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 ABSTRACT  Malignant pleural mesothelioma (MPM) is a highly lethal cancer of the lining of the 

chest cavity. To expand our understanding of MPM, we conducted a comprehensive 

integrated genomic study, including the most detailed analysis of  BAP1  alterations to date. We identi-

fi ed histology-independent molecular prognostic subsets, and defi ned a novel genomic subtype with 

 TP53  and  SETDB1  mutations and extensive loss of heterozygosity. We also report strong expression 

of the immune-checkpoint gene  VISTA  in epithelioid MPM, strikingly higher than in other solid cancers, 

with implications for the immune response to MPM and for its immunotherapy. Our fi ndings highlight 

new avenues for further investigation of MPM biology and novel therapeutic options. 

  SIGNIFICANCE:  Through a comprehensive integrated genomic study of 74 MPMs, we provide a deeper 

understanding of histology-independent determinants of aggressive behavior, defi ne a novel genomic sub-

type with  TP53  and  SETDB1  mutations and extensive loss of heterozygosity, and discovered strong expres-

sion of the immune-checkpoint gene  VISTA  in epithelioid MPM.  Cancer Discov; 8(12); 1548–65. ©2018 AACR.   

See related commentary by Aggarwal and Albelda, p. 1508.     
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  INTRODUCTION 

 Malignant pleural mesothelioma (MPM) is a cancer of the 
mesothelial cells lining the pleural cavity. It was rare until 
the widespread use of asbestos in the mid-20th century ( 1 ). 
Although reduction and strict regulation of asbestos use 
may be leading to a leveling off in new cases in Western 
countries, its long latency, together with continued use 
of asbestos in non-Western countries, ensures that MPM 
remains a global problem ( 2 ). MPM is almost universally 
lethal, with only modest survival improvements in the past 
decade ( 3 ), suggesting that standard treatment is reaching a 
therapeutic plateau. Elucidating oncogenic genomic altera-

tions in MPM is therefore essential for therapeutic progress 
( 4–7 ). Frequent copy-number loss and recurrent somatic 
mutations in  BAP1, NF2, CDKN2A , and others have been 
identifi ed ( 4–6 ), yet no targeted therapies exploiting these 
alterations have emerged. 

 To expand our understanding of the molecular landscape 
and biological subtypes of MPM, and provide insights that 
could lead to novel therapies, we have conducted a compre-
hensive, multiplatform, genomic study of 74 MPM samples, 
as part of The Cancer Genome Atlas (TCGA). Here, we report 
how these integrated analyses defi ne prognostic subsets of 
MPM, characterize a new near-haploid molecular subtype, 
and identify novel potential therapeutic targets.  
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RESULTS

Cohort Description

We studied 74 samples of primary MPM from patients 
with no prior systemic therapy. This cohort was predomi-
nantly male (82%), with a median age of 64 years, and 
tumors were of mostly epithelioid histology (70%), a typical 
profile for MPM. Asbestos exposure history was positive in 
62%, negative in 18%, and unavailable or unknown in the 
remainder. Demographic and clinical details are provided 
in Supplementary Tables S1A and S1B, as well as Supple-
mentary Fig. S1.

We performed comprehensive molecular profiling, includ-
ing exome sequencing, copy-number arrays (Supplementary 
Fig. S2), mRNA sequencing (Supplementary Fig. S3), noncod-
ing RNA profiling, DNA methylation (Supplementary Fig. 
S4), and reverse-phase protein arrays (RPPA; Supplementary 
Fig. S5). Methods and detailed results of individual analyses 
are provided in Supplementary Sections 1–13.

Landscape of Somatic Mutations and  
Copy-Number Alterations

Whole-exome sequencing (WES) revealed a somatic muta-
tion rate of <2 nonsynonymous mutations per megabase in 
all samples except for an outlier case with a mutation rate of 
8 nonsynonymous mutations per megabase (Fig. 1A). This 
places MPM at the low end of somatic mutation burden 
among cancers (8). The outlier tumor with a 10-fold higher 
mutation rate showed a distinctive pattern of C>T mutations 
occurring almost exclusively at CpG dinucleotides (Fig. 1B). 
This relatively hypermutated tumor harbored a homozygous 
nonsense mutation in MSH2, which would suggest that the 
tumor lacked mismatch-repair capacity, but the observed 
mutational spectrum was atypical for mismatch-repair defi-
ciency (9). Otherwise, the observed mutational spectrum was 
similar across patients and lacked distinctive or novel fea-
tures (Fig. 1C). Signatures of smoking- or APOBEC-induced 
mutagenesis were not observed. Asbestos has been proposed 

Figure 1.  Genomic and clinical features of the TCGA MPM cohort. A, iCOMUT plot describing clinical and molecular features of the TCGA MPM 
cohort. Each column represents an individual case, and rows represent clinical and molecular features. Samples are grouped based on MPM histologic 
type. Red arrowhead indicates the hypermutated case. Copy-number alterations are defined as follows: “Deletion” is a deep loss, possibly a homozygous 
deletion; “Loss” is a shallow loss (possibly heterozygous deletion); “Gain” indicates a low-level gain; and “Amplification” is a high-level amplification. Indi-
vidual genes shown include significantly mutated genes and selected additional genes of interest. NOS, not otherwise specified. B, Observed mutational 
spectrum of the hypermutator case (TCGA-UD-AAC1) with 375 nonsilent mutations. C, Observed mutational spectrum of the remaining other 73 MPM 
cases in the TCGA cohort (cohort average: 36 nonsilent mutations/patient). D, Comparison of SMGs between the present study and that of Bueno et al., 
2016 (5).
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to cause genotoxicity via DNA breaks and secondary oxida-
tive damage (10). However, the mutational spectrum and 
local sequence context was not significantly different between 
cases with or without known asbestos exposure (χ2, P = 0.3); 
although this negative finding should be viewed with caution 
given the limitations of the data set, it is in agreement with 
prior studies (5).

We sought to identify genes mutated significantly above 
the background rate using MutSig2CV. Significantly 
mutated genes (SMG) at a false discovery rate (FDR) of 
<0.05 included BAP1, NF2, TP53, LATS2, and SETD2, all 
known cancer genes in MPM (Fig. 1A; Supplementary 
Table S1C). All five genes showed high rates of nonsense, 
frameshift, and splice-site mutations, highlighting them as 
targets of inactivation, consistent with their functions as 
tumor suppressors. Mutations in these five SMGs did not 
show associations with histories of asbestos exposure or 
smoking. For validation in an independent cohort that also 
used a different algorithm to define SMGs, we compared 
the results of our SMG analysis with the SMGs previously 
identified in 99 MPM exomes using the MUSIC algorithm 
(5) and found a strong overlap for SMGs at an FDR of <0.05 
in both studies (Fig. 1D). Notably, among lower confidence 
SMGs (FDR < 0.15 but > 0.05), only SETDB1, which may 
define a novel subtype of MPM (discussed below), was iden-
tified in both analyses (Fig. 1D).

The somatic copy-number alteration (SCNA) landscape 
was characterized by frequent recurring focal and arm-level 
deletions, but no recurring amplifications, consistent with 
the notion that MPM development is driven primarily by 
loss of tumor suppressor genes, rather than by activation 
of classic oncogenic driver genes (Supplementary Section 
4; Supplementary Fig. S2). Focal deletions affected several 
tumor suppressor genes known to be altered in MPM (5), 
most notably CDKN2A with deletions (defined as deep, likely 
homozygous) in 36 (49%) and losses (defined as shallow, 
possibly single-copy) in 5 (7%) samples. Likewise, NF2 dele-
tions were confirmed in 25 (34%) samples and losses in 30 
(40%) samples; as many of the latter harbored mutations of 
the remaining allele, evidence of biallelic NF2 inactivation 
was common (Fig. 1A). CDKN2A deletions often encompass 
MTAP, the adjacent gene on 9p21 (11), which encodes meth-
ylthioadenosine phosphorylase, whose deficiency has recently 
been reported to lead to reduced PRMT5 enzymatic activity 
and heightened sensitivity to its pharmacologic inhibition 
(12, 13). Codeletion of CDKN2A and MTAP, associated with 
low levels of mRNA expression of both genes, was observed 
in 20 cases (Supplementary Fig. S2). Although no correlation 
with overall survival was observed for BAP1 status, loss of 
CDKN2A was strongly associated with shorter overall sur-
vival (Cox proportional hazards, P = 7.3 × 10−6), as previously 
shown (14, 15).

Finally, an analysis for genomically integrated viral 
sequences, including SV40, was negative (Supplementary Sec-
tion 8), as was a screen of exome and RNA-sequencing data 
for evidence of EWSR1 and ALK fusions, recently reported in 
rare cases of MPM (16, 17) and peritoneal mesothelioma (18), 
respectively. As well, no activating mutations in the canonical 
MAPK or PI3K/AKT signaling pathways were identified in 
this cohort.

Comprehensive Analysis of BAP1 Status in MPM

BAP1, encoding a nuclear deubiquitinase, is the most fre-
quently mutated cancer gene in MPM, in both our data set 
and others (5), and is also recurrently inactivated in clear cell 
renal carcinoma, uveal melanoma, and cholangiocarcinoma 
(19). Somatic BAP1 mutations have germline counterparts 
that define the BAP1 hereditary cancer syndrome (20). In 
contrast to other cancers, BAP1 inactivation in MPM does not 
correlate with adverse outcomes. Because its role in MPM biol-
ogy remains unclear, we compared BAP1-inactivated and wild-
type cases across multiple platforms. First, to better segregate 
cases according to BAP1 status, we performed a comprehen-
sive analysis of inactivating alterations through a detailed 
review of single-nucleotide variants, small and large indels, 
whole gene deletions, and structural variants; this showed the 
overall prevalence of BAP1 alterations to be 57% (Fig. 1A; Sup-
plementary Table S2A), in line with recent studies (21). Most 
MPM with inactivating mutations in BAP1 (25/26, 96%) also 
had concurrent loss of heterozygosity (LOH) on chromosome 
3p21.1, supporting a classic two-hit tumor suppressor mecha-
nism. Overall, BAP1 status was defined as follows: 32 samples 
with no evidence of BAP1 alteration, 6 with a single (heterozy-
gous) mutation or deletion, and 36 with biallelic inactivation. 
No germline mutations in BAP1 were identified in this cohort.

BAP1 alterations showed nonrandom patterns of co-
occurrence with mutations in other key MPM cancer genes  
(Fig. 2A). As expected, mRNA expression levels of BAP1 itself 
were reduced in the presence of genomic BAP1 inactivation 
or loss (Fig. 2B). We also observed an inverse correlation of 
BAP1 alterations and SCNAs. BAP1-altered tumors had fewer 
chromosome arm gains and losses (Fig. 2C, median 9.5 vs. 
15.5, Mann–Whitney, P < 0.01), as well as fewer focal SCNAs 
(Supplementary Fig. S2).

Because BAP1-mediated deubiquitination of histones 
and transcriptional proteins is thought to regulate gene 
expression, we compared mRNA expression patterns between 
tumors that were wild-type for BAP1 and those with inactiva-
tion of one or both BAP1 alleles. We identified 1,324 differ-
entially expressed genes with an FDR of <0.01, of which 75% 
were downregulated in the BAP1-inactivated samples. As pre-
viously noted in experimental models (22), BAP1-inactivated 
tumors in our cohort had lower mRNA expression of several 
HOXA genes, including HOXA5 and HOXA6, but no differ-
ence in EZH2 mRNA expression or its PRC2 partners EED 
and SUZ12.

As BAP1 is known to regulate the ubiquitination and hence 
stability of several transcriptional proteins, we examined the 
association of BAP1 status with inferred activity of transcrip-
tion factors (TF) using a recently developed computational 
strategy that integrates phosphoproteomic and transcrip-
tomic data with predicted TF binding sites (23). We used 
this algorithm to assess significant differences in inferred 
TF activities between BAP1-inactivated and wild-type MPM 
(satisfying FDR-corrected P < 0.01, t test), linking BAP1 status 
to altered activity of TFs. Indeed, many TFs identified in this 
analysis had highly significant associations with BAP1 status 
(Fig. 2D and E; Supplementary Table S2B).

In particular, YY1 had significantly reduced inferred activ-
ity in BAP1-inactivated samples (Fig. 2F). BAP1 forms a 
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ternary complex with HCF1 and YY1, which acts as transcrip-
tional repressor of genes involved in cell proliferation (24). 
YY1 has also been shown to regulate or interact with other 
TFs whose inferred activity was also altered in our analysis, 
such as MAX and EGR2. Moreover, there is evidence that 
YY1 interacts with EZH2, the catalytic subunit of PRC2, and 
is required for its function in gene silencing (25). Thus, to a 
degree, the transcriptional consequences of BAP1 inactiva-
tion could be attributed to changes in recruitment of specific 
TFs to their target genes, either directly, as in the loss of 
ternary YY1–HCF1–BAP1 complexes, or indirectly, as in the 
case of TFs that are themselves downstream targets of YY1 
(Supplementary Table S2C).

Notably, BAP1-inactivated samples demonstrated a sig-
nificantly increased inferred activity of IRF8 (Fig. 2G; Sup-
plementary Table S2D), a hematopoietic lineage TF involved 
in interferon signaling and dendritic cell differentiation. 
Both pathways were upregulated in our BAP1-based super-
vised gene mRNA expression analysis (see above). Moreover,  
PARADIGM analysis confirmed that the IRF activation path-
ways are upregulated in BAP1-inactivated samples. IRF8 has 
been implicated in the biology of CD103-positive dendritic 
cells whose antigen-presenting function is highly effective at 
stimulating cytotoxic T cells in the tumor microenvironment 
(26). Taken together, these observations suggest an associa-
tion between BAP1 status and perturbed immune signaling 
in MPM that warrants further exploration.

MPM with Genomic Near-Haploidization,  
a Novel Subtype

Allele-specific copy-number analysis of WES data using 
the FACETS algorithm (27) identified three cases with strik-
ing genome-wide LOH that affected more than 80% of the 
genome, which was confirmed in SNP6.0 copy-number array 
data (Fig. 3A and B; Supplementary Fig. S2). This phenom-
enon, well described in acute lymphoblastic leukemia (28), 
occurs when the nascent cancer clone loses one copy of nearly 
all chromosomes [which we term “genomic near-haploidi-
zation” (GNH)] followed by duplication of the remaining 
chromosomes. To better assess the prevalence of this unusual 
genomic phenomenon in MPM, we screened 80 samples 
from a Japanese International Cancer Genome Consortium 
(ICGC) MPM cohort, identifying two additional cases (Fig. 
3B), representing a combined prevalence of 5 of 154 (3.2%). 
Neither the three TCGA cases, nor the two ICGC cases, had 

deletions or point mutations in BAP1, PBRM1, or SETD2. 
Remarkably, all 5 cases had inactivating point mutations in, 
or homozygous deletion of, SETDB1, which encodes a histone 
methyltransferase involved in gene silencing, representing the 
only SETDB1-mutated MPMs in the combined TCGA–ICGC 
cohort. Additionally, 4 of 5 cases with evidence of GNH had 
driver mutations in TP53. Although near-haploid cases have 
been reported in other cancers (e.g., acute lymphoblastic 
leukemia, chondrosarcoma, and adrenocortical carcinoma), 
the strong association of TP53 and SETDB1 comutation with 
widespread LOH has not been previously reported in other 
cancers (28, 29).

To further define the clinical features of this novel subset, 
we obtained data on 16 additional cases with near-haploid 
karyotypes from a large independent series of MPM stud-
ied by cytogenetic analysis of short-term primary cultures 
(Supplementary Section 2.2; note: cytogenetic analysis can 
identify only GNH cases that have not undergone genome 
duplication). Although most of the genome in our 5 cases 
showed LOH, chromosomes 5 and 7 strikingly retained het-
erozygosity (Fig. 3C). These two chromosomes also remained 
disomic in the cases with near-haploid karyotypes in the inde-
pendent cytogenetic series (Supplementary Table S3). Based 
on this combined set of 21 near-haploid MPM, a distinctive 
profile of genomic and clinical features emerged, demarcat-
ing a novel molecular subtype of MPM. Strikingly, most 
patients with MPM showing GNH were female (M:F = 1:4), 
in sharp contrast to the overall TCGA–ICGC MPM cohort, 
where males greatly predominated (M:F > 4:1; P < 0.01, Fisher 
exact test). No difference in distribution of histologic types 
was observed in the GNH subset.

Because MPM with evidence of GNH have typically under-
gone a genome-doubling event, we were able to assess the 
timing of this relative to point mutations (30, 31). Essentially, 
mutations acquired before genome duplication would be pre-
sent on both copies of the duplicated chromosome, whereas 
those occurring after would be heterozygous. In all three 
TCGA cases with GNH, the majority of the point mutations 
were present on both copies of duplicated chromosomes, sug-
gesting that the genome duplication occurred relatively late 
in the evolution of the cancer. In three cases, the TP53 driver 
mutation was homozygous, suggesting it occurred before 
genome doubling. In contrast, the SETDB1 mutations were 
present on only one of the two copies of chromosome 1 in 
two of the three cases, suggesting they occurred after LOH 

Figure 2.  Supervised comparisons between BAP1-inactivated and wild-type MPM. A, BAP1 inactivation by copy-number loss or mutation across the 
cohort, along with mutations in 6 other genes (left). These genes were selected as those with more than 3 nonsilent mutated tumors. Large genes with 
more than 3 kb coding regions (TTN, FAT4, and MGA) are unlikely to be functional in cancer and were excluded. The bar plot (right) shows the Fisher exact 
test P values for mutual exclusivity and co-occurrence relative to BAP1. Only SETD2 and NF2 approach significant co-occurrence with BAP1 inactivation. 
The one-tail Fisher P values for co-occurrence and the Benjamini–Hochberg FDRs are P = 0.04, FDR = 0.15 for SETD2 and P = 0.05, FDR = 0.15 for NF2. 
We detected MALAT1 (aka NEAT2) “RNA” mutations in 4 BAP1-inactivated samples, but this does not reach significance (P = 0.05, FDR ∼0.27). B, Normal-
ized BAP1 mRNA expression levels in the wild-type, 1 hit and 2 hit subgroups. C, Box plot demonstrating a significantly lower frequency of arm-level 
losses in BAP1-inactivated tumors (BAP1 2 hits) compared with wild-type (BAP1 0). D, Inferred transcription factor (TF) activities significantly associ-
ated with BAP1 inactivation (FDR < 0.01). E, Volcano plot with mean inferred TF activity difference in BAP1-inactivated and BAP1 wild-type patients 
plotted on the x-axis, and FDR-adjusted significance from t test plotted on the y-axis (−log10 scale). TFs significantly associated with BAP1 inactivation 
status (FDR < 0.01) are colored in orange. F and G, Box plots with differential inferred activities of YY1 (F) and IRF8 (G), two biologically relevant tran-
scription factors. The target genes on which inferences for YY1 (427 genes) and IRF8 (248 genes) activity were based are provided in Supplementary  
Table S2.
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and genome duplication (Fig. 3D). Overall, these data suggest 
a model in which TP53 mutations occur early, and presum-
ably permit the steady (or catastrophic) loss of chromosomes. 
It seems likely that genome reduplication occurs after achiev-
ing near-haploidy, with haploinsufficiency of SETDB1 arising 
later.

Integrative Multiplatform Analysis Defines Novel 
Prognostic Subsets

Although the current classification of MPM into epithe-
lioid, sarcomatoid, and biphasic histologies is prognosti-
cally useful, there remains variability in clinical features and 
patient outcomes within histologic subtypes. Previous analy-
ses (5, 7) based on mRNA expression alone have defined 
unsupervised clusters largely recapitulating these histologic 
distinctions. To find out whether multiplatform molecular 
profiling might provide additional resolution to define prog-
nostic subsets of MPM, we performed integrative clustering 
across multiple assay platforms using two algorithms: iClus-
ter (32) and PARADIGM (33). Both identified four distinct 
integrated subtypes of MPM. There was a strong concordance 
in subtype assignments between the two algorithms (Fig. 4A; 
Supplementary Figs. S6 and S7), especially for the best (clus-
ter 1) and worst (cluster 4) prognosis clusters, indicating that 
integration of molecular data can identify distinct subgroups 
of MPM, independent of the specific statistical methodol-
ogy. Survival was significantly different across the 4 clusters  
(P < 0.0001 for either algorithm; Fig. 4B; Supplementary Fig. 
S7). This survival difference remained significant (P = 0.008) 
after adjusting for histology (epithelioid vs. nonepithelioid) 
and CDKN2A homozygous deletion (Fig. 4C; Supplemen-
tary Fig. S6), a known molecular prognostic factor in MPM 
(14, 15). Although they did provide additional independ-
ent prognostic information, the iClusters nonetheless did 
show correlation with consensus histology (P = 0.002), with 
iCluster cluster 1 being enriched for epithelioid histology 
(similar finding for PARADIGM cluster 1). They also exhib-
ited differences in immune cell infiltrates (Supplementary 
Table S4A), as discussed below, but showed no significant 
correlation with clinical variables such as T stage, N stage, 
asbestos exposure history, or smoking (Supplementary Table 
S4B). Molecularly, these tumors had low SCNA, relatively few 
CDKN2A homozygous deletions (11%), and a high level of 
methylation (Supplementary Fig. S4). All but one (95%) had 
BAP1 alterations: 26% had homozygous deletions and 53% 
had heterozygous loss with mutations.

The poor prognosis cluster (cluster 4; red) had a high score 
for epithelial–mesenchymal transition (EMT) based on gene 
expression (P < 0.001; Fig. 4D), which was distinguished by 
high mRNA expression of VIM, PECAM1, and TGFB1, and 
low miR-200 family expression. These tumors also displayed 
MSLN promoter methylation and consequent low mRNA 

expression of mesothelin, a marker of differentiated meso-
thelial cells, as noted previously in sarcomatoid MPM and the 
sarcomatoid components of biphasic MPM (15, 34). Overall, 
this poor prognosis cluster also showed enrichment of LATS2 
mutations (30% compared with 4% in the rest of the cohort) 
and CDKN2A homozygous deletions (66%). Moreover, this 
cluster showed higher AURKA mRNA expression, higher leu-
kocyte fraction (based on DNA methylation), and elevated 
mRNA expression of E2F targets, G2–M checkpoints, and 
DNA damage response genes. PI3K–mTOR and RAS–MAPK 
signaling were upregulated, based on both mRNA and pro-
tein expression (Supplementary Fig. S7). Additionally, several 
miRNAs were differentially expressed between the good and 
poor prognostic clusters, including miR-193a-3p, which has 
been proposed as a potential tumor suppressor (35). Finally, 
a comparison of immune gene mRNA expression signatures 
(36) across the four clusters revealed a significantly higher 
score for the Th2 cell signature in the poor prognosis cluster 
4 compared with the other clusters (Fig. 4E; Supplementary 
Table S4A). Coincidentally, it has been reported that Th2 
cytokines secreted by immune cells upon exposure to asbes-
tos may promote MPM (37). The analyses of other immune 
signatures are shown in Supplementary Fig. S5.

Although biphasic and sarcomatoid MPM are more aggres-
sive, there remains a need for improved risk stratification 
of epithelioid MPM, for which clinical outcomes are more 
heterogeneous. Therefore, we conducted an integrative clus-
tering analysis restricted to epithelioid MPM. The results for 
the 4-cluster epithelioid-only solution were highly similar to 
the 4-cluster all-MPM solution (Fig. 5A), with only 7 of the 52 
epithelioid samples reassigned to other clusters. This stabil-
ity indicates that the features driving the all-MPM clustering 
are largely independent of histology. The epithelioid-only 
clusters share many of the features defining the correspond-
ing clusters in the all-MPM solution (Fig. 5B). The survival 
analysis also paralleled the all-MPM solution, with cluster 
1 having the best outcomes and cluster 4 having the worst 
(Fig. 5C). PARADIGM analysis of the epithelioid-only subset 
confirmed upregulation of AURKA mRNA expression in the 
poor-prognosis epithelioid-only cluster 4 (Fig. 5D), corrobo-
rating the results from the all-MPM analysis.

Finally, we sought to independently validate the clinical cor-
relations of clusters identified in the TCGA epithelioid cases 
using mRNA expression profiles from two published studies: 
211 MPM analyzed by RNA sequencing (5) and 52 MPM sam-
ples analyzed by mRNA expression microarrays (14). Specifi-
cally, we assigned each mRNA expression profile to one of the 
integrative clusters based on the rules derived from the TCGA 
mRNA data set. For the larger validation cohort (henceforth 
referred to as Bueno), we restricted our analysis to epithelioid 
samples and used the epithelioid-only gene signature to cluster 
samples. We found that the epithelioid-only samples assigned 

Figure 3.  MPM cases with GNH. A, WES-based LOH profiling with the FACETS algorithm revealed three MPM samples with genome-wide LOH.  
B, Allelic copy-number plots of genome-wide LOH cases in the TCGA and Japanese ICGC cohorts. X-axis and y-axis are the chromosome locations, and the 
ratio of an allelic copy number of tumor sample to that of matched normal control (lymphocyte), respectively. Red line shows the higher allele, and blue 
line shows the lower allele. C, Near-haploid metaphase cell derived from the Brigham and Women’s Hospital genome-wide LOH cohort, stained by Giemsa, 
showing loss of one copy of all chromosomes except 5, 7, and X. D, Allelic copy-number plot of a representative TCGA case with biallelic inactivation of 
TP53 and monoallelic mutation of SETDB1, suggesting the latter occurred after the LOH and genome duplication events.
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Figure 4.  Integrative analysis of 74 MPM. A, Concordance between integrative (PARADIGM and iCluster) and platform-specific unsupervised clustering 
results. Clusters are color-coded and ranked based on survival (dark blue indicates best survival, and red and orange mark the worst surviving subgroup). 
CNV, copy-number variation. B, Kaplan–Meier plot of the integrative subgroups reveals distinct outcomes. C, Cox regression analysis demonstrates sig-
nificant associations of the molecular subtypes with patient survival, even upon adjusting for histology, age, and CDKN2A status. D, iCluster identified 4 
integrative subgroups with distinct BAP1 alteration (defined as mutation and/or copy-number alteration), TP53 mutation, CDKN2A status, copy-number 
alteration, DNA methylation, and mRNA, lncRNA, and miRNA expression profiles. E, Comparison of Th2 cell immune gene mRNA expression signature 
across the four integrated clusters.
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Figure 5.  Integrative analysis of epithelioid MPM. A, Comparison of cluster assignments between the epithelioid-only and full cohort integrative 
analyses demonstrating good concordance, with only 7 cases being reassigned to another cluster. B, Integrative clustering analysis applied to cases with 
epithelioid histology. C, Kaplan–Meier plot of the epithelioid-only integrative subgroups. D, PATHMARK analysis revealed differentially active molecular 
pathways that define the poor-prognosis epithelioid-only subgroup. E, Validation of the TCGA epithelioid subtypes in an independent cohort of 141 
epithelioid MPM (Bueno et al.; ref. 5) confirming the protective effect of molecular features that define iCluster 1.
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to iCluster 1 (good prognosis) had significantly better survival, 
even after adjusting for age (P = 3.9 × 10−4; Fig. 5E; Supple-
mentary Fig. S6). In the smaller cohort (referred to as Lopez-
Rios), patient numbers were too small to split by histology. 
However, this analysis provided independent validation of the 
survival differences for the four all-MPM clusters (P = 0.01; 
Supplementary Fig. S6). Taken together, these results suggest 
that the prognostically relevant molecular profiles defined by 
our analysis are robust and reproducible, and could poten-
tially be used to improve risk stratification of patients with 
epithelioid MPM. The core mRNA gene lists are provided in 
Supplementary Table S4C–S4G, which also include reduced 
classifiers based on methylation, lncRNA, miRNA, and a 
reduced classifier combining mRNA and methylation data to 
facilitate practical application of these data and independent 
validation of these clusters.

Analysis of Noncoding RNAs in MPM

We next assessed two types of noncoding RNAs not exten-
sively studied in MPM that may also represent a source 
of robust biomarkers: lncRNAs, which often show higher 
expression specificity for cell type than coding genes, and 
miRNAs, which are relatively stable in biological fluids, so 
potentially suitable as noninvasive biomarkers.

In both the TCGA and Bueno (5) cohorts, lncRNAs 
returned four unsupervised consensus subtypes that were 
associated with 5-year survival (P = 1.4 × 10−10 and P = 1.1 × 
10−3, respectively). The TCGA lncRNA subtypes were highly 
concordant with iCluster (P = 8 × 10−14) and PARADIGM  
(P = 2 × 10−21) subtypes and were associated with EMT scores 
(P = 2.5 × 10−6; Figs. 4A, 6A–E; Supplementary Table S5A.1). 
For both cohorts, lncRNAs that were differentially abun-
dant between the good-prognosis subtype and other samples 
included those associated with cancer (e.g., H19, LINC00152, 
and MEG3), or with MPM in particular: NEAT1 and SNHG8 
(38) and GAS5 (ref. 39; Fig. 6F and G; Supplementary Table 
S5B.3-6). We noted that a number of lncRNAs distinguished 
the good-prognosis cluster in both TCGA and Bueno cohorts 
(Supplementary Table S5B.1-2,5-6).

Unsupervised clustering based on miRNA mature strands 
resolved five consensus subtypes in the TCGA cohort (Fig. 
6H); these were associated with 5-year survival (P = 7 × 10−4), 
iCluster (P = 1 × 10−12) and PARADIGM (P = 3 × 10−13) clus-
ters, and EMT scores (P = 2 × 10−7; Fig. 6H–K; Supplemen-
tary Table S5A.2). For the good-survival cases, the miRNA 
subtypes were strikingly concordant across multiple analysis 
platforms, and many cancer-associated miRNAs were dif-
ferentially abundant in the good-survival cluster (Fig. 6L; 
Supplementary Table S5B.3-4). Taken together, these results 
suggest that lncRNAs and miRNAs may be important predic-
tors of survival in MPM.

EMT and VISTA Expression

Because mRNA expression of EMT-associated genes was 
a key differentiating feature between prognostically distinct 
integrative clusters, we performed a detailed analysis of EMT 
in MPM using a previously published EMT-related mRNA 
signature (40). Increasing EMT scores significantly correlated 
with clusters defined by integrative algorithms (iCluster and 
PARADIGM), as well as with individual genomic features 

including miRNA, lncRNA, methylation, RPPA, and overall 
gene expression (Fig. 7A). Of all tumor types included in the 
TCGA pan-cancer analysis, MPM had the second-highest 
average EMT score (Fig. 7B; after soft-tissue sarcomas), con-
sistent with previous reports that EMT is a frequent phenom-
enon in MPM (7, 41).

Although EMT score positively correlated with the mRNA 
expression of many immune-regulatory genes, such as OX40L, 

TGFB1, CD276, OX40, and PD-L2 (P < 0.001; Fig. 7A and C),  
mRNA expression of VISTA (42), a negative immune-checkpoint 
regulator primarily expressed on hematopoietic cells (43), was 
strongly inversely correlated with EMT score (Fig. 7C) and 
was expressed at levels higher than in any other TCGA tumor 
type analyzed (Fig. 7D). In the MPM cohort, VISTA mRNA 
levels were highest in the epithelioid subtype (Fig. 7C and E). 
Using Regulome Explorer (Supplementary Section 13), we 
found that VISTA mRNA expression was highly correlated 
with MSLN mRNA expression (Spearman correlation = 0.81; 
P = 6.3 × 10−19), but not with mRNA expression of PD-1 
or PD-L1. Moreover, there was no significant correlation 
between overall mutation burden and VISTA expression levels 
(P = 0.64).

VISTA (V-domain Ig suppressor of T-cell activation; also 
known as c10orf54, PD-1H, and B7-H5) is a member of the 
B7 family of negative checkpoint regulators, expressed on 
the surface of several immune cell types. It can function as 
both receptor and ligand (44). As a ligand, VISTA is present 
on the surface of antigen-presenting cells (APC) and inhibits 
early-stage T-cell activation (45). The normal mesothelium 
has APC properties (46), which are retained upon malignant 
transformation (47, 48). We thus performed IHC staining 
of two epithelioid TCGA MPM cases, as well as normal 
and reactive mesothelium (Supplementary Section 14), to 
define the cellular compartment expressing VISTA in MPM 
tumor samples. Remarkably, VISTA protein expression was 
not restricted to infiltrating immune cells, but was present 
in tumor cells in MPM, as well as in normal and reactive 
mesothelium (Fig. 7F and G), suggesting that its expression 
in epithelioid MPM may reflect retention of APC properties 
in this more differentiated subset of MPM.

DISCUSSION

Our comprehensive integrative analysis of 74 cases of MPM 
further defines a cancer driven primarily by inactivation of 
tumor suppressor genes. Indeed, we confirm the high fre-
quency of BAP1 inactivation by mutation and copy-number 
loss, as well as recurrent inactivating alterations in CDKN2A, 

NF2, TP53, LATS2, and SETD2. In addition to this landscape 
of known loss-of-function events, we have genomically char-
acterized a novel molecular subtype of MPM accounting 
for approximately 3% of MPM in our data sets, defined by 
evidence of genomic near-haploidization and recurrent TP53 
and SETDB1 mutations, with a distinctive clinical phenotype 
showing female predominance and younger age at diagnosis. 
Our findings should facilitate systematic clinical studies of 
this subset to better define its survival and its association 
with asbestos exposure, which so far appears weak or unclear. 
Isolated cases with similar molecular profiles (GNH and 
SETDB1 mutation) have been anecdotally reported (5, 49), 
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Figure 6.  Noncoding RNA subtypes and differential abundance for lncRNAs and miRNAs in the TCGA and Bueno cohorts. A–G, lncRNA subtypes and 
differential abundance. A, Top to bottom: Normalized abundance heat map for a 4-subtype solution, then a silhouette width profile (Wcm) calculated from 
the consensus membership matrix; clinical and molecular covariates, with P values from Fisher exact, χ2, or Kruskal tests; and profiles of RNA-sequencing–
based EMT scores and leukocyte fraction. Red horizontal line in leukocyte fraction bar plot indicates the median value across all samples. B, Distribution 
of purity estimated by ABSOLUTE, with a Kruskal P value. C, Distribution of RNA-sequencing–based EMT scores, with a Kruskal P value. D, Kaplan–Meier 
plot for overall survival, with a log-rank P value. E, Kaplan–Meier plot for overall survival, with a log-rank P value for a 4-subtype solution for the Bueno 
cohort. F and G, lncRNAs that were differentially abundant (SAM 2-class unpaired analysis, FDR < 0.05) between the better-survival lncRNA subtype and 
all other samples, for the TCGA cohort (F) and the Bueno cohort (G). The largest 15 positive and 15 negative fold changes are shown; blue triangles mark 
lncRNAs that were in these gene sets in results for both cohorts. Text to the right of each bar plot gives means-based fold changes, mean abundance in 
the target and then the other samples, and the cytoband for the gene. See also Supplementary Table S5A. (continued on next page)
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Figure 6. (Continued)  H–L, microRNA mature strand subtypes and differential abundance in the TCGA cohort. H, Top to bottom: Normalized abundance 
heat map for a 5-subtype solution, then a silhouette width profile (Wcm) calculated from the consensus membership matrix; clinical and molecular covariates, 
with P values from Fisher exact, χ2, or Kruskal tests; and profiles of RNA-sequencing–based EMT scores and leukocyte fraction. Red horizontal line in leuko-
cyte fraction bar plot indicates the median value across all samples. l, Distribution of purity estimated by ABSOLUTE, with a Kruskal P value. J, Distribution 
of RNA-sequencing–based EMT scores, with a Kruskal P value. K, Kaplan–Meier plot for overall survival, with a log-rank P value. L, miRNA mature strands that 
were differentially abundant between the better-survival lncRNA subtype and all other samples, for the TCGA cohort. The largest 15 positive and 15 negative 
fold changes are shown. Text to the right of each bar plot gives means-based fold changes, mean abundance in the target and then the other samples, and the 
cytoband(s) for the mature strand. See also Supplementary Table S5B.
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Figure 7.  MPM is enriched for both EMT and mRNA expression of immune targets. A, Unsupervised analysis identifies correlations between EMT and 
multiple platforms. Tumors are ordered from left to right according to increasing EMT score. Numbered color bars indicate group assignments (clusters) 
from other data types. Statistically significant correlations are shown between EMT score and (starting at top) integrative multidimensional analyses 
on both iCluster and PARADIGM platforms, along with mRNA, miRNA and lncRNA clusters, methylation status, and consensus histology. Bottom plots 
illustrate significant correlations between these clusters and selected miRNAs, proteins, immune target genes. B, Spectra of EMT scores across different 
tumor types. Mesothelioma is the second most mesenchymal cancer type after sarcoma in 31 tumor types analyzed. Despite most MPM tumors having 
undergone EMT, a broad range of EMT scores were observed across mesothelioma cases, which corresponded to a large extent with histologic subtype. 
C, Waterfall plot illustrating the correlation between EMT and immune target genes. D, Plot highlighting VISTA mRNA expression, which is highest in 
MPM, across all TCGA tumor types. E, Box plot indicating VISTA mRNA expression levels in individual histologic types of the TCGA MPM cohort. The high-
est mRNA expression levels were observed in the epithelioid subtype (Wilcoxon rank-sum, P = 2e−7), whereas sarcomatoid MPM had the lowest mRNA 
expression (P = 0.017). Red arrows indicate two epithelioid cases that were examined by immunohistochemistry, TCGA-SC-A6LQ-01 (1) and TCGA-SC-
A6LM-01 (2). (continued on next page)
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but had not, until now, been recognized as a distinct molecu-
lar subtype of MPM. The genomic data in our cases support a 
model in which early TP53 mutations are permissive for a loss 
of chromosomes to a near-haploid state, followed by genome 
reduplication and SETDB1 inactivation. As H3K9 methyla-

tion by SETDB1 is a repressive chromatin mark (50), it is 
tempting to speculate that inactivation of SETDB1 allows a 
general increase in transcription activity in a cancer cell that 
has sacrificed nearly half of its genome, presumably including 
several genes that are imprinted or otherwise monoallelically 
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expressed. Why chromosomes 5 and 7 are spared from the 
LOH in these MPM remains mysterious—interestingly, the 
same two chromosomes have recently been shown to also 
retain heterozygosity in thyroid Hürthle cell carcinomas with 
evidence of genomic near-haploidization (51). Overall, the 
identification of this novel subset of MPM highlights how, as 
the proportion of asbestos-related MPM plateaus and hope-
fully begins declining in Western countries, cases of possibly 
different etiology may become more apparent.

A better understanding of the determinants of aggressive 
behavior and predictors of poor clinical outcomes in MPM 
remains an unmet clinical need. To this end, integrative analy-
ses with iCluster and PARADIGM revealed a set of molecular 
features that define MPM subsets with better and worse prog-
nosis, and might point to candidate therapeutic targets. For 
instance, cases in the poor-prognosis subset showed higher 
AURKA mRNA expression, consistent with prior studies (14, 
52). Treatment of MPM cell lines with an Aurora kinase inhibi-
tor leads to growth arrest (53), and several Aurora kinase inhib-
itors are under investigation in patients with MPM. AURKA 
mRNA expression could be used to help identify patients with 
poor-prognosis epithelioid MPM so that they could be directed 
toward experimental therapies early in their treatment course. 
It is presently unclear whether Aurora kinase inhibitors will 
be active in MPM, and the ongoing phase II study of alisertib 
(NCT02293005) includes all patients irrespective of molecular 
signature. Although the value of targeting the AURKA pathway 
with currently available clinical compounds in MPM remains 
unknown, mRNA expression of AURKA is a prognostic marker 
that could be used in clinical practice to help stratify patients 
with epithelioid MPM.

Additionally, the poor-prognosis group also exhibited 
upregulation of the PI3K and mTOR signaling pathways. 
Preclinical studies have reported this finding, leading to 
clinical trials with a low response rate (2%) and no significant 

survival benefit in the salvage setting (54). These data sug-
gest that combination therapies with mTOR inhibition may 
be necessary. Our analysis of epigenetic alterations revealed 
some associations between BAP1 status and DNA meth-
ylation (Supplementary Table S6). A recently established 
functional link between BAP1 and EZH2 (22) provided the 
rationale for the recently completed clinical trial of the EZH2 
inhibitor tazemetostat in BAP1-null MPM (NCT028602). 
By contrast, no relevant findings resulted from our analysis 
of viral and microbial sequences (Supplementary Table S7). 
Finally, another genomically driven potential vulnerability 
in MPM is very frequent CDKN2A deletion associated with 
codeletion of MTAP, the latter recently shown to metaboli-
cally lead to impaired activity, and therefore sensitization to 
further inhibition, of the arginine methyltransferase PRMT5 
(12, 13), an inhibitor of which is currently being evaluated in 
a phase I trial (NCT02783300).

Harnessing current immunotherapy approaches to improve 
outcomes of patients with MPM is an area of intense clini-
cal interest. Although our study confirms that MPMs show 
a low tumor mutation burden and therefore may present a 
more challenging setting for immunotherapy, a remark-
able and novel finding of the present study is that of strong 
expression of the immune-checkpoint gene VISTA in epi-
thelioid MPM, on the tumor cells themselves, unlike other 
cancer types where it is more often expressed on infiltrating 
reactive cells (42). VISTA is a member of the B7 family of 
negative checkpoint regulators that is expressed primarily on 
infiltrating tumor macrophages, and whose immune restrain-
ing effects on T cells may be similar to those of PD-1 (43, 
55). However, unique structural features mean that VISTA 
can repress activation of T cells both as a ligand present on 
the surface of APC cells and as a receptor on the surface of  
T cells (56). Because VISTA is expressed on MPM cells, and its 
mRNA expression levels do not correlate with overall mutation 
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Figure 7. (Continued) F, IHC staining for VISTA (rabbit monoclonal anti-VISTA antibody, clone D1L2G, 0.1 µg/mL, Cell Signaling Technology) in normal 
mesothelial lining from pleura (*) and benign pleuritis with reactive mesothelial proliferation (**), and 2 TCGA MPM cases, TCGA-SC-A6LQ-01 (1) and 
TCGA-SC-A6LM-01 (2); images captured at 100× magnification. These results confirm high protein expression of VISTA on tumor cells in epithelioid 
MPM. G, VISTA immunohistochemistry. VISTA protein is expressed both in tumor cells (red arrows) and in infiltrating inflammatory cells (black arrows) in 
the epithelioid MPM case TCGA-SC-A6LQ-01. Image captured at 200× magnification.
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load, our results raise the possibility that VISTA expression 
may be restraining antitumor immune responses in a subset of 
MPM cases. As we find that nonneoplastic mesothelium also 
expresses VISTA protein, we speculate that VISTA expression 
in MPM is retained or possibly selected for by immune pres-
sure. This is consistent with previous publications demonstrat-
ing that MPM is an “immunogenic” tumor (57), including  
recent trials showing some responses to immune-checkpoint 
blockade therapy (58, 59). Indeed, VISTA has recently been 
reported as a possible compensatory immune-inhibitory path-
way in prostate cancers that fail to respond to ipilimumab (60). 
Our findings thus provide both a rationale and a candidate bio-
marker for clinical trials of emerging anti-VISTA therapy (refs. 
42, 44; NCT02812875) in epithelioid MPM. Taken together, 
our findings point to new lines of investigation into the biology 
of MPM with the potential to lead to new therapeutic strategies.

METHODS
TCGA Project Management has collected necessary human subjects 

documentation to ensure the project complies with 45-CFR-46 (the 

“Common Rule”). The program has obtained documentation from 

every contributing clinical site to verify that Institutional Review 

Board (IRB) approval has been obtained to participate in TCGA. Such 

documented approval may include one or more of the following:

•  An IRB-approved protocol with informed consent specific to TCGA 

or a substantially similar program. In the latter case, if the proto-

col was not TCGA-specific, the clinical site principal investigator 

provided a further finding from the IRB that the already-approved 

protocol is sufficient to participate in TCGA.

•  A TCGA-specific IRB waiver has been granted.

•  A TCGA-specific letter that the IRB considers one of the exemptions 

in 45-CFR-46 applicable. The two most common exemptions cited 

were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both 

exempt requirements for informed consent, because the received data 

and material do not contain directly identifiable private information.

•  A TCGA-specific letter that the IRB does not consider the use of 

these data and materials to be human subjects research. This was 

most common for collections in which the donors were deceased.

A detailed description of the sample acquisition and pathology 

review process, as well as the experimental and computational meth-

ods used for the different analyses presented in our study, is provided 

as Supplementary Sections 1–13.
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