estimating the mass properties of a given body from a polygonal
boundary representation is desired. Our basic strategy for generating
polygonal models and estimating their mass properties is outlined
here.

1) Image collection: Calibrated digital images of the object are
collected from sufficient vantage points to enable reconstruction of
the object.

2) Boundary model: Using the collected images, a polygonal
boundary representation of the object is developed with a CAD
program (e.g., SolidWorks) or 3-D modeling software (e.g.,
Blender).

3) Mass properties: From the polygonal boundary representation
of the object and an estimate of its density, the mass properties are
calculated using Mirtich’s algorithm [59].

The use of Mirtich’s algorithm restricts this approach to objects or
bodies which have uniform density. For the Drosophila simulation
all three rigid bodies in the representation are assumed to have a
uniform density equal to that of water. This produces a mass value
similar to those measured in real flies. A schematic overview of the
procedure outlined previously is shown in Fig. 4.

C. Aerodynamic Forces and Moments

The aerodynamic model is used to calculate the forces and
moments acting on the body and wings of the insect during flight.
The model is quasi-steady and is based on empirically determined
force and moment coefficients. The quasi-steady assumption is based
on the observation that the flow pattern and forces acting on a
revolving wing display little time dependence even at angles of
attack high enough to generate a leading edge vortex [21,60]. The
aerodynamic forces and moments generated by the wings and body
are considered separately and it is assumed that they are not
influenced by wing—wing and wing—body interactions.

1. Wing Aerodynamics

The wing aerodynamics model is based on prior work using a
dynamically scaled physical model [19,21,22]. In this model the
wing is approximated by a flat plate with a planform based on a
Drosophila wing. Using a standard blade element method, the wing
is divided spanwise into a finite number of blade elements on which
the forces and moments are calculated. The force on each blade
element is calculated as the sum of the steady-state, rotational, and
added mass components

F=F, +F, +F, (16)

images ——

polyhedral models ———=  mass properties

body model

mass
center of mass

inertia tensor

wing model

mass
center of mass
inertia tensor

Fig. 4 Schematic of the procedure for generating polygonal boundary
representations and determine the mass properties.

The total force acting on the wing is given by the sum of the blade
element forces. However, to generate the appropriate moments
acting on the wing, the force produced by each blade element must be
applied to the rigid body representing the wing in the appropriate
location. This location for a given blade element is roughly
approximated by the mean spanwise location of the element and the
chordwise position of the center of pressure for the element. The
methods used for calculating the three force components in Eq. (16)
as well as for predicting the chordwise position of the center of
pressure are summarized next.

The steady-state component of the force acting on a blade element
is conveniently expressed in terms of lift and drag. The steady-state
lift and drag are proportional to the product of the air density p, the
element chord length c, the element width Ar, and the square of the
incident flow velocity in the plane of the blade element u,. Note, the
plane of a blade element is defined as the subspace spanned by the
wing normal and wing chord vectors that intersects the centerline of
the element. Expressions for the magnitudes of the steady-state lift
and drag are given as follows:

Fs,lift = %IOC”ue”zCL(O[)Ar and Fs.drag = %pC”uc”zCD(a)Ar
a7

where « is the local angle of attack of the blade element, and the lift
and drag coefficients C; («) and Cp(«) are shown in Fig. 5. The lift
and drag coefficients were generated experimentally using a
revolving dynamically scaled model Drosophila wing [19].

The magnitude of rotational force is proportional to the product of
the fluid density, the square of the element chord length, the element
width, the rate of change in angle of attack &, and the magnitude of
the incident flow velocity in the plane of the blade element. The
rotational force always acts in a direction normal to the surface of the
wing and an expression for its magnitude is given by

F,=C,pac’|u.[|Ar (18)

where C, is the rotational force coefficient. A value of C, = 1.55 is
suggested by Sane and Dickinson in [22] as appropriate for the
Drosophila wing. This value is essentially equivalent to the value
derived by Fung [61] using the thin airfoil theory and assuming that
the rotational axis of the wing is located at one-fourth chord.

The added mass force acting on a blade element is proportional to
the density of the fluid, the square of the element chord length, the
element width, and the acceleration of the incident flow normal to the
surface of the element. The added mass force is assumed to always
act normal to the surface of the wing. An expression for the
magnitude of the added mass force is given by

asf | ' ' g

force coefficient
- 1]
in n in
- ; :
L ]

-
.
" e
o
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=
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0 20 0 60 80
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Fig. 5 Steady-state lift (blue) and drag (red) coefficients for revolving
the model Drosophila wing [19].
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2 i
prc {u u, (19)

4 U

This estimate for the added mass force acting on blade element is
based on an approximation for the motions of an infinitesimally thin
flat plate in an inviscid fluid, for example, see Sedov [62].

Measurements using a model Drosophila wing demonstrate that
the spanwise location of the center of pressure is approximately
constant with respect to the changes of the angle of attack. This is in
good agreement with predictions by the quasi-steady model as
shown in Fig. 6a.

An approximately linear relationship is found between angle of
attack and the chordwise location of the center of pressure as shown
in Fig. 6b. This linear relationship is well approximated by the
following equation:

sina + ||u,||a cosa}Ar

(@) = c[o.sz% + 0.05] (20)

To generate the appropriate moments acting on the entire wing, the
force acting on each blade element is applied at the spanwise location
(or center) of the element and at the center of pressure determined by
Xep(@), where « is the local angle of attack of the element.

2. Body Aerodynamics

The body aerodynamics model is used to calculate the forces and
moments acting on the body of the insect during flight. During the
rigid-body simulation all the separately calculated body forces and
moments are applied at the center of mass of the insect’s body. The
model assumes that the body of the insect is bilaterally symmetric.
Under this assumption, the force and moment coefficients for the
body are a function of the angle of attack of the body «, the sideslip
angle B, and the Reynolds number (Re). In practice, the dependence
of force and moment coefficients on the Reynolds number can be
generally ignored. This is due to the fact that variation of the
coefficients with the Reynolds number is only significant at very low
flight speeds where the forces and moments are negligibly small.

The forces parallel and normal to the body of the insect are
proportional to the product of the fluid density, the body reference
area S, and the square of the incident velocity u,,. Expressions for the
magnitudes of the parallel and normal forces are given by

Fp= %IOCP((S)S”ubHZ and Fy = %ch(é)S”ubnz 2D
where Cp(8) and Cy(§) are experimentally determined coefficients
and § is the angle between the longitudinal body axis and the incident
flow. The angle § can be expressed in terms of the angle of attack and
sideslip angle of the body as follows:
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8(a, B) = tan~!(y/tan’a + tan?B) (22)
The normal and parallel force coefficients, Cp(8) and Cy(8), exhibit
a simple trigonometric dependence upon the angle § as shown in
Fig. 7a. This dependence can be adequately modeled using the
following expressions:

Cp(8) = kpcosd and Cy(8) = kysiné (23)
where the constants kp and k, are determined using a linear
regression. For Drosophila, values kp = 0.6 and ky = 1.2 are found
to be suitable. Note, the results depend upon the choice reference area
S, used when calculating the force coefficients from experimental
data. For this study the reference area was selected to be that given by
the projection onto the frontal plane of the body.

Moments generated during steady translation of the body about
the roll axis were found to be negligibly small compared to the
moments about the pitch and yaw axes. For this reason the rolling
moment produced by the aerodynamic forces acting on the body is
assumed to be zero. The pitching and yawing moments are found to
depend upon the density of the fluid, the length of the body L, the area
of the body S, and the incident velocity u,. Expressions for the
pitching and yawing moments are given by

MP:%pcpitch(avﬂ)SL”uhnz and MY:%praw(avﬂ)SL”uhnz
(24)

where Cpyen(a, B) and Cy,,(a, B) are experimentally determined
pitching and yawing moment coefficients. As an example, the
experimentally determined pitching moment for the body as a
function of angle of attack is shown in Fig. 7b for a sideslip angle of
zero. The dependence of pitching and yawing moments on angle of
attack and sideslip angle can be approximated using the following
functions:

Conale: ) = @{f@( pylEeeh

e ! COSﬂ)} (25)
and

Cyaw(“’m:%{fw pyLEeh)

+ f=b(@. )" °°Sﬂ>} o6
where
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Fig. 6 Position of the center of pressure as a function of angle of attack. a) Spanwise position of the center pressure (blue) blade element prediction (red).
b) Chordwise position of the center of pressure. Positive angles of attack (blue) and negative angles of attack (red). The linear fit provided by Eq. (20) is

shown for comparison (black).
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Fig. 7 Experimentally determined normal force, parallel force, and pitching moment coefficients for the fly body. a) Normal force coefficient (blue).
Parallel force coefficient (red). A fit of the trigonometric functions (23) are shown for comparison (black). b) Pitching moment coefficient (blue) and a fit of

Eq. (25) for comparison (black).

N
f(8) = ZA,, sinné + B, cos né 27

n=1

The values of the A, and B,, in the function f are determined using a
least-squares regression to the experimentally measured pitching and
yawing moments for a suitable choice of N. In practice a value of
N = 4 has been found to yield a reasonable fit.

D. Environment Model

The environment model is used to represent the environment
external to the insect. It provides inputs to both the sensory models
(visual, mechanosensory) and the aerodynamics models (wind,
gusts). Currently, the environment model consists of two main
components: a 3-D graphics engine that generates optically realistic
images for processing by the visual system and a wind/gust model to
provide steady and transient perturbations to the insect during flight.

1. Visual Environment + 3-D Graphics Engine

A computer model of three-dimensional terrain and other objects
provides input to the simulated visual system. Environmental
appearance models were constructed using scripts to generate
arbitrary primitives, including textured ground planes and walls with
arandom checkerboard pattern. Such virtual objects are loaded into
the rendering engine, which is built using OpenSceneGraph,? a free,
open source library for displaying realistic scenes in real time for
computer games and visual simulations (e.g., Fig. §). At each
sampling instant, the rendering engine produces six images such that
acube of snapshots is formed around the simulated fly’s position and
orientation. This “cube map” represents the color and luminance of
the environment in any direction from the observer’s perspective.
From this information, the intensity of light falling on each simulated
photoreceptor is calculated by the visual system model as described
in Sec. ILA.1.

2. Wind and Gusts

The wind and gust models enable us to apply either a steady wind
or various transient gusts to perturb the flight of the insect. The ability
to apply steady wind effectively enables us to decouple the ground
speed and the airspeed. As many of the proposed flight control
strategies for insects rely on feedback from the visual system,
effectively measuring ground speed [63], this decoupling is crucial in
order to analyze their performance. The gust model enables the user

SData available online at http://www.openscenegraph.org [retrieved 11
February 2008].

to apply transient perturbations to an insect as it flies. Using the gust
model, the stability and robustness of various control strategies can
be accessed. Gusts can be either temporal or spatial and may be
applied to any combination of axes. For example, a temporal step
gust is specified as follows:

_ 0, if r<iy,
V)= {V otherwise

g

(28)

where V, is the gust velocity vector and ¢, is the time at which the
gust occurs. For discrete gusts, the velocity transition can be a step (as
above) or a graded change using the standard 1-cosine model and
specifying the gust length. Temporal gusts may also be sinusoidal,
specified along a given direction with a given frequency and
amplitude. Spatial gusts enable the user to model the effects of
transitioning from still air into a moving airstream. As with temporal
gusts a spatial gust may be abrupt or gradual.

Fig. 8 A view of the simulated 3-D environment within the
OpenSceneGraph engine. The position and orientation of the fly’s head
are used each time step of the simulation to generate images that are
optically filtered to provide the visual input to each model photoreceptor.
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E. Flight Control Model

The flight control model specifies the baseline wing kinematics
and a set of deformation modes that can be used to modify or deform
the kinematics in order to alter the aerodynamic forces produced. In
addition, the flight control model specifies a set of actions or control
laws by which sensory input activates the deformation modes. The
different deformation modes represent degrees of freedom with
respect to actuation, whereas the control laws specify how much
deformation to apply along the given modes.

1. Baseline Wing Kinematics and Deformation Modes

The angular motors controlling the motion of the wings are set up
to allow essentially arbitrary wing kinematics by specifying the
desired angular velocity of the wing about the wing hinge at each
instant of the simulation. In this way, the simulated fly is capable of
using both artificial and natural (digitized from high-speed video)
wing kinematics. For each wing, the kinematics are described by
three angles: the stroke position angle y,, the deviation angle y;, and
the rotation angle y; as described in [64]. The stroke position angle y;,
is the given by the angular position of the projection of the wing axis
in the stroke plane. The deviation angle y; is given by the angle
between the stroke plane and the wing axis, and the rotation angle y,
is given by the angular rotation of the wing about its axis. Normally,
kinematics digitized from high-speed video sequences of free flying
insects are used to create baseline wing kinematics for simulations
[23]. Figure 9 shows a typical example of baseline wing kinematics
used in our simulations.

The wing deformation modes enable actuation—the modification
of the aerodynamic forces by a controller. Although greatly
simplified, the deformation modes are meant to roughly approximate
what is known with regard to how flies modify their wing kinematics
to stabilize flight and maneuver. Four different deformation modes
are defined: pitch, yaw, role, and throttle. The changes in wing
kinematics affected by the four deformation modes are described
briefly below.

1) Pitch mode: The pitch mode deformation modulates the mean
stroke position of the wings forward and backward. For example, to
produce a forward pitch torque, the mean stroke positions of the
wings are moved rearward. A controller that modifies the pitch
torque based on sensory input sends the desired mean stroke position
angle (y,) to the pitch mode deformation mechanism. Note that the
notation (-) is used to denote average.

2) Yaw mode: The yaw mode deformation differentially adjusts
the stroke amplitudes of the wings. For example, to produce a yaw
torque to the left, the amplitude of the right wing is increased and the
amplitude of the left wing decreased. A controller that modifies yaw
torque sends the desired difference between left and right wing stroke
amplitudes Ay, to the yaw mode deformation mechanism.

(deg)

0 0.5 1 1.5 2
uT
Fig. 9 Baseline wing kinematics digitized from a free flying Drosophila;
stroke position angle y, (blue), stroke deviation angle y; (red), and
rotation angle y, (green).

3) Roll mode: The roll mode deformation differentially inclines
the stroke planes of the wings. For example, to produce a roll torque
to the left, the stroke plane of the right wing is inclined forward and
the stroke plane of the left wing is inclined rearward. A controller that
modifies the roll torque sends the desired difference in the stroke
plane inclination A7 to the roll mode deformation mechanism.

4) Throttle mode: The throttle mode deformation modulates the
overall aerodynamic force produced by the wings by adjusting the
wing beat frequency and stroke amplitude of both wings
simultaneously. A controller that modifies the overall aerodynamic
forces sends the desired change (from the baseline kinematics) in
wing beat frequency Af and stroke amplitude Ay, to the throttle
mode deformation mechanism.

2. Angular Velocity Control

It is known that flies control angular velocity in a compensatory
manner, countersteering in response to visual and mechanical
stimulation [65]. A basic control strategy developed for our
framework emulates this by controlling the angular velocity of the fly
via a simple set of proportional controllers acting directly on the
pitch, yaw, and roll deformation modes. Suppose the desired or set-
point angular velocity vector is given by

*=(p*.q*. )" (29)

To control the pitch rate, the input to the pitch mode deformation
mechanismis set to a value proportional to the difference between the
set-point pitch rate ¢* and the pitch rate as estimated from the halteres
q as follows:

(vo) =G,(¢" —q) (30)

where G, is the gain of the controller. The difference in the set point
and estimated pitch rates is referred to as the pitch rate error. In a
similar fashion the inputs to the yaw and roll deformation
mechanisms are set to values proportional to the yaw rate and roll rate
errors, respectively,

Apo=G, (" —r) and An=G,(p*—p) (1)

where G,, and G, are the gains of the controllers. This simple
strategy produces a compensatory angular velocity control similar to
that seen on real flies [65] when given a set-point angular velocity
equal to zero. In addition, by setting the angular velocity set point to a
nonzero or time-varying value, simple flight maneuvers can be
affected. For example, Fig. 10 demonstrates tracking of a
sinusoidally varying pitch rate command by this simple controller.
The oscillations in pitch rate, seen in the figure, are due to the time-
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Fig. 10 Example demonstrating the tracking of a sinusoidally varying

pitch rate command using angular velocity control. Actual pitch rate

(blue); pitch rate command (red). High frequency oscillations are due to

the periodic forces produced by the fly’s wings and not instability in the

controller.
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varying forces and torques produced by the flapping wings rather
than instability in the controller.

F. Bank, Elevation, and Azimuth Control

How flies control orientation during flight is not, at present, well
understood. A possible scheme for controlling the Euler angles
representing bank ¢, elevation 6, and azimuth v uses three
controllers that determine the set points for roll, pitch, and yaw rates.
The roll, pitch, and yaw rates can be expressed in terms of the Euler
rates as follows:

p 0 —sing cosgcosf | (¢
g|=| 0 cosg singcost || 6 (32)
r —1 0 sin 0 14

Note that the bank, elevation, and azimuth Euler angles described
here differ from those usually defined in flight mechanics in that
before applying the rotations for ¥, 6, and ¢, the fly is rotated by
—90 deg about the world frame y axis. This modified definition of
bank, elevation, and azimuth eliminates the problems that occur with
the conventional Euler angle definitions near the fly’s typical flight
posture while retaining the usual definitions of the roll, pitch, and
yaw axes found in the insect flight literature. Note also that the usual
hovering flight posture for a small fly, such as Drosophila, is with the
longitudinal body axis (the x axis in the body frame) near vertical.

The flight controller of the simulated fly is currently designed to
operate under conditions where the bank and elevation are small,
whereas azimuth is expected to take on any value. When the bank and
elevation angles are small, the matrix relating the roll, pitch, and yaw
rates to the Euler rates in Eq. (32) simplifies so that p ~ 1/}, q ~ 0,and
r ~ —¢@. Thus under these conditions it is feasible to control azimuth
by setting the roll rate, elevation by setting pitch rate, and bank by
setting yaw rate. Under more general conditions the matrix in
Eq. (32) can be inverted to provide control vectors for bank,
elevation, and azimuth in terms of the roll, pitch, and yaw rates.
However, in what follows we consider only the simple control
strategy that is applicable to flight with small bank and elevation
angles. In practice this strategy has been successful for flight with
elevation angles in the range of £60 deg and bank angles in the
range of £20 deg. The bank, elevation, and azimuth controllers
determine the roll, pitch, and yaw rate set points using simple
proportional integral and derivative (PID) control strategy. For
example, the roll rate set point is determined using the following
equation:

= Gy — ) + Gy (F — ) + Gy L "W~ ) ds
(33)
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where /" is the azimuth set point, and G, o, G 1, and G, , are the
proportional, derivative, and integral gains. The expressions for pitch
rate and roll rate set points, ¢* and r*, are of the same form as Eq. (33)
but with azimuth ¥ replaced by elevation and bank, 6 and ¢,
respectively.

1. Forward Velocity Control

Forward flight velocity in flies is known to be strongly correlated
with the angle of the body [63]. This suggests that forward velocity
may be controlled by adjusting body angle. During flight, the angle
between the stroke plane of the wings and the body is relatively
constant. Thus, the entire fly, wings and body together, pitches
forward to increase forward velocity and pitches backward to
decrease it. A possible control scheme employing this strategy,
which is being tested using our simulation framework, uses this idea
to control forward velocity by adjusting the elevation angle. This is
achieved by adjusting the elevation angle set point using a simple
PID control strategy based on the error between the set-point forward
velocity v} and the perceived forward velocity vy. Again, the
equation for the elevation set point 6* is of the same form as Eq. (33)
but with ¥ replaced by vy.

An example of the response of the forward velocity controller to a
step input in forward velocity is shown in Fig. 11. In response to the
step input, the fly, initially at rest, pitches forward and accelerates. It
gains forward velocity and, as it approaches the set-point velocity,
pitches back, eventually reaching a stable pitch angle. The final pitch
angle depends upon the set-point velocity in a manner similar to that
found in experiments with flies in a wind tunnel [63]. Using an
analogous controller, the lateral velocity of the fly can also be
controlled by setting the yaw rate set point using the error between
the desired lateral velocity and the perceived lateral velocity.
Combining these two control schemes gives a method by which the
simulated fly can perform simple maneuvers.

2. Altitude Control

Although the strategies used by flies to control altitude are not well
understood at this time, it is useful when performing long simulations
to have control schemes on hand that can be used to maintain or
control the altitude of the simulated fly. Similarly, when considering
issues of flight performance it is also of value to be able to control the
rate of climb or descent. For this reason we have developed vertical
velocity and altitude controllers that can be used during simulations.
The vertical velocity controller uses the error between the vertical
velocity set point v} and the estimated vertical velocity v, to adjust
the wing beat frequency of the wings using the Af throttle
deformation mode. To keep the initial implementation of the altitude
controller simple, only Af is modified by the controller. Future
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Fig. 11 Example of the response of the fly to step input when using the forward velocity controller. a) Forward velocity (blue) and step input (red).
b) Elevation angle of the body (blue). High frequency oscillations are due to the periodic forces produced by the fly’s wings and not instability in the

controller.
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implementations will consider controllers that modify both A f and
Ay, simultaneously. A PID control scheme of the same form as
Eq. (33) is used to determine the magnitude of Af. In addition, the
values of Af are clamped to keep the wing beat frequency of the fly
within a physically reasonable range (150-250 Hz).

Altitude control is achieved by wrapping an outer control loop
around the vertical velocity controller. In this fashion the altitude
controller uses the error between the set-point altitude z* and the
estimated altitude z to adjust the vertical velocity set point. Again a
PID controller of the same form as Eq. (33) is used for this purpose.
An example of the response of the altitude controller to a step
response is shown in Fig. 12. Note, the small steady-state error in
altitude before and after the step response is due to the fact that the
integral gain of the altitude controller is set to zero in the example.

G. Small Signal Frequency Analysis

The overall control system outlined thus far consists of four outer-
loop controllers for forward velocity, altitude, azimuth, and bank.
The remaining controllers exist as inner loops whose set points are
determined by outer-loop controllers. For example, the forward
velocity controller has the elevation controller as an inner loop and
the elevation controller in turn has the pitch rate controller as an inner
loop. Similarly, the altitude, azimuth, and bank controllers have the
vertical velocity, roll rate, and yaw rate controllers as inner loops,
respectively. Initially, the gains of the inner- and outer-loop
controllers were tuned by examining the responses of the system to
step inputs and adjusting the gains until performance appeared
satisfactory. The initial performance goal was simply to achieve a
stable step response with little or no overshoot.

To further access the stability and performance of the proposed
control system as well as to refine the tuning of the control gains, a
small signal frequency analysis was performed for the four outer-
loop controllers. Although the dynamics of the simulated fly are
clearly nonlinear, a small signal frequency analysis was possible due
to the fact that the outer-loop controllers, when acting in both open
and closed loops, yield essentially sinusoidal outputs when presented
with sufficiently small amplitude sinusoidal inputs. The open-loop
tests were performed by disconnecting only the feedback to the
controller under examination. For example, when performing open-
loop testing on the forward velocity controller, only the forward
velocity feedback signal v, was removed. The other controllers
(altitude, azimuth, and bank) operated in closed loop as normal. This
was necessary to maintain flight stability and a normal flight attitude
during the testing. In addition, all tests are performed with respect to a
hovering flight condition.

The frequency range of the test signals for the small amplitude
analysis was chosen to encompass the O (dB) unity gain crossing as
well as the —180 deg phase crossing in order to help access the
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Example of the response of the fly to step input when using the altitude controller. a) Altitude (blue) and step input (red). b) Vertical velocity of

stability of the controllers. The input amplitudes were selected to be
small enough so that the outputs remained sinusoidal throughout the
entire frequency range in both the open- and closed-loop
configurations. The input conditions for the open- and closed-loop
tests of the four outer-loop controllers are summarized in Table 1.

Plots of the open- and closed-loop frequency responses of four
outer-loop controllers are shown in Figs. 13—16. For each of the four
controllers the frequency at which the gain reaches 0 (dB) is lower
then the frequency at which the phase becomes —180 deg. As the
dynamics of the simulated fly are nonlinear, this test is not sufficient
to determine whether or not the controller is truly stable. However, it
does provide some confidence that for small inputs the sign of the
feedback loop will not invert and cause instability. While the open-
loop frequency response of the controllers indicates that the closed-
loop system should be stable, it is important to recall that the response
of the system may vary with flight conditions. For example, the
system may respond differently at a forward velocity of 0.25 m/s
than at the 0.0 m/s hovering condition at which the tests were
performed. Therefore, it is desirable to insure that the controllers are
robust to small changes in system parameters. Two numerical
measures of how robust the controllers are to small changes in system
parameters are the gain and phase margins. The gain margin is the
amount of gain required to move the 0-dB crossing to the same
frequency as the —180- deg phase crossing. The phase margin is the
difference between the —180- deg phase and the actual phase at the 0-
dB gain crossing. The gain margins of the controllers range from 11—
20 dB and the phase margins range from 32-86 deg indicating that
the controllers should be reasonably robust to small changes in the
system parameters. The results of the small signal frequency analysis
are summarized in Table 2.

H. Closed-Loop, Visually Based Flight Within a Corridor

A visually based flight controller for centering within a corridor
geometry was developed as a preliminary demonstration of
simulating more sophisticated flight behaviors. This controller was
tested in a simulated corridor environment similar to that shown in
Fig. 8. The basic idea behind this controller follows from the work of
Humbert [32], who investigated the output of various schemes of
wide-field integration (WFI) of idealized local velocity detectors. He

Table 1 Summary of the input conditions for the small amplitude
frequency analysis of the forward velocity v;, altitude z, azimuth ¥,
and bank ¢ controllers

vy 4 14 ¢
Input frequencies, Hz 0.25-45 1-100 1-115 3-57
Input amplitude 0.1, m/s 0.001,m 28deg 7deg
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Fig. 13 Open-loop (blue) and closed-loop (red) small signal frequency responses of the forward velocity controller.
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Fig. 14 Open-loop (blue) and closed-loop (red) small signal frequency responses of the altitude controller.
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Fig. 15 Open-loop (blue) and closed-loop (red) small signal frequency responses of the azimuth controller.

showed that, when linearized about a midcorridor trajectory, a wide-
field integrator that sums the magnitudes of horizontal velocities
measured around the equator produces the response:

VivFr () = A‘p + By (34)

where A and B are constants (when flying in a corridor of fixed width
at constant velocity), ¥ is the yaw rotation rate, and y is the lateral

position of the fly with respect to the midcorridor. For negligible yaw
rates and constant flight velocity, the output of this wide-field
integrator is thus proportional to the lateral position of the fly with
respect to midcorridor y. Under these conditions the output of the
wide-field integrator can be used to produce a countersteering control
strategy that turns right when the fly has deviated from the
midcorridor to the left and turns left when deviated from the
midcorridor to the right.
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Fig. 16 Open-loop (blue) and closed-loop (red) small signal frequency responses of the bank controller.

In this work we have built upon these ideas by Humbert in two
ways. First, by using estimates of visual velocity derived from
simplified, biologically inspired motion detectors as described in
Sec. ILLA.1, we tested whether a control system based on such inputs
might be successful despite the differences from perfect estimates of
velocity. Second, we implemented a control strategy that creates a
pattern of behavior, which under the conditions tested, remains near
the assumptions under which the theory was developed.

The wide-field integrator response in our simulation is the
weighted sum of numerous elementary motion detectors:

N
VWL e () = D KiVep, (1) (35)

i=1

where £; is the weight of each EMD contribution and Viyp, (¢) is the
EMD response computed as described in Sec. II.A.1. The weights
used are shown in Fig. 17.

As the basis for a visually based centering controller, an estimate
of lateral position y, within a corridor can be found by rearranging
Eq. (34) and using visually derived motion detector outputs

Vo EL s () — AV
y:w (36)

Simulations were performed in a corridor of fixed, known width
and in which forward velocity was maintained near 0.5 m/s using
state feedback. The azimuthal angular velocity w was taken directly
from the state variables of the simulation, although in principle, a
haltere-derived, or perhaps a visually derived, estimate could also be
used. The values of A and B were estimated from open-loop flights
down the same corridor as used for the closed-loop flights. Finally,
this visual estimate of y was temporally low-pass filtered to minimize
variance (first-order low-pass 7, 200 ms).

In an ad hoc process, we developed and tested several control laws
to regulate lateral tunnel position. In this framework, a zero set point
corresponds to the centering response described above as the basis
for Eq. (34). The most successful control law produced behavior
shown in Fig. 18. The simulated fly navigated through the corridor

Table 2 Summary of the results of the small amplitude
frequency analysis for the forward velocity v;, altitude z,
azimuth v, and bank ¢ controllers

v oz Y e

0 (dB) gain crossing, Hz 4 11 27 10
—180-deg phase crossing, Hz 40 26 67 44
Gain margin, dB 20 15 11 20
Phase margin, deg 86 32 44 43
Bandwidth, Hz 6 12 34 13

without crashing into the walls from a variety of starting positions.
Furthermore, the size of the checks in the random checkerboard
pattern was doubled, and the trajectories flown are similar,
illustrating a degree of robustness to visual perturbations. The
performance was achieved with the control law:

g = — Kt (yk—_y) 37)

T 2

where /" is the azimuth set point input to the lower-level controllers
described above and y* is the lateral position set point. The constant
ky is proportional to the maximum angle formed between the fly’s
trajectory and the corridor direction, and the constant k, is
proportional to the corridor width. Both k; and k, were hand-tuned to
produce a controller which acts as a saturating proportional
controller. As seen in Fig. 18, this has the effect that flight is broken
up into periods of straight flight and periods of relatively rapid
turning. Compared to other controllers we tested, this controller was
most successful because it isolated periods of large yaw rate w to
infrequent turns, allowing the wide-field integrator output to be used
more reliably to estimate the lateral position.

To test the control law itself, the stability of the countersteering
control strategy given by Eq. (37) was investigated using a small
signal frequency analysis. We found that the inherent nonlinearities
of motion detection, and thus estimates of lateral position, prevented
use of a visually derived lateral position estimate. Although not
tested, numerous features of biologically realistic motion detectors
were not implemented in these simulations, and might serve to
improve such visually derived estimates (see Sec. IL.A.1). For this
reason, the small signal frequency analysis was performed using state
feedback for the lateral position. We found (Fig. 19), under state
feedback conditions, a gain margin of 18 dB and a phase margin of

left eye right eye

Fig. 17 The pattern of weights used by the wide-field integrator used to
guide flight in a corridor under visual closed-loop control. The
magnitude and sign of each elementary motion detector’s contribution to
the integrator’s output is shown as the same cylindrical projection (as in
Fig. 2), and the magnitude and direction of each weight are plotted in
Cartesian coordinates.
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Fig. 18 Top view showing trajectories of visually guided, closed-loop simulations beginning at several positions within a corridor environment using the
control law given by Eq. (37). Each starting point was tried with random checkerboard patterns of two different checker size to investigate sensitivity to
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Fig. 19 Open-loop (blue) and closed-loop (red) small signal frequency responses of the lateral position controller.

30 deg. This suggests that, near midtunnel and with perfect sensory
estimates, the countersteering control law is stable.

When tested with visually derived lateral position estimates, the
countersteering control law, as shown above, did appear successful
in centering from a large range of starting conditions and with two
visual patterns. Our observations are that visually derived estimates
of lateral position (as calculated above) are less accurate during
periods of rapid rotation, despite correction for the azimuth rate w
given in Eq. (36). The successful countersteering control law has an
output that is frequently saturated. This output, the azimuth set point,
therefore results in periods of relatively straight flight, allowing
usable visual estimates of lateral position.

Other control laws tested under similar conditions resulted in the
simulated fly frequently crashing into the tunnel walls. This could be
due to the control law itself being unstable or to inaccurate visual
estimates of lateral position. The observation that visual estimates of
lateral position are only accurate during straight flight, combined
with the tendency of these other control laws to turn frequently,
suggests that inaccurate visual estimates of lateral position resulted in
the poor performance. Nevertheless, a rigorous characterization of
these other controllers, such as a small signal analysis using state
feedback, was not performed.

Given that accurate visual estimates of lateral position appear to
require periods of relatively straight flight, one feature of a successful
controller within our framework is that it generates such trajectories.
Although it is unclear whether our model controller has any
fundamental similarity to the control laws employed by real flies, it is
interesting to note that flight trajectories of real flies are segmented
into periods of relatively straight flight punctuated by rapid turns

[66]. Furthermore, it has recently been proposed that this pattern of
behavior creates sensory input particularly suitable for analysis by a
well-studied LPTC [67].

I11.

In this paper, we have presented an integrated framework for
simulating the flight dynamics and control strategies of the fruit fly.
By taking a bottom-up approach based on physically and
biologically realistic components, we are able to formulate and test
explicit hypotheses regarding flight control at levels ranging from
stroke-by-stroke stabilization of pitch to long-range flight through a
corridor. Special emphasis is placed on the sensory feedback
components of the model, which limit the potential information
available to controllers in our model, just as real sensory systems
must do in real flies. The availability of the modeling environment
enables inquiry and analysis into the principles underlying insect
flight control in a closed-loop, feedback driven system. This
approach is necessary due to tight coupling between motor output
and multimodal sensory input, making flight control difficult to study
with traditional reductionist approaches that elucidate feed-forward
mechanisms. By adopting this integrative modeling approach in
conjunction with further biological experimentation, we hope we
will be able to provide some insight into the nature of the solutions
that endow flies with their remarkable flight and goal directed
behaviors. Such an endeavor seems worthwhile, because, as anyone
who has tried to rid a kitchen of fruit flies knows, these animals are
robust performers in a wide range of environments and in the face of
severe environmental perturbations.

Conclusions
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