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Abstract

The extracellular matrix (ECM) is the most important regulator of cell-
cell communication within tissues. ECM is a complex structure, made
up of a wide variety of molecules including proteins, proteglycans and
glycoaminoglycans. It contributes to cell signaling through the action of
both its constituents and their proteolytic cleaved fragments called ma-
tricryptins [Hynes and Naba, 2012, Ricard-Blum and Vallet, 2019]. In ad-
dition, ECM acts as a ”reservoir” of growth factors and cytokines and reg-
ulates their bioavailability at the cell surface. By controlling cell signaling
inputs, ECM plays a key role in regulating cell phenotype (differentiation,
proliferation, migration, etc.).
In this context, signaling networks associated with the polypeptide trans-
forming growth factor TGF-β are unique since their activation are con-
trolled by ECM and TGF-β is a major regulator of ECM remodeling in re-
turn.
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1 TGF-β and Extracellular matrix, a win-win rela-

tionship

TGF-β is a prototype of a large family of growth factors that play an essential
role in essential biological processes, such as tissue morphogenesis and home-
ostasis, but also in numerous diseases such as fibrosis and cancer[Tian et al.,
2011]. Initially identified as a promoter of fibroblast growth and transformer
of cell phenotype, TGF-β has been rapidly designed as a bifunctional regula-
tor of cellular growth [Roberts et al., 1985] depending on the environmental
context. Beside its role in cell proliferation, TGF-β is implicated in numerous
biological functions including cell differentiation, migration, chemotaxis and
ECM production and remodeling.
TGF-β is synthesized as an inactive homodimeric large precursor molecule
consisting of a self-inhibiting propeptide, the latency-associated protein (LAP),
in addition to the covalently linked active form of TGF-β. Pro-TGF-β is then in-
tracellularly cleaved by furin-type enzymes to generate mature TGF-β, which
remains non-covalently associated with LAP as the small latent complex (SLC)
and the LAP dimer is covalently bound by a latent TGF-β-binding protein
(LTBPs) to form the large latent complex (LLC). Complexes are sequestered in
the extracellular matrix (ECM) where LTBP interacts with several components,
including fibronectin and fibrilin. The activation process of TGF-β requires
dissociation of TGF-β from the ECM-bound LLC and implicates protease —
and/or non protease — dependent mechanisms, which differ according to the
cell microenvironment [Lodyga and Hinz, 2019, Robertson and Rifkin, 2016]
(see Figure 1). Mechanisms of activation mainly include mechanical interac-
tions [Hinz, 2015] involving integrins such as αvβ6 and αvβ8 integrins [Brown
and Marshall, 2019], chemical interaction involving proteases, such as ma-
trix metalloproteases MMP-2 and MMP-9, and thrombospondin-1 [Murphy-
Ullrich and Suto, 2018] and physical stress such as heat or reactive oxidative
species [Annes et al., 2003]. Together, all molecules involved in the dynamic
storage and destocking of TGF-β form a protein network in which the role of
each one in TGF-β signaling is obviously part of the sum.
When activated, TGF-β binds to specific receptors to induce a variety of sig-
naling pathways depending on the cell and the microenvironmental context.
TGF-β receptors are transmembrane serine/threonine kinases, that include
type I (TGFBR1) and type II (TGFBR2) receptors. The canonical pathway in-
volves a Smad-dependent cascade which induces nuclear signalling to regu-
late transcription of target genes. Receptor regulated Smads (or R-Smads) are
transcription factors initially anchored to the cell membrane by SARA pro-
teins. Following their phosphorylation by TGFBR1, Smads are detached and
shuttled to the nucleus, where they activate gene transcription. Numerous
Smad-binding partners and transcriptional coactivators and cosrepressors for
Smads have been reported as leading to a wide variety of TGF-β-dependent
transcriptional signatures [Feng and Derynck, 2005]. Additionally, cross talk
between the TGF-β/Smad pathway and other signaling pathways such as Wnt
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Figure 1: Schematic representation of TGF-β activation and signaling (adapted
from [Lodyga and Hinz, 2019]). Latent form of TGF-β is sequestered within
ECM as a large latent complex associated with LTBP that binds to ECM. Re-
lease of the active peptide of TGF-β from this large latent complex involves
mechanical and non-mechanical mechanisms depending or not upon protease
activities. Integrins or other cell surface receptors such as GARP and LRRC33
bind latent-TGF-β. Strength constraints between cytoskeleton-linked integrins
and LTBP-linked ECM induce release of active TGF-β peptide. Protease activ-
ities are involved in activation of latent-TGF-β bound to cell surface receptors
and contribute to release of TGF-β during extracellular matrix remodeling. Ac-
tive TGF-β signals through TGF-β receptors (TGFBR) and activation of smad-
and non smad-dependent pathways leading to the transcriptional regulation of
TGF-β target genes. Most of them are genes coding for ECM compounds and
proteases that contribute to ECM remodeling and regulation of TGF-β signal
in return.
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and Hyppo [Luo, 2017, Piersma et al., 2015] complicates the Smad-dependent
signature. Otherwise, TGF-β induces non-Smad pathways through binding to
TGFBR2, leading to activation of mitogen-activated protein kinase (MAPK),
Rho-like GTPase signaling pathways and phosphatidylinositol-3-kinase/AKT
pathways [Zhang, 2017]. Because all of these pathways are also activated by
many other extracellular factors and matrix components, the expression of
TGF-β-target genes is highly modulated by the cell environment.
Together the TGF-β-related signal behaves as a system with numerous com-
petitive pathways and regulatory loops, allowing a fine tuning of cell response
to various conditions. Understanding how ECM and TGF-β work together to
maintain tissue homeostasis, and how alteration of this equilibrium is affected
in various pathologies, requires integrative and modeling approaches. Such
models aim to predict cell responses to a “TGF-β dependent signal” and, ulti-
mately, identify putative targets suitable for future therapy.

2 Modeling approaches for TGF-β signaling

Numerousmodels have been developed to describe the behaviour of the canon-
ical Smad-pathway [Clarke et al., 2006b, Zi et al., 2012]. These models, using
chemical reaction networks (CRN) and ordinary differential equations (ODEs)
focused on Smad phosphorylation [Clarke et al., 2006b]; receptor trafficking
[Vilar et al., 2006b]; Smad nucleocytoplasmic shuttling [Melke et al., 2006b,
Schmierer et al., 2008a]; and Smad oligodimerization [Nakabayashi and Sasaki,
2009a] that allow an understanding of the dynamics and flexibility of the
Smad-dependent pathway.
Importantly, models for receptor trafficking that control the transient or per-
manent TGF-β-dependent response, enriched the behaviours of TGF-β depen-
dent phenotypes [Vilar et al., 2006b] and integrative models have now coupled
receptor trafficking to Smad pathways [Chung et al., 2009, Zi et al., 2011a,
Wegner et al., 2012, Nicklas and Saiz, 2013, Shankaran and Wiley, 2008]. The
general picture is that the interaction between various Smad channels is a ma-
jor determinant in shaping the distinct responses to single and multiple ligand
stimulation for different cell types [Nicklas and Saiz, 2013]. The amount of
Smad shuttled to the nucleus seems, for most of these models, to depend in a
graded, linear manner on the concentration of ligands, while remaining able
to be temporally modulated in a transient or oscillatory manner [Cellière et al.,
2011]. The Smad pathway is also able to encode the speed of variation of the
input signal into the shape, transient or permanent [Vilar et al., 2006a], or
the amplitude [Sorre et al., 2014] of the output signal, with possible impor-
tant consequences for morphogen readout and patterning in developmental
biology [Sorre et al., 2014]. Parametric sensitivity analysis of these models em-
phasized the importance of various processes for the Smad response [Clarke
et al., 2006b]. Recently, we have developed an alternative analysis method,
based on tropical geometry, that extends steady state calculation to calculation
of metastable (long live transient) states [Samal et al., 2016]. This method de-
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tected two classes of metastable states with antagonistic low and high TGFR1
and TGFR2 values, suggesting that important signal processing leading to flex-
ible response is already performed at the level of the receptor system. These
states were given phenotypic interpretations. Using this approach, analysis of
proteomic data from NCI-60 cancer cell lines associated non-aggressive and
agressive lines to low and high expression TGFBR2 states, respectively [Samal
et al., 2016].
Taking advantages of such ODE-based models, we have developed our own
models to study the role of the tumor biomarker ADAM12 [Gruel et al., 2009]
and the tumor suppressor TIF1γ [Andrieux et al., 2012], thereby demonstrat-
ing that small numerical differential models may be useful tools to investigate
the role of new regulatory components of the canonical TGF-β signaling path-
way. Some of these models are available on the BioModels database [Malik-
Sheriff et al., 2019], see Table 1. Although most of these models did not in-
tegrate the events that take place within the extracellular space and only con-
sider cell surface receptors and free ligands as inputs, a few models include
ECM variables providing crude descriptions of the coupling interactions be-
tween ECM and TGF-β signalling.
Combinatorial explosion of variables and parameters prevents the use of ODE
approaches to integrate all TGF-β dependent pathways including Smad, non
Smad-dependent pathways and cross-talk with other pathways. To overcome
this limitation, we previously developed a discrete formalism for a large-scale
model for TGF-β dependent signaling [Andrieux et al., 2014]. In this for-
malism molecular species and complexes are represented as boolean variables
placed in the nodes of a network and connected by “guarded transitions”, i.e.
monomolecular transformations taking place if logical conditions on regula-
tors and events defining the order of firing are satisfied. Due to the events,
both synchronous and asynchronous network dynamics can be simulated. In
this case, a trajectory of the network represents a sequence of such transi-
tions. Based on this formalism, we generated a TGF-β network composed of
more than 9000 nodes extracted from the Pathway Interaction Database (now
available at https://www.pathwaycommons.org), including ECM biochemical
interactions, and that allowed us to explore 15934 trajectories involving 145
TGF-β-target genes [Andrieux et al., 2014]. A guarded transition-based model,
however, is not appropriate to describe the dynamics of extracellular networks
that regulate TGF-β activation. A discrete dynamic modeling approach was
also used to model TGF-β-driven epithelial-mesenchymal transition in hepa-
tocellular carcinoma [Steinway et al., 2014, Steinway et al., 2015]. The authors
focused on the dynamics of cross-talks between TGF-β signaling and other sig-
naling pathways but did not integrate extracellular matrix regulation. To take
into account the complexity of extracellular matrix dynamics regulating TGF-β
signaling, we develop new approaches that are described in the two next parts.
The first one uses the rule based formalism Kappa [Danos and Laneve, 2004]
that allows us to describe the extracellular interaction networks. The second
uses mesoscopic PDEs over time, space and structure dimension to integrate
multi-scale and multi-physical parameters.
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Ref. Pubmed/Biomodels Id # vars Method ECM
[Andrieux et al., 2012] 22461896 21 ODE no
[Andrieux et al., 2014] 24618419 9000 BAN yes
[Ascolani and Liò, 2014] 24586338 13 DDE no
[Cellière et al., 2011] 22051045/BIOMD0000000600 18 ODE no
[Chung et al., 2009] 19254534 17 ODE no
[Clarke et al., 2006a] 17186703/BIOMD0000000112 10 ODE no
[Khatibi et al., 2017] 28407804 11 DDE no

[Li et al., 2017] 29322934 14 ODE yes
[Lucarelli et al., 2018] 29248373 13 ODE no
[Melke et al., 2006a] 17012329 17 ODE no

[Musters and van Riel, 2004] 17270884 5 PL yes
[Nakabayashi and Sasaki, 2009b] 19358856 7 ODE no

[Nicklas and Saiz, 2013] 23804438 38 ODE no
[Proctor and Gartland, 2016] 27379013/BIOMD0000000612 37 ODE no
[Schmierer et al., 2008b] 18443295/BIOMD0000000173 26 ODE no

[Shankaran and Wiley, 2008] 18780891 ∼15 ODE no
[Steinway et al., 2014] 25189528 65 BAN no
[Steinway et al., 2015] 28725463 69 BAN no
[Strasen et al., 2018] 29371237 26 ODE no
[Tortolina et al., 2015] 25671297/MODEL1601250000 460 ODE no

[Venkatraman et al., 2012] 23009856/BIOMD0000000447 13 ODE yes
[Vilar et al., 2006a] 16446785/BIOMD0000000101 6 ODE no

[Vilar and Saiz, 2011] 22098729 12 ODE no
[Vizán et al., 2013] 24327760/BIOMD0000000499 26 ODE no
[Wang et al., 2014] 24901250 27 ODE no

[Warsinske et al., 2015] 26384829 10 ODE yes
[Wegner et al., 2012] 22284904/BIOMD0000000410 53 ODE no
[Zhang et al., 2018] 29872541 7 ODE no
[Zi and Klipp, 2007] 17895977/BIOMD0000000163 16 ODE no
[Zi et al., 2011b] 21613981/BIOMD0000000342 21 ODE no

Table 1: Models of TGF-β signaling. ODE = ordinary differential equations;
DDE = delay differential equations; BAN = Boolean automaton networks.
PL=hybrid, piecewise linear ODEs.
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3 Kappa, a formalism adapted to model the biolog-

ical component networks of the extracellular ma-

trix

Modeling the ECM can hardly be done by traditional techniques, because it
involves the formation of large compounds of proteins. We use the Kappa
modeling environment [Boutillier et al., 2018b] to summarize the knowledge
that is available in the literature about the molecular interactions surrounding
the activation of TGF-β in the ECM.
Complex systems of interaction between molecules are difficult to model for
several reasons. Firstly, due to many potential bindings between proteins and
numerous potential post-translational changes of conformation, there exists
a large (if not infinite, in the case of polymers) number of different kinds of
molecular complexes. It is often even impossible to enumerate them. Sec-
ondly, the dynamics of these systems is usually triggered by concentration- and
time-scale separation; competition against shared-resources; complex causal-
ity chains; and non linear feedback loops. As a consequence, taking a biochem-
ical approach, which consists in summarising reactions between molecules as
generic, local patterns of interactions, seems to be the only viable alternative
for modeling these systems and understanding how the dynamics of their pop-
ulations of molecules may emerge from individual interactions at the micro-
scopic level.
Kappa [Danos and Laneve, 2004] is a site-graph rewriting formalism, that is
freely inspired by reaction schema encountered in organic chemistry. Themain
idea is to describe each instance of protein as a node in a graph. Each kind of
protein has some interaction sites which can bind pair-wise. The interactions
between molecules are formalised by the means of rewrite rules. The rules
either stand for interactions that are detailed in the literature or for some fic-
titious interactions that exist to make assumptions about the information that
is missing or to roughly simplify some parts that we do not want to detail too
much. The use of rules eases frequent updates of the models, which enables
the modeler to test numerous scenarios or to modify the environment of the
model. A set of rules can be interpreted as a dynamical system which de-
scribes the evolution of a soup of molecules. There are several choices: when
the number of different kinds of molecular complexes is not too great, the set
of rules may be translated into ODEs [Camporesi et al., 2017]. Each set of rules
also induces a continuous time Markov chain the execution traces of which can
be sampled by simulation [Danos et al., 2007b]. Thanks to the use of specific
data-structures [Danos et al., 2007b, Boutillier et al., 2017], the computation
cost of such simulation does not depend on the number of kinds of molecular
complexes, which may even be infinite.
Kappa ecosystem [Boutillier et al., 2018b] offers several tools to assist the mod-
eler during her task. Static analysis [Danos et al., 2008, Feret and Lý, 2018,
Boutillier et al., 2018a] may be used to curate models. Canonical and sec-
ondary pathways may be extracted thanks to causality analysis [Danos et al.,
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Figure 2: Contact map of the Kappa model for TGF-β activation: Projection
of model describing the molecule interaction networks. Proteins and gly-
cosaminoglycans are represented by turquoise nodes, binding sites are rep-
resented by red nodes (if the sequence involved is not known, the site is des-
ignated by a letter, x, y, z etc). The lines between the sites illustrate potential
links involving these binding sites. ITGA-x-B-y, Integrin alpha-x Beta-y ; LAP-
TGFB1, latent TGFB1 ; THBS1, Thrombospondin ; HS, Heparan Sulfate ; FBN1,
Fibrillin 1 ; FN1, Fibronectin, FBLN, Fibulin ; THSD4, ADAMTSL-6 ; MFAP2,
Microfibril Associated Protein 2 ; LTBP1, Latent Transforming Growth Factor
Beta Binding Protein 1 ; MMP, Matrix Metalloprotease ; TIMP, Tissue inhibitor
of MMP ; COL1, Type 1 collagen ; DCN, Decorin.
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2007a, Danos et al., 2012]. Formal methods can also be used to identify the key
elements in information propagation. The result is a model reduction which
never loses any information about the quantities that are observed in themodel
[Feret et al., 2009, Danos et al., 2010, Camporesi et al., 2013].
We wrote a model for the influence of the ECM on TGF-β signal, including
numerous extracellular interactions that are documented in the literature, and
some fictitious rules to stub gene activity and its interaction with TGF-β. The
model is made of around 300 interaction rules which are freely available on
the web [Théret et al., 2020b]. Each rule is parameterised by a kinetic rate.
Some of the rates are deduced from precise information about the concentra-
tion of proteins at stationary distribution and their half-time periods. Some
others are chosen approximately, in order to best model what is known about
the time scales of each interaction. Our model comprises around 30 kinds of
proteins. The potential bonds between these proteins are summarised in Fig. 2,
which provides a convenient snapshot of the model, while not detailing every
rule. Selected portions of the models are depicted and explained intuitively in
[Théret et al., 2020a].
Our goal, when designing this model, is three-folds. Firstly, the interaction
rules are written to organize what is known in the literature and to let us make
some assumptions about what is not known. It is a way to make knowledge
about the models and its different variants navigable. Secondly, the different
semantics of Kappa allow the execution of the rules. This makes knowledge ex-
ecutable. The last, longer term objective, is to understand how themacroscopic
behaviour may emerge from the interactions between the individual instances
of proteins. In the end, the semantics of Kappa make it possible to better ap-
proach the dynamics of the multiple molecular interactions that contribute to
the activation of TGF-β. Using parameters specific to the pathological context,
this model can allow us to identify the key events that regulate this activation
and consequently potential therapeutic targets.

4 Mesoscale andmulti-scale tissuemodels integrat-

ing TGF-β signaling and its interaction with the

ECM

The coupling of TGF-β with the ECM is a multi-scale and multi-physical prob-
lem. It involves chemical kinetics of intracellular signaling and of ECM bio-
chemical processes, but also more complex physico-chemical processes such
as polymerisation and viscoelastic dynamics of collagen and fibrin fibres of
the ECM, as well as population dynamics of various cell types.
A simple, but rather limited, solution to modelling such a complex situation
is model merging. Models representing several levels of organisation can be
merged together to cope with the coupling between scales. Merging, however,
is not straightforward even when models of different levels are of the same
type (PDEs, ODEs or Markov processes). For instance, it is relatively easy to

9



couple ODE models of intracellular pathways with models of the same type
of the extracellular matrix, by using the standard technique of compartments
[Venkatraman et al., 2012, Li et al., 2017]. It is much more difficult to couple
single cell dynamics with the population dynamics because the variables of
these models cannot be simply juxtaposed with different spatial locations.
Single scale, ODE population dynamics models were used to study the role of
TGF-β in immunotherapy and wound healing [Waugh and Sherratt, 2006, Wil-
son and Levy, 2012, Hu et al., 2019, Arciero et al., 2004, Bianchi et al., 2015]. In
these models the ECM variables are implicit in the cell-cell interactions but do
not follow dynamical equations. These simplifications are extreme and could
lead to inaccurate conclusions for processes depending critically on the dy-
namical structuring of the ECM, such as wound repair for instance.
Hybrid approaches combining discrete cell positions with continuous descrip-
tion of collagenmatrix and other ECM components have been used to study the
role of the TGF-β/ECM interactions in wound repair [Dallon et al., 2001, Wang
et al., 2019, Cumming et al., 2009]. In these models, fibroblasts and immune
cell motility and proliferation are affected by TGF-β, and cells interact one with
another or with the collagen chemically or by direct, physical contact. A simi-
lar model was used to couple TGF-β signaling with the micro-environment in
a preliminary study of tumor-stroma interactions [Morshed et al., 2018]. Fur-
thermore, there is a need for models including mechanical stresses known to
be generated in ECM by cell traction and vessel growth.
Agent-based modeling enabling cells to have individual behaviours including
division and motility has been used for models of epidermis in the context of
wound healing [Wang et al., 2009, Stern et al., 2012, Sun et al., 2009, Adra
et al., 2010, Sun et al., 2009]. However, this solution is computationally ex-
pensive and has limitations in terms of biochemical details that can be used
to model or parameterise the cell behaviour; its interaction with the micro-
environment; or the number of cells and, moreover, is entirely based on nu-
merical simulation.
Continuous modelling using partial differential equations (PDEs) can be jus-
tified by coarse graining (homogenisation) when the spatial scale of interest
is much larger than the cell size and the typical dimensions of fibers. This
modelling can take into account spatially inhomogeneous densities of various
cell types and ligands, as well as collagen fibers and other ECM constituents.
Directed, un-directed, and chemically mediated cell mobility are taken into ac-
count in Keller-Segel PDE systems or in similar systems used in oncology and
likewise in the context of chondrogenesis or fibrosis [Bitsouni et al., 2017, Kim
and Othmer, 2013, Friedman and Hao, 2017, Chen et al., 2018]. Although
quite flexible, easy to simulate in 2D and 3D, and sometimes leading to an-
alytic results, these models consider intracellular dynamics as instantaneous
and do not handle mechanical interactions.
While informative, all these studies integrate the extracellular world as a very
simplified input that did not capture the extracellular dynamics of TGF-β life
in its full complexity. For instance, the kinetics of production and degradation
of TGF-β including its latent form bound to ECM and its active soluble form
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was considered in the study of TGF-β interaction with chondrocyte and mes-
enchymal stem cells [Chen et al., 2018]. The underlying biochemical networks
that regulated such dynamics, however, remained unexplored. Importantly,
the ECM is a complex molecular network combining proteins, proteolglycans
and glycoaminoglycans that is constantly remodeled through modification of
components’ synthesis and their degradation by proteases. This specific tissue
microenvironment is disrupted in pathological processes and directly affects
the TGF-β-mediated signal by modifying its storage and release.
Because of slow intracellular dynamics, differences occur not only between
cells of different types and genotypes but also between clonal cells. Non-
genetic sources of variability are particularly important in the development
of resistance to drug treatment of tumors or, more generally, in the adapta-
tion of cell populations to stresses. We have recently introduced a new ap-
proach to cope with this variability while remaining in a continuous frame-
work that is convenient for simulation and analysis. This approach uses meso-
scopic PDEs over temporal, spatial, and structural dimensions [Hodgkinson
et al., 2018, Hodgkinson et al., 2019]. Mesoscale models are obtained from the
Liouville continuity equation. For illustration, let us consider that there are n
types of cells. In this model cells are distinguished by two types of variables,
a discrete one representing the type i ∈ {1, . . . ,n} and a continuous one y ∈ Rm

representing the internal state (the vector of concentrations of m biochemical
species). Then c = (c1, . . . , cn) represents a vector of cell distributions satisfying
the equation

∂c(x,y, t)

∂t
= −∇xFx(c,x,y, t)−∇yFy(c,x,y, t) + S(c,x,y, t), (1)

where x is the spatial position; y is the cell’s internal state (structure variable);
Fx is the spatial flux; Fy is the structural flux; and S is the source term. If the

cell’s internal state follows ODEs
dy
dt = Φ(y), then the structural flux is advec-

tive Fy = cΦ. The spatial flux function contains terms related to cell motility;
undirected (diffusion) or directed (chemotaxis, haptotaxis). The source term
integrates cell proliferation, death and transformation from one cell type to
another.
The mesoscale formalism can also integrate mechanical stresses by addition of
constitutive equations coupled to cell densities and biochemistry. Biochem-
istry has been coupled to stress by using microscopic Brownian dynamics of
ECM remodeling [Malandrino et al., 2019] or Kramer’s formula for chemi-
cal reaction rates with a free energy dependent on pulling force of actin fil-
aments [Cockerill et al., 2015]. Another option would be to incorporate slower
structural changes in ECM fibre density or mechanical stress into a temporally
spatially, and structurally distributed ECM population, possessing its own dy-
namical PDE. Existing models are oversimplified and incomplete and there
is strong need for a general continuous mechanical theory relating structure,
deformation, cell population dynamics and biochemistry in the ECM.
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5 Conclusion

Modelling TGF-β signaling integrating extracellular activation processes and
intracellular pathways raises several open challenges.

An important challenge is to simulate processes that occur at highly sepa-
rated time-scales as well as the spatial organization of ECM interactions. De-
riving a model that would scale up to the size of these systems, and to the
long periods which have to be simulated to observe the phenomena of inter-
est, requires precise abstractions of populations of cells. These abstractions
consist in changing the grain of description of the behaviours of these cells
and can be formalised in many ways thanks to mathematical tools such as clo-
sure operators, Galois connections, ideals, changes of variables [Cousot and
Cousot, 1977]. Yet, it is important to keep the information that mainly drives
the dynamics of the whole system. Indeed the diversity of behaviours — even
among identical cells — may constitute an important part of the signal that
is computed by the interactions between the proteins and that which controls
the behaviour of the system at the macroscopic level. In our opinion, nei-
ther non-deterministic approximations nor homogeneous abstractions would
likely offer satisfying solutions to solve this issue. Non-deterministic systems
are systems in which, at each moment of the execution, the immediate fu-
ture has to be chosen among the elements of a set of potential behaviours,
but where the choice of element is not specified, as opposed to determinis-
tic systems for which there always exists a unique potential future; reactive
systems for which the choice of the next event is triggered by an interaction
with an external environment; and stochastic systems for which a distribu-
tion of probabilities defines the likelihood of each potential immediate future
behaviour. Non-deterministic abstractions flatly over-approximate all the po-
tential behaviours of each cell without providing any information about their
probability distribution. They can hardly be used in composite models, since
many potential behaviours would have to be considered for each cell, and,
thus, it would require the consideration of too many cases across the popula-
tion of cells. Homogeneous abstractions consist in abstracting away the diver-
sity of behaviours of the population of cells, and to replace them with several
copies of a unique system, which behaves in the same way. Abstractions with
too great a homogeneity would keep only most probable behaviours for the
cells, whilst ignoring others. As a consequence, such a system would not faith-
fully model the diversity of behaviours among the population of cells, which
may be a key ingredient in explaining the overall behaviour of the composite
model. Stochastic models keep enough information about the distribution of
the different behaviours within a population of cell. Moreover, they can be
easily integrated within a multi-scale model. Nevertheless, they come with an
important combinatorial cost and can hardly be simplified.

Mesoscale PDE models represent a promising direction for modeling the
ECM. They are well suited for implementing middle-out modelling strate-
gies, in which several levels of organisation are treated together, but with just
enough details to render the essence of the overall organisation. Mesoscale
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models can be built from scratch, but can also include already available mod-
els, or parts of them, after model reduction. The model reduction procedure,
based on time-scale separation and singular perturbations, averaging or ho-
mogeneization, is not yet well established and is the subject of active research
[Radulescu et al., 2012]. Although deterministic, these models can render
the stochastic behaviour of “microscopic” variables, responsible, among other
factors, for the heterogeneity of cellular decision. In this approach, stochas-
tic simulations are replaced by calculation of probability distributions of mi-
croscopic variables, that follow PDEs in mesoscopic descriptions. In spite of
recent progress, the important question of the coupling between mechanical
stress, biochemistry and cell behaviour has been treated only superficially. The
ECM is a complex medium, including insoluble fibers-forming molecules (col-
lagen, fibronectin, elastin) and soluble molecules such as proteoglycans and
glycoaminoglycans which constitute a hydrated gel, of relatively high viscosity,
and confer elastic properties to the ECM and glycoproteins characterized by
their adhesive properties (laminin, fibronectin, tenascin, etc.). The viscoelastic
properties of this medium, in particular its capacity to transmit mechanical
cues that further influence cellular processes, such as differentiation, prolif-
eration, survival and migration, could be instrumental for tissue remodelling.
Constitutive equations, eventually inspired from the physics of polymers and
gels [Larson, 2013, Prost et al., 2015], should be able to provide the continuous
mechanics theoretical framework needed for relating stress, strain, signaling
and cell decisions in tissue models.
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K. Q., Théret, N., and Vignet, P. (2018a). Kasa: A static analyzer for kappa.
In Ceska, M. and Safránek, D., editors, Computational Methods in Systems
Biology - 16th International Conference, CMSB 2018, Brno, Czech Republic,
September 12-14, 2018, Proceedings, volume 11095 of Lecture Notes in Com-
puter Science, pages 285–291. Springer.

[Boutillier et al., 2017] Boutillier, P., Ehrhard, T., and Krivine, J. (2017). Incre-
mental update for graph rewriting. In Yang, H., editor, Programming Lan-
guages and Systems - 26th European Symposium on Programming, ESOP 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10201 of Lecture Notes in Computer Science, pages 201–228. Springer.

[Boutillier et al., 2018b] Boutillier, P., Maasha, M., Li, X., Medina-Abarca,
H. F., Krivine, J., Feret, J., Cristescu, I., Forbes, A. G., and Fontana, W.
(2018b). The kappa platform for rule-based modeling. Bioinformatics,
34(13):i583–i592.

[Brown and Marshall, 2019] Brown, N. F. and Marshall, J. F. (2019). Integrin-
mediated tgfβ activationmodulates the tumourmicroenvironment. Cancers,
11(9):1221.

[Camporesi et al., 2013] Camporesi, F., Feret, J., and Hayman, J. M. (2013).
Context-sensitive flow analyses: A hierarchy of model reductions. In Gupta,
A. and Henzinger, T. A., editors, Computational Methods in Systems Biology -
11th International Conference, CMSB 2013, Klosterneuburg, Austria, Septem-
ber 22-24, 2013. Proceedings, volume 8130 of Lecture Notes in Computer Sci-
ence, pages 220–233. Springer.

[Camporesi et al., 2017] Camporesi, F., Feret, J., and Lý, K. Q. (2017). Kade:
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