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Abstract

Genetic variants in cis-regulatory elements or trans-acting regulators frequently influence the quantity and spatiotemporal
distribution of gene transcription. Recent interest in expression quantitative trait locus (eQTL) mapping has paralleled the
adoption of genome-wide association studies (GWAS) for the analysis of complex traits and disease in humans. Under the
hypothesis that many GWAS associations tag non-coding SNPs with small effects, and that these SNPs exert phenotypic control
by modifying gene expression, it has become common to interpret GWAS associations using eQTL data. To fully exploit the
mechanistic interpretability of eQTL-GWAS comparisons, an improved understanding of the genetic architecture and causal
mechanisms of cell type specificity of eQTLs is required. We address this need by performing an eQTL analysis in three parts: first
we identified eQTLs from eleven studies on seven cell types; then we integrated eQTL data with cis-regulatory element (CRE) data
from the ENCODE project; finally we built a set of classifiers to predict the cell type specificity of eQTLs. The cell type specificity of
eQTLs is associated with eQTL SNP overlap with hundreds of cell type specific CRE classes, including enhancer, promoter, and
repressive chromatin marks, regions of open chromatin, and many classes of DNA binding proteins. These associations provide
insight into the molecular mechanisms generating the cell type specificity of eQTLs and themode of regulation of corresponding
eQTLs. Using a random forest classifier with cell specific CRE-SNP overlap as features, we demonstrate the feasibility of predicting
the cell type specificity of eQTLs. We then demonstrate that CREs from a trait-associated cell type can be used to annotate GWAS
associations in the absence of eQTL data for that cell type. We anticipate that such integrative, predictive modeling of cell
specificity will improve our ability to understand the mechanistic basis of human complex phenotypic variation.
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Introduction

The precise spatial and temporal control of gene transcription is

critical for biological processes, as evidenced by the causal role of

gene expression perturbation in many human diseases [1–3]. Gene

expression is controlled by regulatory proteins, RNAs, and the cell

type specific cis-regulatory elements with which they interact.

Genetic variation within cis-regulatory elements (CREs, e.g.,

transcription promoters, enhancers, or insulators) can affect gene

expression in a cell type specific manner. An extensive body of

work, performed in a variety of cell types in both humans and

model organisms, has demonstrated that genetic variants that

impact gene expression, or expression quantitative trait loci

(eQTLs), are common and exist in both cis (local) and trans (over

long genetic distances) [3–6]. Over 85% of genotype-phenotype

associations found in genome-wide association studies (GWAS) are

with non-coding single nucleotide polymorphisms (SNPs), making

their mechanistic interpretation more challenging. It is possible

that these associated SNPs tag causal coding SNPs; however,

numerous compelling lines of evidence [2,7–11] demonstrate that

regulatory SNPs have causal roles in many complex human

phenotypes. This is further supported by the finding that GWAS

associations are enriched within DNase I hypersensitive (DHS) sites

[12] and eQTL SNPs [13,14], and by several elegant GWAS

follow up studies that have mechanistically tied disease associations

with SNPs that cause the misregulation of gene expression [15,16].

Although eQTLs are increasingly used to provide mechanistic

interpretations for human disease associations, the cell type

specificity of eQTLs presents a problem. Because the cell type

from which a given physiological phenotype arises may not be

known, and because eQTL data exist for a limited number of cell

types, it is critical to quantify and understand the mechanisms

generating cell type specific eQTLs. For example, if a GWAS

identifies a set of SNPs associated with risk of type II diabetes, the

researcher must choose a target cell type to develop a mechanistic

model of the molecular phenotype that causes the gross physiolog-

ical change. One can imagine that the relevant cell type might be

adipose tissue, liver, pancreas, or another hormone-regulating
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tissue. Furthermore, if the GWAS SNP produces a molecular

phenotype (i.e., is an eQTL) in lymphoblastoid cell lines (LCLs), it is

not necessarily the case that the SNP will generate a similar

molecular phenotype in the cell type of interest. Furthermore, there

are many examples of cell types with particular relevance to

common diseases, for example dopaminergic neurons and Parkin-

son’s disease, that lack comprehensive eQTL data or catalogs of

CREs. The utility of eQTLs for complex trait interpretation will

therefore be improved by a more thorough annotation of their cell

type specificity.

While several studies have quantified the reproducibility of

eQTLs within or between cell types derived from the same or

different individuals [17–28] the determinants of eQTL cell

specificity are still largely unknown. We address this need in this

study by analyzing cell specific eQTLs collected from eleven

studies performed in seven different cell types and by integrating

these data with cell specific CRE data to mechanistically interpret

cell specific eQTLs. We used Bayesian regression models to

identify all cis-linked SNPs that are independently associated with

each gene expression trait in each study. In an effort to identify the

functional determinants of eQTL cell specificity, we quantified the

associations between eQTL SNPs and 526 CRE data sets, many of

which were derived from the cell types used in eQTL discovery

and are known to function in a cell type specific manner (e.g.,

transcription factor binding sites (TFBSs), DHS sites). We further

considered the relationship between eQTL SNP-CRE overlap and

the cell type specificity of eQTL replication. Lastly, we built a

series of classifiers to predict the cell type specificity of eQTLs in

the absence of additional gene expression data and to predict the

function of GWAS SNPs with phenotypes relevant to cell types

lacking eQTL data. We believe these predictive models will

facilitate more substantial mechanistic analyses of individual SNPs

by enabling the integration of disease genetics and regulatory

SNPs with the thousands of genomic data sets that have been

produced by projects like ENCODE [29,30].

Results

A uniform analysis of cis-eQTLs across seven cell types
In an effort to comprehensively characterize eQTL reproduc-

ibility within and between different cell types, we gathered publicly

available data sets that included both gene expression and

genotype data. This collection included eleven studies from seven

unique cell types (Table 1) [17,26,31–33]. To ensure the data from

each eQTL study were comparable, we uniformly processed all

raw data by developing a standardized analysis pipeline that was

designed to marginalize the effect of study design differences on

the identified eQTLs (see Methods). Genotype data, regardless of

array type, were subjected to standard quality control filters.

Missing and unobserved genotypes were subsequently imputed to

the SNPs in the HapMap phase 2 CEPH panel (3,907,239 SNPs)

using BIMBAM [34,35]. Each gene expression array was

uniformly re-annotated; probe sequences were aligned to the

human reference genome (hg18) and to RefSeq gene models.

Within each array platform, multiple probes mapping to a single

gene were clustered as in previous work [26]. Only uniquely

aligned probes that did not overlap known, common polymor-

phisms were included in our analysis.

We chose to control for the confounding effects of both known

covariates and unknown factors by removing the effects of

principal components (PCs; Figure S1, Table S1) [36,37]. Given

that a diverse set of demographic (e.g., age, sex), environmental

(e.g., BMI, drug use), and technical (e.g., post-mortem interval,

array batch, ozone levels, identity of the technician who handled

the arrays) variables are known to be associated with gene

expression measurements and to confound eQTL ascertainment

[26,36,37] we felt it was critical to control for these effects in the

most consistent way possible prior to eQTL mapping. Across the

diverse set of studies examined here, the covariate annotation

ranges from non-existent to detailed. To address this non-

uniformity, we analyzed each data set with the same approach,

irrespective of covariate annotation. Multiple independent studies

demonstrate the effectiveness of controlling for latent variables

with respect to eQTL ascertainment; indeed, controlling for PCs

substantially increases power to detect cis-eQTLs within these

studies [26]. Importantly, it has also been demonstrated that each

of these eQTL discoveries is also more likely to replicate across

studies [26].

We projected residual expression variation to the quantiles of a

standard normal distribution to control for outliers, and we used

these projected values as the quantitative traits for association

mapping, which was performed in each study set using the same

HapMap phase 2 CEPH SNP panel. We evaluated evidence for

gene expression-genotype associations in terms of Bayes factors

(BFs) using BIMBAM [34,38], as BFs have been shown to be more

robust to SNPs with small minor allele frequencies (MAF) than p-

values [34,39].

We identified, for each gene expression trait, the most highly

associated SNP within each local linkage disequilibrium (LD)
block. We tested the independence of each SNP by multivariate

regression (Figure S2) and took the union of the independently

associated SNPs for each gene. We refer to, for example, the first

and second most significant, independently associated SNPs as

primary and secondary SNPs, respectively, and we refer to the set of

primary SNPs as first tier, or tier 1, extending in the straightfor-

ward way through tier 4. We do not consider tiers beyond the

fourth tier because of lack of statistical power. For each study, and

within each tier, we independently estimated false discovery rates

Author Summary

When interpreting genome-wide association studies show-
ing that specific genetic variants are associated with
disease risk, scientists look for a link between the genetic
variant and a biological mechanism behind that disease.
One functional mechanism is that the genetic variant may
influence gene transcription via a co-localized genomic
regulatory element, such as a transcription factor binding
site within an open chromatin region. Often this type of
regulation occurs in some cell types but not others. In this
study, we look across eleven gene expression studies with
seven cell types and consider how genetic transcription
regulators, or eQTLs, replicate within and between cell
types. We identify pervasive allelic heterogeneity, or
transcriptional control of a single gene by multiple,
independent eQTLs. We integrate extensive data on cell
type specific regulatory elements from ENCODE to identify
general methods of transcription regulation through
enrichment of eQTLs within regulatory elements. We also
build a classifier to predict eQTL replication across cell
types. The results in this paper present a path to an
integrative, predictive approach to improve our ability to
understand the mechanistic basis of human phenotypic
variation.

Cell Specificity of eQTLs via Regulatory Elements
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(FDRs) by permutation. Although we computed a BF for every

SNP-gene pair, we limit our subsequent analysis to cis-linked

SNPs, or SNPs within 1 Mb of the transcription start site (TSS) or

transcription end site (TES) of a gene. While we have standardized

analysis and reporting across studies, we have not considered the

scope of differences in eQTL discovery based on alternative data

analysis pipelines.

Across these studies, we observe between 585 and 5433 genes

with eQTLs (FDRƒ5%), corresponding to log10 BF thresholds

between 2:70 and 3:86 (Figures 1A–C, Table 2, Table S2). As

expected, studies with larger sample sizes and replicate gene

expression measurements identified more eQTLs at a given FDR

threshold (Figure 1D; pv3:95|10{6 and pv1:58|10{4,

respectively, by multivariate ANOVA). Indeed, across the eleven

studies analyzed,w95% of the variance in the proportion of genes

with eQTLs can be explained by sample size and expression

replication. The per study effect size distribution is also consistent

with the expectation that larger studies identify eQTLs with

smaller effect sizes (Figures S3, S4). We expect that future eQTL

studies with larger sample sizes (even from previously examined

cell types) will identify additional eQTLs with smaller effects. We

find that, despite study heterogeneity, the relationship between BF

and FDR is quite uniform across studies (Figure 1A). As

demonstrated in previous studies [40,41], eQTL SNPs are highly

enriched at the transcription start site (TSS) of the associated gene

(Figure 1F).

Across all eleven studies, 29% (3225 of 11081) of eQTL

associated genes are independently associated with at least two

SNPs in at least one study (FDRƒ5%; Figures 1C and 1E, Figures

S3, S4). Within each study, the fraction of eQTL-associated genes

with two or more independently associated SNPs ranges from

3{22% (FDRƒ5%). Our search for allelic heterogeneity, or multiple

SNPs in the same locus that are independently associated with a

single trait, appears to be power-limited and our estimates of its

frequency should be taken as a lower bound; larger sample sizes

will identify additional heterogeneity (Figure 1E), as the relation-

ship appears almost identical to the linear relationship between

genes with eQTLs and sample size (Figure 1D). As with tier 1

eQTL discovery, sample size and replicate expression measure-

ments are significantly associated with the fraction of genes with an

associated eQTL SNP exhibiting allelic heterogeneity (AH;

pv4:34|10{6 and pv8:63|10{4, respectively, by multivariate

ANOVA). Tier 2 eQTL SNPs reside significantly further from the

associated gene TSS than tier 1 eQTL SNPs (Figure 1D). For

example, in the CAP_LCL eQTL data set, the median absolute

distances between the TSS and tier 1 and tier 2 eQTL SNPs are

64 and 165 kb, respectively (Wilcoxon signed rank test

pv2:2|10{16).

Cis-eQTL replication within and between cell types
We next investigated the cell type specificity of eQTLs,

comparing eQTLs both within and between cell types. Cell type

specific eQTLs are defined here as eQTL SNPs that replicate across

studies of the same cell type but fail to replicate across studies of

different cell types. Given the broad array of technical and

biological factors associated with the reproducibility of eQTLs

[21,22,26,36], our analysis of eQTL replication focused on three

specific comparison trios:

1. CAP_LCL versus Stranger_LCL and Merck_liver

2. UChicago_liver versus Merck_liver and Stranger_LCL

3. Harvard_cerebellum versus Myers_brain and Stranger_LCL.

Each trio of comparisons enabled the simultaneous quantifica-

tion of within and between cell type eQTL reproducibility. Each of

the six studies above used different expression platforms and were

composed entirely of independent samples. Although post hoc

comparisons between heterogeneous studies will have limitations,

we found there to be substantial scientific merit to using the full

breadth of data available while being completely forthcoming

about both our comparison methods and those limitations. We

note that, despite this heterogeneity, the conclusions highlighted

below are largely independent of the particular discovery cohort,

replication cohort, or cell type (Figure 2, Figures S5, S6). These

specific trios were chosen for comparative analysis based on the

following criteria: (i) two or more studies in our analysis included

only these three cell types; (ii) of the studies that included these

three cell types, we chose those with the largest sample size, and

(iii) LCLs and liver are valuable in this comparative context

because of the substantial amount of ENCODE data available for

GM12878 and HepG2 cells. We note that the Myers_brain study

includes samples from several different brain cell types, a minority

Table 1. Study Information.

Study label TLA Tissue N N genes PMID Accession Platform Genotype

CAP_LCL CPL LCLs 480 18718 20339536 GSE36868 GPL6883-5509 ILMN 310K & ILMN QUAD

Stranger_LCL STL LCLs 210 15752 17289997 GSE6536 GPL2507 NA

Harvard_cerebellum HCE cerebellum 540 18263 NA syn4505 GPL4372 GPL14932

Harvard_prefrontal_cortex HPC prefrontal cortex 678 18257 NA syn4505 GPL4372 GPL14932

Harvard_visual_cortex HVC visual cortex 463 18263 NA syn4505 GPL4372 GPL14932

GenCord_fibroblast GCF blood fibroblasts 83 16691 19644074 GSE17080 GPL6884 GPL6982

GenCord_LCL GCL LCLs 85 16691 19644074 GSE17080 GPL6884 GPL6982

GenCord_tcell GCT blood t cells 85 16691 19644074 GSE17080 GPL6884 GPL6982

UChicago_liver CLI liver 206 16236 21637794 GSE26106 GPL4133 GPL8887

Merck_liver MLI liver 266 18234 18462017 GSE9588 GPL4372 GPL3720&GPL3718&GPL6987

Myers_brain MBR brain 193 11707 17982457 GSE8919 GPL2700 GPL3720&GPL3718

Accession numbers are from the GEO database when prefixed with GSE and from the Synapse database when prefixed with syn. Study label is the name used to refer to
the study throughout the paper. TLA is the three letter acronym used to reference the study in figures. CAP stands for the Cholesterol and Pharmacogenetics Trial
[55,74].
doi:10.1371/journal.pgen.1003649.t001

Cell Specificity of eQTLs via Regulatory Elements
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Figure 1. Uniform analysis of multi-cell type eQTL data sets. Studies are labeled by their acronym from Table 1. (A) Plot of log10 FDR (y-axis)
as a function of log10 BF (x-axis), for each study as a separate line of a diferent color, as indicated in panels B, D, and E. Dashed line represents
FDRƒ5%. (B) Plot of log10 eQTL counts as function of log10 BF , for all studies. (C) eQTL count (x-axis) by tier, for tiers 1–4 (light blue, dark blue, light
green, and dark green, respectively), with separate bars for each study (y-axis). (D) Fraction of genes with a significant eQTL SNP (y-axis; thresholded
at FDRƒ5%), as function of sample size (x-axis). Each study is plotted in a distinct color, as indicated with labels. Studies with replicate expression
measurements are depicted as triangles, studies without as circles. (E) Fraction of genes with a significant eQTL that have more than one
independently associated SNP (y-axis; thresholded at FDRƒ5%), as a function of sample size (x-axis). Each study is plotted in a distinct color. Studies
with replicate expression measurements are depicted as triangles, studies without as circles. (F) Histogram of eQTL counts by tier (y-axis; colors as in
panel C), summed across studies, as a function of their distance to the gene transcription start and end sites (x-axis; gene split into 10 bins). P (grey)
line depicts the counts of first tier eQTL SNPs from a permutation, to illustrate the background distribution of tested SNPs.
doi:10.1371/journal.pgen.1003649.g001

Table 2. Study-specific cis-eQTLs and log10 BF cutoff values for 1%, 5%, 10%, and 20% FDRs.

FDR 1% 1% 5% 5% 10% 10% 20% 20%

Study Tissue log10 BF eQTLs log10 BF eQTLs log10 BF eQTLs log10 BF eQTLs

GenCord fibroblasts 3.16 566 3.58 772 2.35 916 1.99 1292

GenCord t cells 3.40 450 2.85 596 2.47 749 2.07 1076

GenCord LCLs 3.37 441 2.72 649 2.46 782 2.06 1111

Harvard cerebellum 3.18 3367 2.59 4065 2.29 4595 1.95 5547

Harvard prefrontal cortex 3.21 4331 2.51 5189 2.24 5775 1.88 6833

Harvard visual cortex 3.24 2872 2.63 3469 2.29 4095 1.96 5040

Merck liver 3.52 2333 2.90 2828 2.55 3272 2.21 4078

Myers brain 3.17 688 2.61 888 2.30 1076 1.99 1408

UChicago liver 3.29 1951 2.60 2543 2.25 3005 1.93 3687

Stranger LCLs 3.32 3147 2.67 3759 2.37 4167 2.06 4695

CAP LCLs 3.09 5094 2.42 5810 2.14 6335 1.82 7235

The cutoff values for each FDR were determined via permutation; see Methods for details.
doi:10.1371/journal.pgen.1003649.t002

Cell Specificity of eQTLs via Regulatory Elements
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of which were cerebellum, implying that the cell type matching in

comparison 3 above is inexact.

Consistent with previous observations[17,18,24], cis-eQTLs are

more likely to replicate across studies within the same cell type

than they are to replicate between different cell types (e.g., in

CAP_LCL: McNemar’s test pv2:2|10{16). Beyond the trios

listed above (Figures S5, S6), replication frequencies vary broadly.

Two variables have large effects on replication: sample size for the

replication cohort (which is well correlated with statistical power),

and genetic independence of the samples (i.e., whether the two cell

types were derived from the same or different individuals).

Within a given comparison, eQTL replication frequency is

associated with a number of factors. For example, within and

between cell type replication of CAP_LCL eQTLs is positively

associated with discovery significance (within: pv2:2|10{16,

between: pv1:78|10{11, quantified by multivariate logistic

regression, Equation (3)) and negatively associated with absolute

distance to the TSS (Figure S7; within: pv2:2|10{16, between:

pv2:94|10{6) and with eQTL tier (within: pv2:49|10{11,

between: pv4:06|10{11), while differences in allele frequency

across studies does not have a major effect (Figure S8). We found

that as the level of discovery significance increases, the likelihood

that the eQTL replicates in both matched and unmatched cell

types also increases, implying that cell type specific eQTLs tend to

have smaller effects (Figure S9). After controlling for discovery

significance, effect size is not significantly associated with

replication frequency. Similar to previous reports (see Figure S6

from [26]), alternative post hoc replication metrics (e.g., correla-

tion of effect sizes) produce qualitatively similar results. To assess

the effects of model parameters and post hoc comparison

thresholds, we applied a bivariate Bayesian regression model to

a subset of our studies (Figure S10; see Methods). The results of

these more formal bivariate analyses are qualitatively similar to

those obtained from post hoc comparisons: the fraction of cell type

specific cis-eQTLs decreases with increasing discovery significance

and cell specific eQTL SNPs reside further from the TSS.

eQTL SNP tier is significantly associated with eQTL replication

frequencies; tier 1 eQTL SNPs are more reproducible than

additional independently associated SNPs (Figure S11; e.g.,

CAP_LCLs: Fisher’s exact test pv2:2|10{16). Additionally, first

tier eQTL SNPs are significantly less likely to be cell type specific,

relative to additional independently associated SNPs (e.g.,

CAP_LCLs: Fisher’s exact test pv1:23|10{5). Therefore, for

any given gene, the first tier eQTL SNP is more likely to be TSS-

proximal, of large effect, and observed in additional cell types, as

compared to additional independent eQTL SNPs, which are more

likely to be specific to the discovery cell type, have smaller effect

sizes, and reside further from the TSS.

eQTL SNPs are associated with many classes of cis-
regulatory elements
We next sought to investigate the biological characteristics

associated with the reproducibility and cell specificity of eQTLs.

To do this, we quantified the overlap between cis-eQTL SNPs and

526 genomic features associated with functional cis-regulatory

elements (CREs), including DHS sites, chromatin marks, and

binding sites for transcription factors and other DNA associated

regulatory proteins (see Table S3 for full list of data sets). We

Figure 2. Cell type specific eQTL replication frequencies. (A, B, C) eQTL replication frequency (y-axis) as a function of discovery significance (x-
axis: log10 BF ). SNPs were grouped into 30 equally spaced bins by BF. (D, E, F) eQTL replication frequency (y-axis; thresholded at 5%FDR) as a
function of SNP position (DSNP{TSSD) (x-axis). Cis-eQTL SNPs within 250 kb of the TSS were grouped into 30 equally spaced bins. (A, D) Replication
frequencies for CAP_LCL eQTLs in Stranger_LCLs (blue) and Merck_liver (red). (B, E) Replication frequencies for UChicago_liver eQTLs in Merck_liver
(blue) and Stranger_LCL (red). (C, F) Replication frequencies for Myers_brain eQTLs in Harvard_cerebellum (blue) and Stranger_LCL (red). In all panels,
bold lines depict percentage of SNP-gene pairs with log10 BF§1 per bin, and ribbons depict 95% confidence interval.
doi:10.1371/journal.pgen.1003649.g002

Cell Specificity of eQTLs via Regulatory Elements
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categorized regions of open or activating chromatin, and regions

of transcription factor or DNA protein binding as activating CREs,

and regions of repetitive, repressive, or heterochromatic chromatin

domains as repressive CREs, to draw a contrast between genomic

regions where transcription factor binding is frequent and regions

where it is discouraged or unlikely. We focused analyses of LCL

eQTL SNPs on 166 CRE data sets produced in LCLs (primarily

GM12878) and analyses of liver eQTLs on 150 CRE data sets

produced in HepG2 cells, a well-characterized, if imperfect, proxy

for hepatocyte biology. We note that the quantification of eQTL

SNP-CRE overlap enrichments is inherently conservative, given

that the boundaries of most genomically defined CRE types are

imprecise and that eQTL SNPs are typically tag SNPs, rather than

the exact causal variants.

We quantified the enrichment or depletion of eQTL SNPs,

relative to the full set of CEU HapMap phase 2 SNPs tested for

eQTL associations, within each class of CRE by multivariate

logistic regression, controlling for the SNP to TSS distance and the

expression level of the associated gene (see Methods and Equation

(2)). Consistent with the hypothesis that many eQTL SNPs exert

their effect by modifying the biochemical function of CREs, cis-

eQTLs are known to be enriched for overlaps with several classes

of CREs, including DHS sites (Figure 3A and [42,43]). Moreover,

cis-eQTLs have been shown to be depleted within regions in

which a CTCF binding site lies between the eQTL SNP and the

target gene TSS (Figure 4G and [42,43]).

We further extend these observations by demonstrating that

LCL eQTL SNPs are associated (pv0:05, quantified by Equation

(2)) with 135=166 LCL derived CRE data sets, liver eQTL SNPs

are associated with 79=150 HepG2 derived CRE data sets, and

cerebellum eQTL SNPs are associated with 1=1 cerebellum

derived CRE data set (Figures S12, S13). Almost universally,

eQTL SNPs are enriched within regions of activating CREs

(Figure 3; Tables S4, S5, S6) and depleted within repressive CREs

(Figure 4, Figures S12, S13, S14, Tables S4, S5, S6). LCL eQTL

SNPs are enriched within 134=141 activating CREs while being

depleted within 18=23 repressive CREs (Fisher’s exact test

pv2:93|10{14). Liver eQTL SNPs display a similar enrichment

within activating CREs and depletion within repressive CREs

(Fisher’s exact test pv4:02|10{10).

The pattern of eQTL SNP-CRE enrichment displays significant

spatial structure and is typically consistent with the known biology

of the CRE (Figures 3–4, Figure S14). For example, eQTL-CRE

enrichment peaks immediately adjacent to the TSS for several

classes of activating CREs, including H3K4me3 and H2A.Z.

Alternatively, eQTL enrichment increases throughout the gene

body within H3K36me3 domains, and is more uniformly

distributed within H3K4me1 domains. In contrast, we find that

eQTL SNP overlap with heterochromatin, repressive chromatin,

or repetitive regions is typically most highly depleted through the

gene body (e.g., Figures 4A and D). Similarly, we find that

intervening CTCF sites are most depleted immediately upstream

of the gene TSS, but the decay of this depletion is intriguingly

asymmetrical about the TSS (Figure 4G).

Tiers 2–4 eQTL SNPs are themselves also associated with

numerous CRE classes. For example, primary and secondary

CAP_LCL eQTL SNPs are associated with 134=166 and 100=166
LCL CRE classes, respectively (Table S7; multivariate logistic

regression (Equation (4)), controlling for distance to TSS and gene

expression levels, pv0:05). Interestingly, CTCF binding sites are

significantly enriched between primary and secondary eQTL SNPs

(Figure S15; multivariate logistic regression (Equation (5)),

controlling for inter-SNP distance, SNP-TSS distance, and the

presence of intervening TSSs and recombination hotspots,

pv1:95|10{11). Independently associated primary and second-

ary eQTL SNPs separated by less than 20 kb are more than twice

as likely to have a CTCF binding site as similarly spaced

background cis-SNPs (55:7% versus 22:6%). CTCF binding sites

are enriched between alternative promoters in human [44] and

Drosophila melanogaster [45], supporting the hypothesis that CTCF

binding sites frequently demarcate independent CREs for the

same gene. These observations, combined with the replication

rates of eQTL SNPs in tiers 2–4 (Figure S11), suggest that eQTL

SNPs independently associated with the same gene frequently tag

SNPs affecting the biochemical function of distinct CREs that, in

turn, independently regulate transcription, rather than SNPs

tagging the same causal regulatory variant.

eQTL-regulatory element overlap is frequently cell type
specific
Previous investigations have suggested several plausible mech-

anisms underlying the cell type specificity of eQTLs [18,24,27].

For example, given the known cell type specificity of regulatory

protein binding sites and local chromatin environment [29,46,47],

it is plausible that a SNP that disrupts a TFBS would have

different downstream effects if it were found within a region of

open, activating chromatin as opposed to a region of repressive

chromatin. Although the current resolution of CRE and tag eQTL

SNP data sets make this hypothesis difficult to test directly for

individual SNPs, we sought to quantify the frequency, in

aggregate, with which eQTL SNPs overlap CREs that differ

between cell types using our identified eQTLs and cell specific

CRE data from the ENCODE project.

We assessed the cell type specificity of eQTL-CRE overlap by

quantifying the fraction of eQTL SNPs overlapping a CRE derived

from the same cell type, relative to the fraction overlapping a CRE

derived from a second cell type. When the frequency of overlap

between an eQTL SNP set and a matched and unmatched cell type

CRE is significantly different (McNemar’s test pv0:05), we

consider the overlap to be cell specific, and the eQTL SNPs to be

differentially represented in that CRE type. LCL and liver eQTL

SNPs were tested for overlap with 105 CRE data sets available from

both LCLs and HepG2 cells, while cerebellum eQTLs were tested

for overlap with a single pair of cerebellum and LCL CRE data sets.

We find that eQTL SNP-CRE overlap is frequently cell specific (see

Figures 3–5 for examples, Tables S4, S5, S6 for full results). The

observed specificity of eQTL-CRE overlap is not dependent on

analysis thresholds and is recapitulated in bivariate analyses of

eQTL data sets (Figure S10).

LCL and liver eQTL SNPs are differentially represented

(McNemar’s test pv0:05) in 97=105 and 86=105 CRE data

types, respectively; moreover, cerebellum eQTLs are over-

represented in cerebellum derived DHS sites relative to LCL

DHS sites (Table S6). For example, 8:2% and 4:2% of CAP_LCL

eQTL SNPs overlap LCL and HepG2 derived chromHMM

strong enhancers, respectively (McNemar’s test pv2:2|10{16).

Notably, the canonical biochemical function of the CRE class is

predictive of the pattern of cell type specific eQTL-CRE overlap.

eQTL SNPs are more likely to overlap activating CREs and less

likely to overlap repressive CREs derived from the same cell type

as the eQTL discovery data (repeated measures logistic regression

pv4:63|10{3; Tables S4, S5, S6). Consistent with previous

observations [44,45,48], the proportion of eQTL SNP - TSS pairs

with intervening insulators is remarkably consistent across cell

types, suggesting that CTCF binding sites do not substantially

affect cell-specific eQTL function (Figure 4I, Figure S16, Tables

S4, S5, S6).

Cell Specificity of eQTLs via Regulatory Elements
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Genetic architecture of cell type specific eQTLs
We next examined the hypothesis that the CRE landscape is a

major determinant of eQTL specificity, and found that eQTL

SNPs that overlap cell type specific CREs are more likely to be cell

type specific than are eQTL SNPs that overlap shared CREs

(Fisher’s exact test pv0:05) for 44=105, 44=105, and 1=1 CRE

data sets in LCLs, liver, and cerebellum, respectively (Tables S4,

S5, S6). For example, LCL eQTLs are significantly more likely to

be cell type specific (i.e., replicate in an independent cohort of

LCLs but fail to replicate in the liver) when they overlap an LCL-

derived p300 binding site, but do not overlap a HepG2-derived

p300 binding site (Fisher’s exact test pv0:0027). To illustrate a

Figure 3. eQTL SNPs are enriched within activating cis-regulatory elements. (A–I) CAP_LCL eQTL SNP (FDRƒ5%) overlap with predicted
cis-regulatory elements. Each row of panels depicts overlap with distinct CRE data sets: (A–C) DNAse hypersensitive sites, (D–F) p300 binding sites,
(G–I) chromHMM predicted active promoters. In each panel, SNPs are grouped into 25 equally spaced bins within the 50 kb upstream and
downstream of the TSS and TES, and 10 bins between the TSS and TES. Each bin is plotted along the x-axis. Bold lines depict the percentage, per bin,
of SNPs overlapping the CRE class, ribbons depict 95% confidence interval. Each column of panels depicts a distinct SNP set contrast. (A,D,G)
Observed eQTL SNPs (blue) and randomly drawn cis-linked SNPs at expressed genes (red). (B,E,H) eQTL SNPs that replicate in Stranger_LCL
(log10 BF§1) (green) and SNPs that fail to replicate (purple). (C,F,I) CAP_LCL eQTL SNP overlap with CREs derived from the LCL line GM12878
(orange) and HepG2 cells (brown).
doi:10.1371/journal.pgen.1003649.g003
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specific example, we examined the pattern of cell specific eQTL

SNP-CRE overlap at the SORT1 locus, a well characterized

myocardial infarction risk locus (Figure 6). Consistent with

previous observations [15], we find a liver specific eQTL

association approximately 40 kb downstream of the SORT1 gene,

which overlaps a cluster of predicted enhancers that are present in

HepG2 cells but not LCLs.

Prediction of eQTL replication across cell types
Given the association between cell type specific eQTLs and cell

type specific cis-regulatory elements, we sought to test our ability

to use CRE data in conjunction with genomic location informa-

tion to predict the cell type specificity of eQTLs. We trained a

random forest classifier on a large set of SNP features, including

SNP position, effect size, cell type specific CRE overlap, and non-

Figure 4. eQTL SNPs are depleted within repressive chromatin contexts. (A–I) CAP_LCL eQTL SNP (FDRƒ5%) overlap with predicted cis-
regulatory elements. (A–C) eQTL SNP overlap with chromHMM predicted heterochromatin, (D–F) eQTL SNP overlap with chromHMM predicted
repressive chromatin, (G–I) eQTL SNP-TSS pairs with an intervening CTCF binding site. In each panel, SNPs are grouped into 25 equally spaced bins
within the 50 kb upstream and downstream of the TSS and TES, and 10 bins between the TSS and TES. Each bin is plotted along the x-axis. Bold lines
depict bin percentage, ribbons depict 95% confidence interval. Each column of panels depicts a distinct SNP set contrast. (A,D,G) Observed eQTL
SNPs (blue) and randomly drawn cis-linked SNPs at expressed genes(red). (B,E,H) eQTL SNPs that replicate in Stranger_LCL (log10 BF§1) (green) and
SNPs that fail to replicate (purple). (C,F,I) CAP_LCL eQTL SNP overlap with CREs derived from the LCL line GM12878 (orange) and HepG2 cells (brown).
doi:10.1371/journal.pgen.1003649.g004
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cell type specific genomic elements (CRE features listed in Table

S3) to predict whether each eQTL SNP association would

replicate in a second study or not (i.e., binary class). The classifier

accurately predicts within cell type eQTL replication, between cell

type eQTL replication, and cell type specific eQTL replication.

We validated the classifier with 10-fold cross validation and

demonstrated that its accuracy is dependent upon the inclusion of

cell specific CRE data (Figure 7, Figure S17, Table 3). For

example, the area under the ROC curves (AUC) for within LCL

replication, between LCL and liver replication, and LCL specific

replication were 0:79, 0:73, and 0:67, respectively. We believe that

the predictive performance of the random forest on this problem

reflects the fact that random forests are capable of capturing

interactions among the features. Given a broad collection of

chromatin state and regulatory factor binding site data sets, such

as is available for a large number of cell types in the ENCODE

project database, it is now possible to predict whether a given

eQTL association exists in a different, specific cell type, in the

absence of eQTL data from the second cell type.

We further quantified the contribution of each feature to

prediction accuracy (see Methods). Across all training sets, eQTL

discovery significance, SNP to TSS distance, and discovery cell

type gene expression level contribute substantially to prediction

accuracy (Table S8). Consistent with the relative cell type

specificity of CTCF binding sites and chromatin marks discussed

above, CREs vary considerably in the degree to which they are

useful in predicting within or between cell type replication. Cell

type specific differences in activating and repressive chromatin

states overlapping eQTLs contribute substantially to the accuracy

of predictions of between cell type eQTL replication and cell type

specific replication. In contrast, CTCF binding site data are less

informative for predicting cell specific eQTL replication, as might

be expected considering its function appears less cell type specific.

Integration of CREs and eQTLs for GWAS interpretation
While the use of eQTL data to aid in the interpretation of

GWAS results has proven extremely useful [7,8,11,16], these data

are most useful when they are derived from the cell type that is

most relevant to the disease of interest. Because eQTL data exist

from a limited number of cell types, they often have limited utility

for annotating the cell type of interest. We investigated whether

cell specific CRE overlap would be useful to predict whether

disease associated SNPs function as eQTLs in cell types lacking

eQTL data. We extracted from the NHGRI GWAS catalog [49]

SNPs associated with diseases arising from breast, kidney, or lung

Figure 5. Cell specificity of eQTL SNP-CRE overlap illustrated with DNAse hypersensitivity data. Percentage (dots) and 95% confidence
interval (lines) of (A) CAP_LCL, (B) UChicago_liver, and (C) Harvard_cerebellum eQTL SNPs overlapping DHS sites (y-axis) derived from the LCL cell line
GM12878 (red), the HepG2 cell line (blue), and the cerebellum (green).
doi:10.1371/journal.pgen.1003649.g005

Figure 6. SORT1 eQTL illustrates mechanisms underlying cell
specificity of eQTLs. Associations between (A) UChicago_liver and (B)
CAP_LCL SORT1 expression and cis-linked SNPs (left y-axis; log10 BF ),
plotted as points by SNP genomic coordinates (x-axis). Blue line
overlaying the manhattan plot is the estimate of the local recombina-
tion rate (right y-axis; cM/Mb). Points are colored by level of LD (see
legend below) with the reference SNP (purple diamond). Below each
manhattan plot are boxes depicting the location of chromHMM
predicted promoters (red), enhancers (orange), and insulators (blue).
Below CRE predictions are RefSeq gene models.
doi:10.1371/journal.pgen.1003649.g006
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tissue. We trained a random forest classifier to differentiate eQTL

SNPs from non-eQTL SNPs in liver and LCLs using as features

HepG2 and LCL CRE-SNP overlap (see Methods). We then

applied this classifier to each GWAS SNP set, using CRE data

from HMEC, NHEK, and NHLF cells to model breast, kidney,

and lung function, respectively, to see if there was an enrichment

for predicted eQTL SNPs when the CRE data represented the cell

type of interest. These predictions were compared with predictions

using LCL and HepG2 CREs as features (Figure S18). In each

case, CREs from the disease-relevant cell type are more likely to

predict that GWAS SNPs function as eQTLs (Wilcoxon signed

rank tests: breast pv0:06, kidney pv7:64|10{6, lung

pv6:33|10{6). Given the hypothesis that a substantial number

of GWAS SNPs function by modifying gene expression, these

results support the hypothesis that integrated eQTL-CRE

modeling can aid in the annotation of GWAS results arising from

a wide variety of cell types.

Discussion

The integrative analyses presented here provide new insights

into the patterns of cis-eQTL replication within and between cell

types, while controlling for biological and technical variation.

Several notable results emerge from our analyses. We demonstrate

that eQTLs are more likely to overlap activating CREs and less

likely to overlap repressive CREs when they are ascertained from

the same cell type versus different cell types. Cis-eQTL SNPs

overlapping most classes of activating cis-regulatory elements are

significantly more likely to replicate in independent studies.

Conversely, eQTL SNPs that overlap repetitive or repressive

chromatin states and eQTL SNP-gene pairs that are intersected by

insulators are significantly less reproducible. Cis-eQTL SNP-CRE

overlap is also significantly more predictive of eQTL reproduc-

ibility when the CRE data are derived from the same cell type as

the gene expression data. Furthermore, eQTL SNPs that overlap

cell type specific CREs are significantly enriched for cell type

specific eQTLs, suggesting specific regulatory mechanisms for

those cell type specific eQTL associations. The observed

relationship between eQTL SNP reproducibility and CRE overlap

led us to test the hypothesis that SNP-CRE overlap could be used

to predict the cell type specificity of eQTLs in the absence of

additional gene expression or genotype data. While we see room

for substantial improvement, we believe that the successful

validation of this hypothesis with a random forest classifier will

enable improved interpretation of genome-wide association study

results.

After a GWAS is performed, it is now common practice to

search eQTL databases to determine whether SNPs of interest are

eQTLs for the cell type relevant to the study phenotype. When the

SNPs are not known eQTLs in the cell type of interest, typically

the line of reasoning is dropped; however, it is possible that the

specific cell type was not tested, that the relevant SNP-gene pair

was not interrogated, or that the sample size was too small for a

cell type specific eQTL study to substantiate the SNP as an eQTL.

Instead, if the researcher finds that the SNP is an eQTL in an

alternative cell type, our classifier can be applied to determine the

likelihood of the SNP being an eQTL in the cell type of interest

when there are CRE data available for the relevant (or related) cell

type. Furthermore, the genomic location can be scrutinized

relative to known CREs to identify specific CRE types that may

explain the mechanism by which gene transcription and down-

stream phenotype are regulated. Conversely, given those same

GWAS hits, using these predictions one might be able to identify

the physiologically relevant cell type based on overlap with

(predicted or known) cell specific eQTLs.

Figure 7. Data integration predicts cell type specificity of eQTLs. ROC curves depicting the performance of a random forest classifier to
predict within cell type reproducibility (red), between cell type reproducibility (blue), and within cell type specific reproducibility (green). Predictions
plotted separately for (A) LCL/LCL/Liver, (B)Liver/Liver/LCL, and (C) Brain/Brain/LCL. The classifier was trained on a diverse collection of CREs (see
Methods and Supplement for complete data set description). True positive rates (y-axis) and false positive rates (x-axis) were quantified by ten fold
cross validation.
doi:10.1371/journal.pgen.1003649.g007

Table 3. Accuracy of random forest classifier predictions.

Prediction AUC Accuracy

CAP_LCL M Stranger_LCL 0.79 0.74

CAP_LCL M Merck_liver 0.73 0.82

CAP_LCL M (Stranger_LCL\Merck_liver) 0.67 0.71

UChicago_liver M Merck_liver 0.74 0.70

UChicago_liver M Stranger_LCL 0.77 0.73

UChicago_liver M (Merck_liver\Stranger_LCL) 0.71 0.66

Harvard_cerebellum M Myers_brain 0.71 0.83

Harvard_cerebellum M Stranger_LCL 0.77 0.81

Harvard_cerebellum M (Myers_brain\Stranger_LCL) 0.68 0.60

For the prediction task in the left-most column, we include the area under the
curve (AUC) and prediction accuracy.
doi:10.1371/journal.pgen.1003649.t003
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Methods

Genotype preparation
Genotype data were downloaded from public databases or

individual investigators as summarized in Table 1. Genotype and

quality control filtering was performed with plink [50]. Individuals

with a call rate of less than 90% were removed. SNPs with a call

rate of less than 90% were classified as missing and later imputed.

SNPs deviating from HWE were removed (pv1|10{4).

Merck_liver study genotypes were previously imputed by

MACH [51]; we extracted from the full set of SNPs only those

that were w90% unimputed (and we removed all of the imputed

genotypes from individuals in the non-imputed SNPs) to represent

the original genotyping data. This set we filtered using identical

criteria as above.

The HapMap phase 2 individuals fully sequenced genotypes

were downloaded from the Impute2 website [52]; we matched the

genotypes to individuals by comparing individual SNPs to

genotypes from the indexed individuals. We filtered these

genotypes as above. We removed ungenotyped individuals in the

Harvard study, leaving us with 540 individuals with cerebellum

tissue data, 678 individuals with prefrontal cortex tissue data, and

463 individuals with visual cortex tissue data.

Genotype imputation
Genotypes were imputed using BIMBAM [35]. We imputed

genotypes up to the HapMap phase 2 CEPH 3:8|106 SNP set.

BIMBAM removes SNPs with a minor allele frequency (MAF) less

than 0:01 or missing SNPs by default. For the studies with

Caucasian only participants, we used only the 60 unrelated CEPH

individuals for imputation. For the UChicago_liver study, which

has 27 African American individuals (of 206 subjects total), we

used both the CEPH and the 60 unrelated YRI individuals as a

reference set. For the Stranger_LCL study on a subset of HapMap

phase 2 individuals, we used the CEPH, YRI, and the 90
unrelated JPT and CHB individuals’ genotypes and did not

impute. Mean values for the imputed genotypes were used for

association and other downstream analyses [38].

Gene expression preparation, normalization, and
processing
For each expression array platform, probe sequences were

aligned to the human reference genome (hg18) and the RefSeq

transcript set. Probes with only one genomic alignment with

§90% identity to the reference genome, over the full length of the

probe, were considered to be uniquely aligned. Probes that failed

to align to the genome but did have at least one alignment with at

least 90% identity to a RefSeq transcript were further considered

to be adequately aligned. All other probes were removed from

further analyses. Based on genomic alignment coordinates and

RefSeq gene annotations, each aligned probe was assigned to a

RefSeq gene. We further searched the genomic locations of each

probe alignment for the presence of common polymorphisms, as

defined by dbSNP131 and the One Thousand Genomes Project

(8/4/2010 release [53]).

Where appropriate, we defined a lower expression level

boundary, above which we considered a gene to be expressed.

Genes falling below the expression threshold were removed from

further analyses. Low expression thresholds were defined either on

the basis of negative control probes, exogenous RNA spike in

probes, or the observed relationship between probe mean

expression and variance.

Gene expression data from each study were prepared indepen-

dently as follows. Poorly extracted, non-uniform, outlier, or other

flagged features were treated as missing data. Where appropriate,

background signal intensities were subtracted. Negative adjusted

intensities were set to one half the minimum positive value on the

array. Background corrected intensities were log2 transformed.

Missing data were imputed using the k-nearest neighbors

algorithm (k~10), as implemented in the R package impute

[54]. Each array was quantile transformed to the overall average

empirical distribution across all arrays. Across all arrays within a

study, each probe’s expression values were transformed to the

quantiles of the standard normal distribution (or quantile normalized).
Transformation to standard normal avoids potential problems due

to outliers or other deviations from normality in later association

tests [55]. We controlled for known and unknown sources of non-

genetic variation by correcting these data using their principle

components (PCs), identified using the R function pca from the R

package pcaMethods [36,37]. For each matrix of gene expression

data, we computed the percentage of variance explained (PVE) for

each PC, which is a monotone decreasing function, and controlled

for PCs until the difference in the PVE by the subsequent PC was

v2:5|10{5 (Table S1). We jointly controlled for the PCs in the

gene expression data by taking the residuals from a linear model

with these PCs as covariates. For one data set with high quality

covariate annotation (UChicago_liver), we have have quantified

the correlation between each PC and available covariates (Figure

S1), demonstrating that the PCs extracted are capable of capturing

heterogeneity arising from such confounding variables. Finally, we

quantile normalized these residuals within each probe and used

these normalized data in our subsequent analyses.

For genes with multiple probes on a single array, we used the R

package mclust [56] to cluster the p probes |n samples matrix of

expression levels. We allowed up to min(4, p) clusters per gene.

Within each probe cluster, we used the per individual, PC

corrected mean of the different probes as a proxy for the gene

expression level for that collection of probes. Each probe cluster

was modeled downstream independently, under the assumption

that uncorrelated probe sets represent either independent tran-

script isoforms or poorly performing probes.

Two studies included non-European individuals: Stranger_LCL

included individuals with European, Yoruban, and East Asian

ancestry, and UChicago_liver included 200 individuals with

European ancestry and 25 African Americans. To minimize the

effect that differences in allele frequencies between populations

may have on false positive discoveries and false negative

replication, we analyzed these data with a modified protocol.

Within a multi-population study, the distribution of gene

expression measurements from each array was normalized to the

average distribution of expression measurements across all arrays.

For each population separately, each probe was then quantile

normalized and measurements across populations were pooled

[57]. When assessing replication across studies, we require that the

SNP has a MAF w1% in both studies. Therefore alleles that are

polymorphic in one population but fixed in another will not result

in false negative replication. We note that replication frequencies

are similar between mixed population and single population

studies (Figures S5, S6). Furthermore, cross study replication is not

substantially affected by differences in allele frequency across

studies (Figure S8).

eQTL mapping
We used Bayesian regression, as implemented in BIMBAM

[34,38] to quantify the association between each SNP and residual

gene expression data for each gene across each sample from each

study. We used default parameters, which average over different

plausible effect sizes for additive and dominant models. We used
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the mean imputed genotype for all studies except Stranger_LCLs,

in which we used assayed genotypes for each individual because

the individuals did not require imputation.

Multiple cell type eQTL mapping
We used multi-trait Bayesian linear regression models to jointly test

for eQTLs with specific models of differential association in paired

samples [58,59]. We computed the Bayes factors for five models as

compared with the null model (no eQTL in either cell type):

1. stable model, where the eQTL is associated with gene

expression in both cell types,

2. A not B model, where the eQTL is associated with gene

expression in one of the two cell types,

3. B not A model, where the eQTL is associated with gene

expression in one of the two cell types,

4. A and B model, where the eQTL is associated with gene

expression differently in the two cell types, and

5. A opposite B model, where the eQTL is associated with gene

expression in both cell types, but the direction of the effect is

opposite.

To combine these individual Bayes factors, we calculated an

integrated Bayes factor (iBF) summarizing evidence for a

differential eQTL as:

iBF~
2 �max(BFAnotB,BFBnotA,BFAandB,BFAoppositeB)

BFstablez1
ð1Þ

eQTLs with iBFw1 (i.e., there was more evidence supporting a

differential eQTL than a stable eQTL) were further categorized by

the specific model with the largest BF, although we note that the

power to identify each of the models is different in this

construction. Further analysis was conducted only on eQTLs

with FDRƒ5%.

Summarizing eQTLs
We identified the SNP with the largest log10 BF for each gene,

and also identified the cis-SNP with the largest log10 BF in each

LD block around a gene. We defined LD blocks using the

HapMap recombination rates [60] in which each SNP interval

with §10 cM/Mb defines the boundaries of an LD block. For

each of these associations, we note the chromosome and location

of the gene and SNP, major and minor allele of the SNP, the LD

block index, the MAF of the SNP in the sample population, the r2

value of the fit of the linear model between the imputed values for

the SNP and the rounded values of the SNP, the magnitude and

direction of the association (b) and the r2 value of the fit of the

linear model, the number of exons and the average length of the

gene exons, number of probes corresponding to the probe cluster,

mean gene expression value for those probes, and the log10 BF

for this association. We determined the maximum MAF for all

SNPs overlapping expression array probe alignment coordinates

using One Thousand Genomes Project data and dbSNP131. We

note that non-replication within cell types is not driven by

differences of MAF between the studies (Figure S8 is a cross-study

eQTL MAF comparison). For all downstream comparisons

between studies, we considered only expressed gene-SNP pairs

in common between the two studies.

Evaluating FDR by permutation
To evaluate the FDR for each study, we permuted the sample

indices on the gene expression data identically across genes within

each study, and ran association mapping on these permuted data.

Then, for each cutoff log10 BF , we conservatively computed FDR

by the number of associations identified in the original data at that

cutoff divided by the number of associations identified in the

permuted data at that cutoff (Table S9). We performed a single

permutation for each study because of the resources required to

run a single complete permuted association test. Unless otherwise

noted, eQTL results in the text refer to associations significant at

FDRƒ5%.

Multivariate analysis for allelic heterogeneity
Given the computational requirements of performing*20,000

conditional QTL scans in eleven studies, we implemented a two

step approach to identify independently associated SNPs at each

gene. For each gene probe cluster, we identified the most highly

associated SNP in each LD block within 1Mb of the gene’s

transcription start site (TSS) or transcription end site (TES). We

subsequently recomputed the BF of each SNP association by

Bayesian multivariate regression to quantify the conditional

independence of the effects of the associated SNPs [61]. Finally

we took the union of the identified SNPs from all probe clusters for

a single gene; when this set had more than one SNP below the

appropriate FDRƒ5% cutoff, the gene is said to exhibit allelic

heterogeneity.

We compared this approach to forward stepwise regression for a

subset of CAP_LCL genes with significant allelic heterogeneity

(n~696 genes; FDRƒ5%) [62,63]. We implemented, in R, a

custom forward stepwise regression with all SNPs within 1 Mb of a

gene’s TSS and TES to identify the set of independently associated

SNPs. In particular, starting from the model with a gene probe

cluster as the response variable and no covariates, we included a

SNP in the model when it most improved the Bayesian

Information Criterion (BIC) of the fitted model. The BIC is a

criterion for model selection that takes into account both the

likelihood of the model and the number of parameters (here,

eQTL SNPs), so as to avoid excessive parameters that may result

in overfitting. We continued to identify a single SNP that most

improves the BIC and included that SNP in the model until a SNP

resulted in a non-improvement of the BIC, when we stopped. As in

the LD-based method, we took the union of the identified SNPs

from all probe clusters for a single gene. Although forward

selection is not exhaustive, it is tractable, and these results

represent a more complete (but still conservative) estimate of the

allelic heterogeneity for a particular gene relative to our method of

identification (for full results comparison, see Table S10). In

particular, we note that this method is an approximation in the

presence of interactions [64], but we consider this case to be

beyond the scope of this analysis. Our LD-based allelic hetero-

geneity ascertainment generally appears to underestimate the

number of independently associated SNPs per gene, however this

may be a result of the thresholds for SNP inclusion between the

two methods being different (Figure S19, Table S10).

Analysis of Gene Ontology annotation enrichment
We performed Gene Ontology (GO) [65] enrichment analyses

using DAVID software [20]. We considered GO Biological

Process ontology, Molecular Function ontology, and KEGG

pathway [66] enrichment terms with FDRƒ20% (Table S11).

We considered CAP_LCL, UChicago_liver, and Harvard_cer-

ebellum as eQTL discovery data sets, and looked for enrichment

among genes with multiple independent eQTLs in these data, and

also looked for enrichment among genes that did and did not

replicate within cell type and between cell type studies as above.
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Replication quantification
A SNP-gene association was considered ‘replicated’ if the

log10 BF§1:0 in the target study. Only SNP-gene pairs that were

tested in a given replication cohort were considered when

calculating the replication frequency in that study. In other words,

if a SNP failed quality control or if a gene was not represented on a

particular gene expression microarray platform, the SNP-gene

pair was not considered when calculating replication. Similar to

previous observations (see Figure S10H in [26]) we do not observe

a substantial effect of cross-study allele frequency differences on

eQTL replication (Figure S8).

Comparison between eQTLs and functional genomic
data sets
When available, CRE data from the CEU HapMap LCL line

GM12878, the hepatocellular carcinoma HepG2 cell line, and

primary cerebellum tissue were used to represent LCLs, liver, and

cerebellum respectively. These data sets (fully listed in Table S3)

were all downloaded directly from the ENCODE data coordina-

tion center at UCSC. Cell type independent data sets were also

used, including CpG islands [67], GERP evolutionary constrained

elements [68], clustered DNAse hypersensitive sites, and clustered

transcription factor binding sites. A second chromatin structure

segmentation (Segway [69]) data set, derived from the integration

of K562 data sets, was also included in the regulatory element

feature set. When available, precomputed ‘peak calls’ were used. If

more than one replicate (i.e., peak calls generated in the same lab

using the same antibody), was available, peak calls were merged by

taking the union of all elements.

Given that a putative eQTL SNP does not necessarily represent

the causal genetic variant, but rather is a ‘tag’ for the causal

variant in substantial linkage disequilibrium, we classified a SNP as

overlapping a given genomic element if it was either contained

within the element or found within 500 bp of the element

boundary. CTCF sites were classified as eQTL interrupting if the

midpoint of the CTCF binding site was between the eQTL SNP

and the TSS of the associated gene.

To test if eQTL SNPs are enriched within each class of putative

cis-regulatory element, we first modeled the background distribu-

tion of cis-linked SNPs as follows. The background set of SNPs was

selected to match the set of SNPs that were tested for eQTL

association. All CEU HapMap phase 2 SNPs that lie within 1 Mb

of a RefSeq gene model TSS or TES, or lie within a RefSeq gene

model were included. Each such SNP that was cis-linked to more

than one RefSeq gene model was randomly assigned to one such

gene. As with the eQTL SNP set, the background SNP set was

tested for overlap with any element in each genomic feature class.

For each eQTL or background SNP (i), we modeled the

probability of cis-regulatory element overlap (pi) by logistic

regression:

pi~
1

1zexp {(b0zb1Dizb2Gizb3Ii)f g
ð2Þ

In this equation, we controlled for the effects of SNP position

(Di~ log10 (DSNPi{TSSi Dz1)) and the expression level of the

associated gene (Gi), in order to quantify the difference in overlap

frequency between observed eQTL SNPs and those drawn from

the background SNP distribution (denoted by the indicator

variable Ii). This and other logistic regression models were run

using the R glm function. To assess the significance of the effect of

each covariate, we computed a Z-score and, from that, a two-

tailed p-value by comparison to the normal distribution.

Similarly, for each eQTL SNP (i), we model the effect of cis-

regulatory element overlap (Ci) on the probability of within cell

type replication (pi) by logistic regression:

pi~
1

1zexp {(b0zb1Mizb2Tizb3Dizb4Ci)f g
ð3Þ

In this equation, we controlled for the effects of SNP position and

the significance of the eQTL association (Mi~ log10 BF , as

assessed by Bayesian multivariate regression) and the tier of the

associated SNP (Ti), in order to quantify the enrichment of within

cell type replicating eQTLs in cis-regulatory elements.

We tested for an enrichment of second tier SNPs within CRE

data sets, relative to the expectation from the background

distribution of cis-linked SNPs, by modeling, for each SNP (i),

the probability of cis-regulatory element overlap (pi) by logistic

regression:

pi~
1

1zexp {(b0zb1Dizb2Gizb3Ti)f g
ð4Þ

where we quantify the difference in overlap frequency between

background SNPs, first tier SNPs, and second tier SNPs with the

indicator variable Ti. Enrichment of second tier SNPs, relative to

background, was quantified by testing for the significance of the

difference between the b3 estimates.

To test for an enrichment of CTCF sites between SNPs

independently associated with the same gene expression trait (i.e.,

SNPs tagging the allelic heterogeneity at a given locus), we used

the background distribution of cis-linked SNPs as defined above;

however, for each RefSeq gene, two cis-linked SNPs were selected

at random. This collection of background SNP pairs was

contrasted with the first and second tier eQTLs at all genes for

which the secondary eQTL was significant at a FDRƒ5%

threshold. For each SNP pair (j), we modeled the probability of the

presence of an intervening insulator (pj ) by logistic regression:

pj~
1

1zexp {(b0zb1DSjzb2DTjzb3HSjzb4TSjzb5Ij)
� � ð5Þ

In this equation, we controlled for the inter-SNP distance (DSj ),

SNP pair position relative to the gene TSS

(DTj~mink (DSNPj,k{TSSj,k D), in which k indexes each SNP

in the pair), the presence of an intervening recombination hotspot

(HSj ), and the presence of an intervening TSS (TSj ), in order to

quantify the difference in insulator frequency between observed

eQTL SNP pairs and those drawn from the background SNP

distribution (denoted by the indicator variable Ij ). We note that

because the majority of SNP pairs that are independently

associated with a gene expression trait span a recombination

hotspot, we have attempted to control for any bias this may

introduce by including the presence of such a hotspot in the

model.

Predicting eQTLs with random forests
We built a classifier to predict within cell type, between cell

type, and cell type specific replication using random forests [70]. A

random forest is an ensemble classifier that uses the mode of

predictions from a large number of decision trees built by

bootstrapping the training set. For each pair of comparisons, we

can train a random forest classifier to predict the binary replication

outcome given a set of features about the genomic location of the

eQTL and the CREs for the corresponding cell types (see Table
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S3 for complete set). We used the random forest classifier and

computed variable importance using the R randomForest package

[71]. We performed 10-fold cross validation to compute general-

ization error. We used the R package ROCR [72] to build the

ROC curves and compute the AUC. We also computed accuracy as
TPzTN

PzN
.

To predict the function of GWAS SNPs from cell types lacking

eQTL data, we built a random forest classifier trained on cell

specific CRE data.We first trained the classifier to predict whether a

SNP is an eQTL or not an eQTL in LCLs and liver by selecting the

most highly associated SNP for each gene (FDRv5%) in these two

cell types and selecting a background set of 100,000 SNPs that were

not associated with gene expression in any study (log10BFv1). We

selected a reduced set of CRE data (chromHMM segments, H2A.Z,

EZH2, DHS, CTCF) that were available for LCLs, HepG2,

NHEK, NHLF, and HMEC cells. We initially trained the classifier

using as features the CRE data from LCLs and HepG2 to predict

whether a SNP is an eQTL in LCLs and liver. After training, the

model was applied to sets of GWAS SNPs that were associated with

phenotypes with relevance to breast, kidney, and lung (hand

annotated from the NHGRI GWAS catalog [49] downloaded on

January 10, 2013). In particular, the classifier was used to predict the

probability that each GWAS SNP was an eQTL or not, using as

features CRE data from the matched cell type (HMEC for breast,

NHEK for kidney, NHLF for lung) or from an unmatched cell type

(LCL or HepG2). Distributions of eQTL probabilities between

matched and unmatched cell types were compared by Wilcoxon’s

signed rank test.

Additional statistical analyses
2|2 tests of unpaired categorical data were quantified by

Fisher’s exact test. 2|2 tests of paired categorical data were

quantified by McNemar’s test. Tests of paired interval data were

quantified by Wilcoxon’s signed rank test.

Supporting Information

Figure S1 Sample principal components (PCs) capture many

known study covariates in UChicago_liver study. Heat map

indicating the absolute Pearson’s correlation between sample

covariates (x-axis) and the first twenty PCs (y-axis). Age, for

example, is captured well by the 17th PC and smoking status is

captured best by the 5th PC. Sample ID appears correlated with

the 3rd PC because the IDs were ordered by when the sample was

processed, which is well correlated with batch and other known

gene expression confounders.

(TIF)

Figure S2 Identification of allelic heterogeneity. Univariate

log10 BF (x-axis) versus multivariate log10 BF (y-axis) as a function

of linkage disequilibrium (r2; color as indicated in scale bar) between

the primary and secondary SNP. All tier two SNPs are plotted for

each study independently, in each panel, as labeled at top. Note

SNPs in higher LD with the primary SNP (‘bluer’ points) tend to

produce greater drops from the univariate log10 BF .

(TIF)

Figure S3 Distribution of eQTL effect sizes by study and SNP

tier. Violin plots of the distribution of effect sizes for significant

(FDRƒ5%) eQTLs. Data are plotted separately for each study, as

indicated by plot color and sample labels at left. SNPs from each

tier are plotted separately in each facet, as labeled at top. Note

studies are ordered on the y-axis by sample size.

(TIF)

Figure S4 eQTL effect size and significance by tier. eQTL

significance (log10 BF ; y-axis) as a function of SNP effect size (x-

axis) and SNP tier. Data from each study and tier are plotted in

independent facets, as labeled at top and right, respectively. Each

eQTL SNP set was independently thresholded at FDRƒ5% by

permutation.

(TIF)

Figure S5 eQTL replication frequencies, by observation signif-

icance, across all cohorts. eQTL replication (y-axis), as a function

of discovery significance (x-axis: log10 BF ). Each column of facets

depicts the set of eQTL SNPs discovered in each of 11 studies, as

labeled at top. Within each column, replication frequencies are

plotted separately for each replication study set, in rows and in a

different color, as labeled at the right. SNPs are binned along the

x-axis into 30 equally spaced intervals. Per bin replication

frequencies are plotted as bold lines, 95% confidence intervals

are plotted as ribbons.

(TIF)

Figure S6 eQTL replication frequencies, by SNP position,

across all cohorts. eQTL replication (y-axis), as a function of SNP

position (x-axis; DSNP{TSSD). Each column of facets depicts the

set of eQTL SNPs discovered in each of 11 studies, as labeled at

top. Within each column, replication frequencies are plotted

separately for each replication study set, in rows and in a different

color, as labeled at right. SNPs are binned along the x-axis into 30

equally spaced intervals. Per bin replication frequencies are plotted

as bold lines, 95% confidence intervals are plotted as ribbons.

(TIF)

Figure S7 eQTL replication by SNP to TSS distance,

conditioned on significance. Within cell type eQTL replication

(y-axis), as a function of absolute SNP to TSS distance (x-axis).

Replication frequencies are displayed separately for eQTLs with

log10BFv3 (red), 3vlog10BFv6 (blue), and log10BFw6 (green).
SNPs have been binned along the x-axis into 15 equally spaced

intervals. eQTL SNP-CRE overlaps per bin are plotted as bold

lines, 95% confidence intervals are plotted as ribbons. Each facet

depicts a different study set comparison (labeled at top).

(TIF)

Figure S8 Minor allele frequency differences and replication.

Minor allele frequencies in the two different populations of

replicating (left column) and non-replicating (right column)

eQTLs. The size of the point corresponds to the log10 BF of

the eQTL in CAP_LCL; the color represents the log10 BF in the

replication study, where blue is higher and grey (in the right-hand

column) is v1:0. Top row: MAFs compared between eQTLs

discovered in CAP_LCL (x-axis) that replicate (left) or fail to

replicate (right) in HM2_LCL (y-axis). Bottom row: MAFs

compared between eQTLs discovered in CAP_LCL (x-axis) that

replicate in HM2_LCL and that replicate (left) or fail to replicate

(right) in Merck_liver.

(TIF)

Figure S9 Extended eQTL replication plots. eQTL replication

(y-axis), as a function of discovery significance (x-axis; left facet set)

or absolute SNP to TSS distance (x-axis; right facet set;

thresholded at FDRƒ5%), as indicated at the bottom. Replication

frequencies are displayed separately for within cell type (red),

between cell type (blue), within but not between cell type (i.e., cell
specific; green), and within and between replication (purple). SNPs

have been binned along the x-axis in 30 equally spaced intervals.

eQTL SNP-CRE overlaps per bin are plotted as bold lines, 95%

confidence intervals are plotted as ribbons. Each column of facets

depicts a different study set comparison, as labeled at the top, for

Cell Specificity of eQTLs via Regulatory Elements
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LCLs (left column), liver (middle column), and brain (right

column).

(TIF)

Figure S10 Bivariate Bayesian regression recapitulates results of

post hoc comparisons. eQTL SNPs were classified by their best

fitting model (denoted at left and by color). Results from bivariate

cis-eQTL mapping are on top, results from post hoc models are on

bottom. (A) Overlap of SNPs in each class with cerebellum DHS

sites. Points denote overlap percentage, lines denote 95% CI. (B)

Distribution of log10BF (x-axis) for eQTL SNPs in each model

class. Box plots denote median, inter-quartile range, and 95% CI.

(C) Distribution of absolute distances (x-axis; log10 scale) between

each SNP and its associated gene’s TSS.

(TIF)

Figure S11 eQTL replication conditional on SNP tier. eQTL

replication (y-axis), as a function of discovery significance (x-axis;

log10 BF ; left set of panels) or absolute SNP to TSS distance (x-

axis, right set of panels). Replication frequencies are displayed

separately for tier 1 (red) and tiers 2–4 (blue). SNPs have been

binned along the x-axis into 30 equally spaced intervals. eQTL

SNP-CRE overlaps per bin are plotted as bold lines, 95%
confidence intervals are plotted as ribbons. Each panel depicts a

different study set comparison, as labeled at the top of each panel.

Within cell type and between cell type replication frequencies are

plotted along the left and right columns, respectively, for LCLs

(top row), liver (middle row), and brain (right row).

(TIF)

Figure S12 Overlap of full data set of ENCODE LCL CREs

with CAP_LCL eQTLs. CAP_LCL eQTL SNP-CRE overlap (y-

axis; tier means as points, 95% confidence interval as lines), with

SNPs from each tier plotted in separate panels, as indicated at

right. Each CRE class is plotted in a separate panel, as labeled at

top. As applicable, within each panel, overlaps are plotted

separately for LCL CREs (red circles) and HepG2 CREs (blue

triangles). In cases where multiple CRE data sets exist for the same

CRE class (e.g., H3K27me3 marks), overlaps were calculated from

each data set independently and over plotted, with a jitter.

(TIF)

Figure S13 Overlap of full data set of ENCODE HepG2 CREs

with UChicago_liver eQTLs. UChicago_liver eQTL SNP-CRE

overlap (y-axis; tier means as points, 95% confidence interval as

lines), with SNPs from each tier plotted in separate panels, as

indicated at right. Each CRE class is plotted in a separate panel, as

labeled at top. As applicable, within each panel, overlaps are

plotted separately for HepGe CREs (red circles) and LCL CREs

(blue triangles). In cases where multiple CRE data sets exist for the

same CRE class (e.g., H3K27me3 marks), overlaps were

calculated from each data set independently and over plotted,

with a jitter.

(TIF)

Figure S14 CAP_LCL eQTL associations with 142 LCL

derived CRE data sets. CAP_LCL eQTL SNP (FDRƒ5%)

overlap with predicted cis-regulatory elements. Each panel depicts

overlap with distinct CRE data sets, as labeled at top. In each

panel, SNPs are grouped into 25 equally spaced bins within the

50 kb upstream and downstream of the TSS and TES, and 10 bins

between the TSS and TES. Each bin is plotted along the x-axis.

Bold lines depict the percentage, per bin, of SNPs overlapping the

CRE class, ribbons depict 95% confidence interval. Observed

eQTL SNPs are plotted in blue and randomly drawn cis-linked

SNPs at expressed genes in red.

(TIF)

Figure S15 CTCF binding sites are enriched between SNPs

independently associated with the same gene expression trait.

Percentage of primary and secondary CAP_LCL (red) and

Stranger_LCL (blue) LCL eQTL SNP pairs that have an

intervening CRE (y-axis; SNP pairs were binned by the distance

between them, bold lines depict bin frequency, ribbons depict 95%

confidence interval) as a function of the absolute distance between

the SNPs (x-axis). Randomly drawn cis-linked SNPs are displayed

in green. Each panel depicts the analysis of a different CRE data

set, as labeled at top, including CTCF, SMC3, and Rad21, which

have each been shown to mark enhancer blocking insulators [73],

DHS sites, which promiscuously mark insulators and other CRE

classes, chromHMM defined heterochromatin regions, and p300

sites.

(TIF)

Figure S16 Overlap of ENCODE data sets across cell types.

Overlap between CRE data sets (y-axis), as a function of absolute

CRE to TSS distance (x-axis). Data are plotted separately for

comparisons between two different LCL lines (red; e.g., between

GM12878 and GM060990) and between LCLs (GM12878) and

HepG2 cells (blue). CREs are binned into 30 equally spaced

intervals along the x-axis. Per bin CRE overlaps are plotted as

bold lines, 95% confidence intervals are plotted as ribbons. Data

are plotted separately for each of six different CRE types, as

labeled at the top of each panel. Note the striking difference

between the cell specificity of CTCF binding sites and each other

CRE class.

(TIF)

Figure S17 CRE data improve accuracy of cell specific eQTL

prediction. ROC curves depicting the performance of random

forest classifiers to predict within cell type specific reproducibility,

either trained with CRE data (red) or without CRE data (blue).

Facets depict predictions for LCL, liver, and brain eQTL SNPs

(labeled at top). True positive rates (y-axis) and false positive rates

(x-axis) were quantified by tenfold cross validation. AUCs from

models with and without CRE training, respectively, were 0.67

and 0.61 (LCL), 0.71 and 0.57 (liver), and 0.68 and 0.57 (brain).

(TIF)

Figure S18 Regulatory element overlap predicts GWAS SNP

function. Boxplot of the distribution of random forest classifier

predictions. A classifier was trained to discriminate LCL and liver

eQTL SNPs from non-eQTL SNPs on the basis of SNP overlap

with CREs from LCLs and HepG2 cells. The trained classifier was

then applied to SNPs associated with phenotypes of relevance to

breast, kidney, and lung function (facets labeled at top). The

probability that each SNP is an eQTL (y-axis, as box plot) was

calculated using CREs from matched and unmatched cell types

(listed on the x-axis and color coded). Asterisks denote significant

differences in probability distributions (Wilcoxon signed ranks test,

pv1|10{5).

(TIF)

Figure S19 Quantification of allelic heterogeneity by forward

stepwise regression and an LD-based method. Forward stepwise

regression was applied to 696 genes with allelic heterogeneity as

identified by the LD-based method described in the text. For each

gene, the resulting pair of models are contrasted as follows. At left,

multivariate log10 BF of the FSR model (y-axis) is plotted as

function of the multivariate log10 BF of the LD based model (x-

axis). At right, the Bayesian information criterion (BIC) of the FSR

model (y-axis) is plotted as function of the BIC of the LD based

model (x-axis). Circle size and color depicts the number of SNPs

identified by the FSR and LD-based models, respectively (blue = 2
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SNPs, green = 3 SNPs, red = 4 SNPs). We note that, in one gene,

NINJ1, FSR found fewer independent eQTLs than our LD-based

method; interestingly, the tertiary eQTL SNP for this gene had a

lower univariate log10 BF than the conditional log10 BF (1:91
versus 2:32), implying a possible SNP-SNP interaction. For 12

genes (2%) the two methods found the same numbers of

independent eQTL SNPs, and for 683 genes (98%) FSR identified

additional eQTL SNPs (Table S9).

(TIF)

Table S1 Numbers of PCs removed from each study gene

expression data. Columns include the study name, the cell type,

the number of PCs removed (PCs), and the percentage variance,

which refers to the percentage variance explained by the last PC

removed.

(TXT)

Table S2 eQTL SNP replication table. Summary of eQTL

findings and replication across all included studies. eQTL SNPs

were included in the table if, from a given study, they were the

most highly associated cis-linked SNP within an LD block and if

their log10 BF§1. eQTL SNPs are listed in separate rows and

associated data are in columns, as labeled in the first row and

denote the following:

1. REF STUDY. eQTL discovery study.

2. GENE. RefSeq gene identifier.

3. CHR. Chromosome of the eQTL SNP and associated gene

expression trait.

4. STRAND. Annotated strand of the associated transcript.

5. TSS. Genomic coordinate of the transcription start site.

6. TES. Genomic coordinate of the transcription end site.

7. RSID. Identity of the eQTL SNP.

8. HS INDEX. Identity of the LD block containing the SNP.

9. RSCOORD. Genomic coordinate of the SNP.

10. TIER. Tier of the SNP with respect the associated gene.

11. UBF. Univariate log10 BF of the eQTL SNP-gene

expression trait association.

12. MBF. Multivariate log10 BF of the eQTL SNP-gene

expression trait association, controlling for all SNPs in

lower tiers.

13. BETA. Estimate of the effect size per minor allele of the

SNP.

14. GEX. Mean gene expression level across all samples in the

discovery study.

15. PROBE MAF. Maximum minor allele frequency of SNPs

overlapping the coordinates of the gene expression probe.

16. NALN. Number of high quality alignments between the

gene expression probe and hg18.

17. STL, MBR, CLI, CPL, HVC, GCT, GCF, HCE, HPC,

MLI, GCL. Each subsequent column denotes the measure

of univariate replication between the SNP and gene

expression trait in the study set indicated by the TLA,

where:

U~
log10 BF

0

�

if log10 BF§1

if log10 BFv1

(BZ2)

Table S3 CRE data set details. File name, element summary

type, cell type, experiment type, experiment class, experiment

name, control type, file format, and two indicators denoting

whether the data set was tested for overlap with eQTL SNPs or for

intersection between the eQTL SNP and gene TSS (i.e., is an

insulator), or both.

(TXT)

Table S4 CAP_LCL eQTL SNP enrichment/depletion within

CREs: (a) relative to background, (b) replicating versus non-

replicating, (c) same versus different cell types. For Tables S4, S5,

and S6, eQTL SNPs (FDRƒ5%) were tested for overlap with 526

CRE data sets, each listed in a separate row. Columns are labeled

in the first row and denote the following:

1. CRE type. Name of the tested CRE, including the cell type

of origin, as applicable.

2. Cell A Overlap. Fraction of eQTL SNPs that overlap a

CRE of this class, where the CRE was derived from cell

type A (the cell type indicated in column 1).

3. Cell B Overlap. Fraction of eQTL SNPs that overlap a

CRE of this class, where the CRE was derived from cell

type B (LCLs for liver and cerebellum eQTLs, HepG2 cells

for LCL eQTLs).

4. AB Overlap Test McNemar PV. McNemar’s test p-value

run on the 2|2 table
a b

c d

� �

where a denotes the

number of SNPs overlapping a CRE from cell type A, b

denotes the number of SNPs not overlapping a CRE from

cell type A, c denotes the number of SNPs overlapping a

CRE from cell type B, d denotes the number of SNPs not

overlapping a CRE from cell type B.

5. A Overlap Test Beta. b3 from Eqn. (2), for CREs derived

from cell type A.

6. A Overlap Test SE. Standard error of the estimate of b3
from Eqn. (2).

7. AOverlap Test Z. Z-score of the significance of b3 fromEqn. (2).

8. A Overlap Test PV. P-value of the significance of b3 from Eqn.

(2).

9. A Overlap Test AIC. Akaike information criterion of Eqn. (2).

10. B Overlap Test Beta. b3 from Eqn. (2), for CREs derived

from cell type B.

11. B Overlap Test SE. Standard error of the estimate of b3
from Eqn. (2).

12. B Overlap Test Z. Z-score of the significance of b3 from

Eqn. (2).

13. B Overlap Test PV. P-value of the significance of b3 from

Eqn. (2).

14. B Overlap Test AIC. Akaike information criterion of Eqn. (2).

15. A Overlap Rep OR. Odds ratio derived from a Fisher’s

exact test performed on the 2|2 table
a b

c d

� �

where a

denotes the number of within cell type replicating SNPs

overlapping a CRE from cell type A, b denotes the number of

within cell type replicating SNPs Eqn. not overlapping a CRE

from cell type A, c denotes the number of non-replicating SNPs

overlapping a CRE from cell type A, d denotes the number of

non-replicating SNPs not overlapping a CRE from cell type A.

16. A Overlap Rep PV. P-value of the Fisher’s exact test above.

17. A Overlap Rep Beta. b4 from Eqn. (3), for CREs derived

from cell type A.
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18. A Overlap Rep SE. Standard error of the estimate of b4
from Eqn. (3).

19. A Overlap Rep Z. Z-score of the significance of b4 from

Eqn. (3).

20. A Overlap Rep PV. P-value of the significance of b4 from

Eqn. (3).

21. A Overlap Rep AIC. Akaike information criterion of

Eqn.(3).

22. B Overlap Rep OR. Odds ratio derived from a Fisher’s

exact test performed on the 2|2 table
a b

c d

� �

where a

denotes the number of within cell type replicating SNPs

overlapping a CRE from cell type B, b denotes the number

of within cell type replicating SNPs not overlapping a CRE

from cell type B, c denotes the number of non-replicating

SNPs overlapping a CRE from cell type B, d denotes the

number of non-replicating SNPs not overlapping a CRE

from cell type B.

23. B Overlap Rep PV. P-value of the Fisher’s exact test above.

24. B Overlap Rep Beta. b4 from Eqn. (3) for CREs derived

from cell type B.

25. B Overlap Rep SE. Standard error of the estimate of b4
from Eqn. (3).

26. B Overlap Rep Z. Z-score of the significance of b4 from

Eqn. (3).

27. B Overlap Rep PV. P-value of the significance of b4 from

Eqn. (3).

28. B Overlap Rep AIC. Akaike information criterion of Eqn. (3).

29. AB Overlap Rep pos OR. Odds ratio derived from a

Fisher’s exact test performed on the 2|2 table
a b

c d

� �

where a denotes the number of SNPs that replicate in cell

type A but not B that overlap a CRE found in cell type A

but not B, b denotes the number of SNPs that replicate in

cell type A but not B that overlap a CRE found in cell type

A and B, c denotes the number of SNPs that replicate in cell

type A and B that overlap a CRE found in cell type A but

not B, d denotes the number of SNPs that replicate in cell

type A and B that overlap a CRE found in cell type A and B.

30. AB Overlap Rep pos PV. P-value of the Fisher’s exact test

above.

31. AB Overlap Rep neg OR. Odds ratio derived from a

Fisher’s exact test performed on the 2|2 table
a b

c d

� �

where a denotes the number of SNPs that replicate in cell

type A but not B that overlap a CRE found in cell type B

but not A, b denotes the number of SNPs that replicate in

cell type A but not B that overlap a CRE found in cell type

A and B, c denotes the number of SNPs that replicate in cell

type A and B that overlap a CRE found in cell type B but

not A, d denotes the number of SNPs that replicate in cell

type A and B that overlap a CRE found in cell type A and B.

32. AB Overlap Rep neg PV. P-value of the Fisher’s exact test

above.

(TXT)

Table S5 UChicago_liver eQTL SNP enrichment/depletion

within CREs: (a) relative to background, (b) replicating versus non-

replicating, (c) same versus different cell types. Details are the same

as Table S4.

(TXT)

Table S6 Harvard_cerebellum eQTL SNP enrichment/deple-

tion within CREs: (a) relative to background, (b) replicating versus

non-replicating, (c) same versus different cell types. Details are the

same as Table S4.

(TXT)

Table S7 AH model comparison table. Details of tests for

independent enrichment of primary and secondary tier eQTL

SNPs within CREs. CRE data sets are listed in separate rows,

columns are labeled with a header in the first row as:

1. 1 Overlap Test Beta. Primary tier b3, relative to background

SNPs, from Eqn. (4).

2. 1 Overlap Test SE. Standard error of the estimate of the

primary tier b3 from Eqn. (4).

3. 1 Overlap Test Z. Z-score of the significance of the primary tier

b3 from Eqn. (4).

4. 1 Overlap Test PV. P-value of the significance of the primary

tier b3 from Eqn. (4).

5. 2 Overlap Test Beta. Second tier b3, relative to background

SNPs, from Eqn. (4).

6. 2 Overlap Test SE. Standard error of the estimate of the

second tier b3 from Eqn. (4).

7. 2 Overlap Test Z. Z-score of the significance of the second tier

b3 from Eqn. (4).

8. 2 Overlap Test PV. P-value of the significance of the second

tier b3 from Eqn. (4).

(TXT)

Table S8 Random forest classifier feature importance. Measures

of feature importance for each variable for each classification task.

Columns are:

1. classification task,

2. variable name,

3. variable importance. For each tree, the prediction accuracy on

the out- of-bag portion of the data is recorded. Then the same

is done after permuting each predictor variable. The difference

between the two accuracies are then averaged over all trees,

and normalized by the standard error..

(TXT)

Table S9 The log10 BF cutoffs and total numbers of eQTLs at

FDRƒ5% for each tier of AH in each study. FDR cutoff was

assessed by permutation.

(TXT)

Table S10 Comparison of LD-based method and forward

stepwise regression on subset of CAP_LCL genes with AH.

Columns are: Gene names (note that these represent only single

gene probe clusters, and not combined results across probes); the

number of eQTLs for the LD-based method, the BIC score for the

LD-based method, the multivariate log10 BF for the LD-based

method, the set of RSIDs for the LD-based method, the number of

eQTLs for FSR, the BIC score for FSR, the multivariate log10 BF

for FSR, the set of RSIDs for FSR.

(TXT)

Table S11 Gene Ontology enrichment results. First two

columns denote the eQTL discovery study and cell type; second

two columns the eQTL comparison study and cell type. The Genes
column denotes the type of enrichment analysis performed, where
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multiple eQTLs indicates the enrichment of terms in genes with

allelic heterogeneity with a background of genes with one or more

eQTLs, eQTLs indicates the enrichment of terms in genes with

eQTLs, with a background of all of the tested genes in the study,

NR indicates the enrichment of terms in genes with eQTLs that do

not reproduce across cell types, with the background of all eQTLs

identified in the discovery data. The Type column indicates what

term is enriched, where KEGG indicates a KEGG pathway, MF
denotes a molecular function in GO, and BP indicates biological

process. Any of the comparisons not mentioned (for the three types

or the different study comparisons discussed) did not come up with

any statistically significant enrichment (FDRƒ20%).

(TXT)
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