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Integrative multi-omics analysis of muscle-invasive
bladder cancer identifies prognostic biomarkers for
frontline chemotherapy and immunotherapy
Qianxing Mo 1✉, Roger Li 2, Dennis O. Adeegbe3, Guang Peng 4 & Keith Syson Chan 5

Only a subgroup of patients with muscle-invasive bladder cancer (MIBC) are responders

toward cisplatin-based chemotherapy and PD-L1 blockade immunotherapy. There is a clinical

need to identify MIBC molecular subtypes and biomarkers for patient stratification toward the

therapies. Here, we performed an integrative clustering analysis of 388 MIBC samples with

multi-omics data and identified basal and luminal/differentiated integrative subtypes and

derived a 42 gene panel for classification of MIBC. Using nine additional gene expression data

(n= 844), we demonstrated the prognostic value of the 42 basal-luminal genes. The basal

subtype was associated with worse overall survival in patients receiving no neoadjuvant

chemotherapy (NAC), but better overall survival in patients receiving NAC in two clinical

trials. Each of the subtypes could be further divided into chr9 p21.3 normal or loss subgroup.

The patients with low expression of MTAP/CDKN2A/2B (indicative of chr9 p21.3 loss) had a

significantly lower response rate to anti-PD-L1 immunotherapy and worse survival than the

patients with high expression ofMTAP/CDKN2A/2B. This integrative analysis reveals intrinsic

MIBC subtypes and biomarkers with prognostic value for the frontline therapies.
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B
ladder cancer is the most common urinary tract malignancy
with approximately 549,000 new cases and 200,000 deaths
worldwide in 20181. Urothelial cell carcinoma is the pre-

dominant histological type, which is often classified as non-muscle
invasive bladder cancer (NMIBC), or muscle invasive bladder
cancer (MIBC) depending on if tumor has invaded into the
muscularis propria. Although only about 25% of newly diagnosed
patients present with muscle invasive disease, MIBC has accoun-
ted for the majority of bladder cancer mortality2. In the past
several decades, no major progress was made in the treatment of
MIBC and the standard-of-care was limited to chemotherapy and
radical cystectomy3–5. Recently, immune checkpoint inhibitors
were used in clinical trials to treat metastatic bladder cancer,
representing a new therapeutic direction6–10.

MIBC is a heterogeneous disease with poor survival (5-year
survival < 50%)11. High throughput molecular profiling studies
have provided a great opportunity to study the heterogeneity of
MIBC. In an effort to identify subgroups of patients that may
benefit from systemic therapies, researchers classified MIBC into
different molecular subtypes based on various gene expression
(GE) signatures. For instance, Volkmer et al. identified a sub-
group of MIBC patients who were characterized by high
expression of cytokeratins (KRT14, KRT5) and cell surface
receptors (THY1, CD44) and were associated with worse overall
survival12. For this reason, this type of tumors was named as basal
subtype13. Damrauer et al. and Rebouissou et al. classified MIBC
into basal-like and non-basal-like (or luminal) subtypes, while
Choi et al. classified MIBC into basal, luminal, and p-53 like
subtypes14–16. Recently, Mo et al. developed a tumor differ-
entiation classifier that stratified MIBC patients into basal and
differentiated subtypes, which were consistent in predicting
patient survival in multiple MIBC cohorts17. Additionally, other
research groups including The Cancer Genome Atlas (TCGA)
research network and the bladder cancer molecular taxonomy
group further classified MIBC into 4 or more subtypes18–22.
However, it was generally agreed that MIBC could be basically
classified into two major subtypes: basal/squamous-like (BASQ)
that shows basal/stem cell features and differentiated/luminal that
shows differentiated urothelial cell features23.

TCGA generated multi-omics data including somatic muta-
tion, GE, DNA copy number, and methylation for over 400 MIBC
samples, which were a great resource to study MIBC subtypes20.
However, these multi-omics data have not been fully integrated to
identify MIBC subtypes. In a traditional clustering analysis, a
certain number of omics features are selected for platform-
specific analysis, which usually include informative and non-
informative features. As a result, the clustering outcomes could
vary by the selected features and clustering algorithms. To inte-
grate multi-platform clustering results, a second clustering ana-
lysis (cluster of cluster analysis) based on the platform-specific
results is usually performed24. This step-wise clustering approach
does not fully take advantage of the inherent structure of multi-
omics data and thus may miss the opportunity to reveal the
driving factors that determine the tumor subtypes. We hypo-
thesized that a truly integrative clustering (iCluster) analysis of
MIBC multi-omics data will be beneficial to discover the inherent
driving factors that are essential for tumor classification. The
iCluster methods are powerful tools that have been widely used
by TCGA and other research groups to characterize a variety of
cancers25–28. The major characteristics of the iCluster methods
are that they can incorporate multi-omics data into a statistical
model to perform sample clustering, and at the same time identify
driver (informative) omics features from passenger (non-infor-
mative) features, which overcome the limits of the platform-
specific and step-wise clustering approach24. Therefore, in this
study, we aimed to use the state-of-the-art iClusterBayes method

to identify MIBC integrative subtypes (iSubtypes) and subtype-
specific biomarkers and to evaluate their clinical relevance28.

Results
Integrative molecular subtypes of MIBC. Integrative clustering
analysis of TCGA MIBC samples identified two iSubtypes, which
were characterized by distinct molecular patterns across somatic
mutation, DNA copy number, methylation and GE (Fig. 1a). We
named them as integrative basal (iBasal) and iLuminal (or iDif-
ferentiated) subtypes because they were characterized by the basal
and luminal/differentiated GE signature (more details in the fol-
lowing sections)17. The top mutated genes that contributed to
defining the subtypes included TP53, KDM6A, RB1, FGFR3,
TBC1D12, ELF3, and NFE2L2 (Fig. 1a). The iBasal subtype was
characterized by higher frequencies of mutations in TP53 (59% vs.
43% in iLuminal, P= 0.0015, Fisher exact test), RB1 (27% vs. 10%
in iLuminal, P= 2.53E-5), and NFE2L2 (10% vs. 3% in iLuminal,
P= 0.0042). In contrast, the iLuminal subtype was characterized by
higher frequencies of mutations in KDM6A (32% vs. 19% in iBasal,
P= 0.0053, Fisher exact test), FGFR3 (20% vs. 7% in iBasal,
P= 0.00023), TBC1D12 (17% vs. 7% in iBasal, P= 0.0048) and
ELF3 (16% vs. 6% in iBasal, P= 0.0041). A region in chr9 p21.3
containing interferon alpha (IFNA) genes, MTAP and CDKN2A/2B
was found to be the major contributor for sample clustering, which
could be divided into copy number normal (9p21.3 N) and loss
(9p21.3 L) regions (Fig. 1a copy number). Compared to the 9p31.3
L group, the 9p21.3 N group was associated with higher frequencies
of mutations in TP53 (60% vs. 39% in 9p21.3 L, P= 6.95E-5, Fisher
exact test) and RB1 (29% vs. 5% in in 9p21.3 L, P= 1.71E-10), but a
lower frequencies of mutations in FGFR3 (8% vs. 21% in 9p21.3 L,
P= 6.98E-4) and NFE2L2 ( < 1% vs. 12% in 9p21.3 L, P= 6.93E-7).
However, overall, the iSubtypes and their 9p21.3 L/N subgroups
were not significantly associated with tumor mutation burden
(Supplementary Fig. 1). The subtype-driver genes in the methyla-
tion data formed two clusters M1 and M2 with opposite methyla-
tion patterns (Fig. 1a methylation). Gene ontology (GO) term
enrichment analysis showed that methylation cluster M2 was most
enriched with genes involved in cell adhesion/motion/morpho-
genesis, response to wounding/organic substance, leukocyte acti-
vation, and skeletal/urogenital system development, while no
significant biological process was found in cluster M1 (Summarized
in Fig. 1b and Supplementary data 1). The subtype-driver genes in
the mRNA data also formed 2 major clusters E1 and E2 (Fig. 1a
mRNA expression). The GE pattern in E1 and methylation pattern
in M2 appeared to be negatively correlated. The major enriched GO
terms in M2 were also found to be enriched in E1, while E2 was
most enriched with genes involved in metabolic processes (Sum-
marized in Fig. 1c and Supplementary data 1).

Comparison of MIBC iSubtypes with GE-based subtypes. Since
most molecular subtypes were defined by GE, likely with a more
direct effect on biological functions, we compared the iSubtypes with
the previously reported GE subtypes. TCGA classified the MIBC
samples into five subtypes including basal-squamous (35%), luminal-
papillary (35%), luminal-infiltrated (19%), luminal (6%), and neu-
ronal (5%)20. Recently, Kamoun et al. derived 6 consensus GE sub-
types using 6 published classifiers, namely basal/squamous (Ba/Sq),
luminal papillary (LumP), luminal nonspecified (LumNS), luminal
unstable (LumU), stroma-rich, and neuroendocrine-like (NE-like).
These subtypes were generally concordant with the two major basal
and luminal subtypes reported by TCGA and other groups14–16,21.
Mo et al. also reported two GE subtypes, namely basal and differ-
entiated17. Interestingly, we found that iSubtypes and the tumor
differentiation subtypes were highly concordant, with an overall
concordance rate of 86% (Fig. 2a). Compared to the TCGA and
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consensus subtypes, the iBasal subtype highly overlapped with the
basal-squamous and neuronal (or neuroendocrine-like) subtypes,
while the iLuminal subtype highly overlapped with the TCGA
luminal, luminal-papillary and luminal-infiltrated subtypes and the
consensus LumP, LumU, LumNS, and Stroma-rich subtypes
(Fig. 2a). The results show a high consistency as well as some
variability among subtype assignments by different signatures. In the
patients receiving no NAC, the iBasal subtype was significantly
associated with worse overall survival, compared to the iLuminal
subtype (Fig. 2b, P= 0.00042, Log-rank test). Their survival curves
(median survival, iBasal: 22.5 vs. iLuminal: 54.9 months; Fig. 2b) were
more widely separated than the curves of the tumor differentiation
subtypes17 (median survival, basal: 25.6 vs. differentiated:

41.7 months; Fig. 2c, P= 0.015, Log-rank test), demonstrating an
improvement of patient classification in terms of survival. The
iSubtypes were significantly associated with pathologic stage (P=
0.011, Fisher exact test), T stage (P= 0.0017), and gender (P= 0.027)
(Supplementary Table 1). However, multivariate Cox regression
analysis showed that the iSubtype was an independent predictor of
overall survival when the baseline variables including age, gender and
smoking status, pathologic stage (or T stage) were included into the
models (Supplementary Table 2). Although there were 5 TCGA
subtypes, only the luminal-papillary survival curve was significantly
separated from the others (Fig. 2d, overall P= 0.00047, Log-rank
test). There was no significant difference in overall survival among
the basal-squamous, luminal, luminal-infiltrated, and neuronal
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Fig. 1 Integrative subtypes of MIBC. a Heatmaps of driver genomic features. Somatic mutation: mutated and normal genes are represented by black and

white colors, respectively. Copy number: red, white, and blue represent potential copy number gain, normal, and loss, respectively. Methylation: red and

blue represent hypermethylation and hypomethylation, respectively; Driver genes were grouped into two clusters M1 and M2. mRNA: red and blue

represent high and low expression, respectively. Driver genes were grouped into two clusters E1 and E2. b Top enriched biological processes in methylation

cluster M2. c Top enriched biological processes in mRNA expression clusters E1 (red dots) and E2 (blue dots). The numbers of genes belonging to

biological processes are shown in the dots.
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subtypes (Fig. 2d, P= 0.3, Log-rank test). Similarly, although there
were 6 consensus subtypes, only LumP was significantly different
from the other 5 subtypes (Fig. 2e, overall P= 0.00046, Log-rank
test). There was no significant difference in overall survival among
the Basal-squamous, LumNS, LumU, NE-like, and Stroma-rich
subtypes (Fig. 2e, P= 0.3, Log-rank test). There were 10 patients with
a history of NAC in this cohort of patients in which 6 patients were

clustered to the iBasal subtype and 4 patients were clustered to the
iLuminal subtype (Supplementary Table 2). Similar results were
obtained when they were included in the survival analyses (Supple-
mentary Fig. 2).

Subtype-specific survival and responses to PD-L1 blockade
immunotherapy. The iCluster analysis identified 42 classical

Fig. 2 Comparison of iSubtypes with other GE based subtypes in the TCGA cohort. a TCGA samples (n= 388) colored according to the iSubtypes, TD,

TCGA, and consensus GE subtypes, respectively. b Patient overall survival stratified by iBasal and iLuminal/Differentiated subtypes. c Patient overall

survival stratified by the basal and differentiated subtypes defined by the TD GE signature. d Patient overall survival stratified by the TCGA GE subtypes.

Luminal_papillary vs. the others: p < 0.0001. NE= neuronal. e Patient overall survival stratified by the consensus GE subtypes. LumP vs. the others: p <

0.0001. Ba/Sq: basal/squamous; LumNS= luminal nonspecified; LumP= luminal papillary; LumU= luminal unstable; NE= neuroendocrine. Kaplan–Meier

curves and log-rank test p-values shown on b–e are based on 375 non-NAC patients without missing data.
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basal-luminal markers as the subtype drivers, which included the
18 tumor differentiation (TD) genes (Fig. 3a)17. In general, the
basal markers had a higher expression in the basal subtypes, while
the luminal markers had a higher expression in the luminal
subtype (Fig. 3a, left panel). To investigate whether these markers
had similar expression patterns in other MIBC cohorts, we ana-
lyzed another RNA-seq data from a large phase 2 trial (named
IMvigor210, n= 348) that studied the clinical activity of PD-L1
blockade with atezolizumab in patients with locally advanced and
metastatic urothelial cancer6. The RNA-seq data were generated
from pre-treatment tumor samples of the patients. Using the
TCGA data as the training set and the IMvigor210 data as the
testing set, we classified the IMvigor210 samples into 2 subtypes
using the k-nearest neighbor (KNN) method and the 18 TD genes
and the 42 basal-luminal genes, respectively. The classification
results of the IMvigor210 samples based on the 42 genes are
shown in Fig. 3a (right panel). The resulting subtypes had very
similar expression pattern as the TCGA samples (Fig. 3a, left
panel). Furthermore, the basal subtype defined by the 42 basal-
luminal genes was associated with worse survival, compared to
the luminal subtype (Fig. 3b, P= 0.041, Log-rank test).
Remarkably, the 18 TD genes had similar power in classifying
the patient samples into 2 subtypes with distinct survival (Fig. 3c,
P= 0.04, Log-rank test).

As described previously, the basal and luminal iSubtypes
could be further divided into copy number normal (9p21.3 N)
and loss (9p21.3 L) regions that contain MTAP and CDKN2A/
2B (Fig. 1a copy number). We found that the expression levels
of MTAP and CDKN2A/2B were positively correlated with the
copy number data of the region in chr9 p21.3 (Fig. 3d TCGA
samples). Compared to the 9p21.3 N group, the 9p21.3 L was
associated with significant reduction of expression of CDKN2A
by 27.35-fold, CDKN2B by 6.83-fold, and MTAP by 6.28-fold
(Supplementary Fig. 3). Since the copy number data for the
IMvigor210 cohort were not available, we could not further
classify the patient samples according to the chr9 p21.3 status.
Therefore, we used the 3 genes’ expression as a surrogate of
chr9 p21.3 status to further classify the IMvigor210 samples
into MTAP/CDKN2A/2B high expression (G3High) and low
expression (G3Low) groups (Fig. 3d IMvigor210 samples).
Compared to the G3High group, the G3Low group was
associated with a significant reduction of expression of
CDKN2A by 29.08-fold, CDKN2B by 6.27-fold, and MTAP by
4.22-fold, which were quite consistent with the results observed
in the TCGA data (Supplementary Fig. 3). There was no
significant difference in overall survival between the G3Low
and G3High groups in the TCGA cohort (Fig. 3e, P= 0.35, Log-
rank test) and in the basal (Fig. 3f, P= 0.2) and luminal sub-
cohorts (Fig. 3f, P= 0.6), while the overall difference in overall
survival was primarily driven by the basal and luminal subtypes
themselves (Fig. 3f, P= 0.0021).

The patients in the IMvigor210 cohort underwent PD-L1
blockade therapy. We found that the complete or partial (CR/PR)
response rate of the PD-L1 blockade therapy of the G3High
groups were at least 2-fold higher than the response rate of the
G3Low group in the IMvigor210 cohort (Fig. 4a, P= 0.00084,
Fisher exact test). The G3High group was also associated with a
higher expression of PD-L1 (Fig. 4b, P= 0.011, t-test), and better
overall survival (Fig. 4c, P= 0.0043, Log-rank test), compared to
the G3Low group. Similar results were also observed in the basal
and luminal sub-cohorts, respectively (Fig. 4d–f). Mariathasan
et al. reported that the immune cell (IC) subtypes, the tumor-
immune phenotypes, and the Lund subtypes were associated with
responses to PD-L1 blockade therapy29. For a head-to-head
comparison, we showed their results in Fig. 4. In general, for the
immune cell and tumor-immune subtypes, a higher PD-L1

expression level was associated with a higher response rate, and
better overall survival (Fig. 4g–l), which were consistent with our
findings. Interestingly, the strict positive correlation between the
response rate and PD-L1 expression was not observed in the Lund
subtypes of Sjodahl et al.19, although the genomically unstable
(GU) subtype with the highest response rate was associated with
the best overall survival (Fig. 4m–o). Overall, our results were
comparable to the results reported by Mariathasan et al.29.

Prognostic value of subtype-specific GE signature in multiple
cohorts of study. To further test the prognostic power of the
basal and luminal signature revealed in the TCGA data, we col-
lected 8 additional microarray GE data sets. Six microarray data
sets were from retrospective studies in which the detailed infor-
mation for chemotherapy was not publicly available14,16,19,30–32.
Two microarray data sets were from clinical trials that were
designed to evaluate the effect of NAC (MVAC or MVAC+ B)
on clinical outcomes and the impact of MIBC subtypes16,31.
Using the TCGA GE data as the training data set, we classified the
samples in the other 8 data sets into two subtypes based on the
TD (18 genes) and basal-luminal (42 genes) signature, respec-
tively. Figure 5a, b shows the classification results based on 42
basal-luminal genes. It can be seen that the GE patterns observed
in the TCGA cohort were also observed in the 8 independent
cohorts. In addition, the basal subtype defined by the 42 basal-
luminal GE signature was associated with worse overall survival,
compared to the luminal subtype in the 6 retrospective cohorts
(Fig. 5c, P= 0.013, Log-rank test), which was similar to the
results observed in the TCGA and IMvigor210 cohorts and
consistent with other published results12,14–16. In contrast, the
basal subtype defined by 42 basal-luminal GE signature was
associated with better overall survival (Fig. 5d, P= 0.017, Log-
rank test) in the two clinical trial cohorts, implying basal subtype
responded better to the NAC than the luminal subtype31,33.
Similarly, the TD GE signature also had excellent discriminating
power in classifying MIBC samples into subtypes with distinct
survival in the 6 retrospective cohorts (Fig. 5e, P= 0.017, Log-
rank test) and the 2 clinical trial cohorts (Fig. 5f, P= 0.081, Log-
rank test).

Pathways and gene sets enriched in the basal and luminal
subtypes. In an effort to identify the pathways that were altered
between the basal and luminal subtypes, we performed GSEA on
the well-established BIOCARTA and KEGG pathways using the
TCGA data. Figure 6 shows the GE patterns of the top 20 up-
regulated BIOCARTA pathways in the basal and luminal sub-
types. Strikingly, 16 of the 20 up-regulated pathways in the basal
subtype were related to immune network, 2 pathways were
related to cell cycle regulation, and 2 pathways were related to
cell motility. Consistently, most of the top up-regulated KEGG
pathways in the basal subtype were related to immune network,
and pathways related to cell adhesion and signal transduction
were also among the top list (Supplementary Fig. 4). Interest-
ingly, the top up-regulated KEGG pathways in the luminal
subtype were primarily related to various metabolisms (Supple-
mentary Fig. 5).

To gain further insights about the immune network between
the basal and luminal subtypes, we investigated if the subtypes
were differentially enriched with tumor-infiltrating lymphocytes
(TILs) by performing GSEA on immune-cell-specific gene sets34.
The GSEA results showed that the innate immune cells including
macrophages (FDR < 0.0001, gene-based permutation test) and
neutrophils (FDR= 0.0014) and adaptive immune cells including
T cells (FDR= 0.014), T helper 1 (Th1) cells (FDR < 0.0001), Th2
cells (FDR= 0.05) and Cytotoxic cells (FDR= 0.05) were
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significantly enriched in the basal subtypes (Fig. 7a), while
dendritic cells were not (FDR= 0.41). This analysis crudely
implied that the basal tumors were infiltrated with a large
spectrum of immune cells to a higher degree than the luminal
MIBC. However, it remained puzzling how to rationalize that

both positive and negative regulators of effector T cells were
upregulated in the basal MIBC.

Digital dissection of tumor microenvironment of MIBC. Next,
we digitally dissected the tumor microenvironment by performing

Fig. 3 Prognostic power of tumor differentiation (TD) and basal-luminal gene expression signatures. a Heatmaps of gene expression of 42 basal-luminal

genes (including 18 TD genes) in the TCGA (n= 388) and IMvigor210 (n= 348) cohorts. b, c Patient overall survival stratified by the basal and luminal

subtypes defined by the 42 basal-luminal genes (b), and by the basal and differentiated subtypes defined by the 18 TD genes (c) in the IMvigor210 cohort.

d Heatmaps of G3 (MTAP/CDKN2A/2B) expression in the basal and luminal/differentiated subtypes in the TCGA and IMvigor210 cohorts, which were further

divided into relatively G3 high expression (G3High) or low expression (G3Low) subgroup. On the top panel, the copy number data of chr9 p21.3 are aligned with

the G3 expression data in the TCGA cohort, indicating a high concordance between copy number and gene expression. e Overall survival stratified by the

G3High and G3Low groups in the TCGA cohort (375 non-NAC patients). f Overall survival stratified by the Basal_G3High, Basal_G3Low, Luminal_G3High, and

Lumina_G3Low groups in the TCGA cohort (375 non-NAC patients). Log-rank test was used to compare subtype-specific survival curves.
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Fig. 4 Subtype-specific response (CR/PR) rates of PD-L1 blockade therapy, PD-L1 expression levels, and survival in the IMvigor210 cohort. a Response

rates, b PD-L1 expression levels, and c KM survival curves of the G3High and G3Low groups. d Response rates, e PD-L1 expression levels, and f KM survival

curves of the G3High and G3Low groups in the basal and luminal sub-cohorts. g Response rates, h PD-L1 expression levels, and i KM survival curves of the

immune cell (IC) subgroups. j Response rates, k PD-L1 expression levels, and l KM survival curves of the tumor-immune phenotypes. m Response rates, n

PD-L1 expression levels, and o KM survival curves of the Lund subtypes. Fisher exact test was used to compare the CR/PR frequencies; t-test or ANOVA

was used to compare PD-L1 expression between the subtypes. Log-rank test was used to compare subtype-specific survival curves.
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Fig. 5 Prognostic power of tumor differentiation (TD) and basal-luminal gene expression signatures. a, b Heatmaps of gene expression of 42 basal-

luminal genes (including 18 TD genes) in the 6 retrospective study cohorts (MDA1, MDA2, LU, CNU, MSK, CIT) (a) and the 2 clinical trial cohorts (MVAC,

MVAC+ B) (b). c, d Patient overall survival stratified by the basal and Luminal subtypes defined by the 42 basal-luminal genes in the 6 retrospective study

cohorts (c) and the 2 clinical trial cohorts (d). e, f Patient overall survival stratified by the basal and differentiated subtypes defined by the 18 TD genes in

the 6 retrospective study cohorts (e) and the 2 clinical trial cohorts (f). MDA1: MD Anderson Cancer Center (USA) cohort 1; MDA2: MDA cohort 2; LU:

Lund University, Sweden; CNU: Chungbuk National University, South Korea; MSK: Memorial Sloan-Kettering Cancer Center, USA; CIT: Curie Institute,

France; MVAC: methotrexate, vinblastine, doxorubicin, and cisplatin; B: bevacizumab. Log-rank test was used to compare subtype-specific survival curves.
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xCell analysis of 64 cell types for each TCGA MIBC sample35. The
xCell score is based on single-sample GSEA (ssGSEA) and can be
used to measure the enrichment of a set of genes among the top of a
ranked GE profile. Overall, the basal subtype had higher immune
score (P= 7.89E-12, Wilcoxon rank-sum test) and microenviron-
ment score (P= 3.12E-7) than the luminal subtype (Fig. 7b; Sup-
plementary Fig. 6). As expected, epithelial cells, keratinocytes, and

smooth muscle cells were among the top enriched cells in the MIBC
samples (Fig. 7b). Epithelial cells and keratinocytes appeared to be
more enriched in the basal subtype, consistent with the characteristics
of basal cells. The top enriched cells also included immune cells such
as actived dendritic cells (aDC), immature DC (iDC), conventional
DC (cDC), Th1/Th2 cells, and macrophages. Interestingly, xCell
analysis revealed enrichment of dendritic cell content in basal MIBCs,

Fig. 6 Top up-regulated BIOCARTA pathways in the basal subtype of the TCGA MIBC samples. On the heatmap, red and blue represent high and low

expression, respectively. Gene-based permutation test was used to calculate the FDR.
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while GSEA did not. Another interesting finding was that CD8+
T cells were not heavily infiltrated in basal nor luminal MIBCs
(Fig. 7b).

Discussion
With the aim to identify MIBC subtypes and biomarkers that are
clinically relevant, we performed iCluster analysis of MIBC multi-
omics data and identified two iSubtypes with chr9 p21.3 loss or
normal subgroups that shed light on patient stratification for
frontline immunotherapy and chemotherapy. Relatively high
mutation rates of TP53, RB1, and NFE2L2 were observed in the
basal subtype. TP53 and RB1 mutations tended to be positively
correlated, and were highly mutated in MIBC or high-grade
NMIBC11,36–38. Therefore, concurrent mutations of TP53 and
RB1 might contribute to cancer aggressiveness. Cigarette smoking

is a well-known risk factor for bladder cancer. Mutations in
NFE2L2 could limit its effect on the genes that inhibit the
damaging effects caused by carcinogens in cigarette smoke39,40. In
contrast, relatively high mutation rates of KDM6A and FGFR3
were observed in the luminal subtype. Interestingly, KDM6A and
FGFR3 were seen at higher rates in NMIBC, compared to
MIBC38. KDM6A encodes a histone demethylase, and thus
mutations could lead to gene silencing. Activating FGFR3
mutations were frequently observed in bladder cancer, leading to
morphological transformation and cell proliferation41,42. The
basal subtype was characterized by high expression of the basal-
squamous markers including STAT3 and EGFR, which could be
potential therapeutic targets for basal MIBC. In a mouse model,
the constitutive expression of STAT3 led to the development of
invasive bladder43. Preclinical studies suggested that treatment

Fig. 7 Digital dissection of TCGA MIBC samples. a Immune-cell-specific gene expression. On the heatmaps, red: high expression, blue: low expression.

b xCell scores of the 64 cell types. On the heatmaps, cyan to red represent low to high xCell scores. Columns represent samples, and rows represent cell

types and immune, stroma, and microenvironment scores. Gene-based permutation test was used to calculate the FDR.
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efficacy of anti-EGFR could be improved by basal subtype-specific
anti-EGFR therapy14, and phase II clinical trials showed that the
EGFR inhibitors had antitumor activity44,45. The luminal subtype
was characterized by high expression of the differentiated/luminal
markers including FGFR3, a potential therapeutic target. Early
phase clinical trials have shown benefits of anti-FGFR agents in
FGFR3-mutant bladder urothelial cancer46–48.

Both the basal and luminal subtypes could be further divided into
chr9 p21.3 N (normal) and chr9 p21.3 L (loss) subgroups (Fig. 1a).
Chr9 p21.3 region contains genes includingMTAP and CDKN2A/2B.
MTAP encodes methylthioadenosine phosphorylase, an enzyme
essential for the salvage of adenine and methionine in polyamine
metabolism. MTAP converts methylthioadenosine to adenine and
methylthioribose-1-phosphate, which are used for AMP and
methionine synthesis, respectively49. Therefore, loss of MTAP can
make the generation of AMP dependent on the de novo synthesis
pathway. As a result, tumor cells lack of MTAP could be potentially
sensitive to inhibitors of the de novo purine synthesis pathway50.
CDKN2A and CDKN2B encode two important cell cycle regulatory
proteins p16 and p15 respectively, which function as inhibitors of
cyclin-dependent kinases CDK4 and CDK6, leading to blocking the
phosphorylation of the RB protein. In an alternative reading frame
(ARF), CDKN2A encodes protien p14ARF, which can bind to and
sequester MDM2 (a E3 ubiquitin ligase), leading to blocking MDM2-
mediated degradation of p5351. Therefore, CDKN2A/2B encodes
tumor suppressors capable of inducing cell cycle arrest in G1 and G2
phases. The chr9 p21.3 deletion has been reported in bladder cancer
cell lines and tissue samples as well as other cancers including glioma,
leukemias, lung cancer, and mesotheliomas20,49,52–54.

By analyzing the IMvigor210 RNA-seq data, we found that the
MTAP/CDKN2A/2B low expression (G3Low, indicative of chr9
p21.3 L) groups had significantly lower anti-PD-L1 response rates
and worse survival than the G3High (indicative of chr9 p21.3 N)
groups. Interestingly, loss of chr9 p21.3 or low expression of the
genes in the region was associated with worse survival in patients
with NMIBC, melanoma, mesotheliomas, glioma, and oral
squamous cell carcinoma53,55–58, which was consistent with our
findings in patients with MIBC. Although PD-L1 had a higher
expression in the basal subtype than that in the luminal subtype
(Fig. 4e and Supplementary Fig. 7), there was no significant
correlation between the 2 major subtypes and the response rates
of the anti-PD-L1 immunotherapy in the IMvigor210 cohort
(CR/PR rate, basal: 21% vs. luminal: 24%, P= 0.57, Fisher exact
test). In the Lund subtypes, the basal with the highest median PD-
L1 expression did not have the highest anti-PD-L1 response rate
(Fig. 4m, n). It was reported that PD-L1 expression on immune
cells (measured by the percentages of PDL1-positive immune
cells) was significantly correlated with the response6,7. However,
PD-L1 expression on tumor cells was not correlated with the
response29. Therefore, an overall measurement of PD-L1
expression in tumor tissues that are often mixed with immune
cells may not be informative with respect to the response to
immunotherapy. Interestingly, when the basal and luminal sub-
types were further divided into G3High/Low groups, we observed
the positive correlations among the overall PD-L1 expression
levels, anti-PD-L1 response rates and overall survival, consistent
with the observations in immune cell subtypes and immune
phenotypes reported by Mariathasan et al.29 (Fig. 4d–l).

The clustering of the TCGA samples to the two major basal and
luminal subtypes were primarily driven by the GE and methylation
patterns, which were negatively correlated. Currently, GE data are the
most popular omics data type and most of the bladder cancer sub-
types are defined by GE signatures. In order to make our findings
useful in practice, we derived a 42-gene panel including the 18 TD
genes as a surrogate of the identified 2655 driver genes (Fig. 1a and
Supplementary Fig. 8) for classification and prognostic analysis. The

42 genes consist of the classical basal-luminal genes and are of bio-
logical implications. Using the 42 basal-luminal GE and the 18 TD
GE signatures, MIBC samples can be classified into basal and
luminal/differentiated subtypes. The basal subtype was characterized
by relatively high expression of basal-squamous markers (e.g., CD44,
KRT5, KRT6B/C, KRT14, TGM1, DSC3, PI3), while the luminal
subtype was characterized by relatively high expression of luminal
markers of terminally differentiated urothelial umbrella cells
(UPK1A/B, UPK2, UPK3A/B, KRT20, SNX3) (Figs. 3a, 5a, b). Using
the IMvigor210 RNA-seq data and 8 microarray data sets, we
demonstrated that the 42 base-luminal genes and the 18 TD genes
had almost equivalent prognostic power in classifying MIBC samples
into clinically relevant subgroups (Figs. 3b, c, 5c–f). Interestingly, the
basal subtype was associated with worse overall survival in the
IMvigor210 and the 6 retrospective study cohorts, which was con-
sistent with previous observations12,14–17,19. One may speculate that
despite the basal subtype exhibiting signatures suggestive of increased
immune cell infiltrates, the balance between inhibitory and stimula-
tory/effector cellular and molecular mechanisms may be skewed
towards the former, a pattern that will contribute to muting potential
anti-tumor response and is consistent with the poor survival outcome
in patients with this subtype. Comprehensive profiling of the tumor
immune microenvironment is, therefore, necessary to better under-
stand the interplay between the tumor-associated immune cells
between the basal and luminal subtypes and how this impinges upon
potential anti-tumor immunity. In the 2 clinical trials that aimed to
evaluate the effects of cisplatin-based NAC on MIBC patients, the
basal subtype was associated with better overall survival, consistent
with the observations by McConkey et al. and Seiler et al.31,33. Our
pathway analyses revealed that pathways involved in cell motion/
adhesion and cell cycle were up-regulated in the basal subtype, which
might reveal the mechanism related to its aggressive nature. Che-
motherapy might be able to restrain tumor cell proliferation and
motility, leading to the susceptibility of the basal subtype to che-
motherapy. In addition, chemotherapy may affect the dynamics of
tumor-associated immune cells either in a tumor-intrinsic manner
(i.e., modulating immunogenic cell death), or indirectly by altering
the proportions and phenotypes of tumor-associated immune cell
subsets59–61.

In summary, we identified 2 major MIBC subtypes with dis-
tinct landscapes across multi-omics levels. The basal subtype was
associated with worse survival in the non-NAC patients of the
TCGA cohort, but better survival in the NAC patients of the 2
clinical trial cohorts. Each of the 2 major subtypes could be
further divided into 2 more subgroups according to the copy
number status of chr9 p21.3. Patients with copy number normal
of chr9 p21.3 tended to have a higher response rate to PD-L1
blockade therapy and better overall survival. Considering the
subtype-specific responses to frontline chemotherapy and
immunotherapy, it may be worth exploring the combination
therapy in MIBC. Our study has some limitations. First, the
sample size of the two clinical trial cohorts was relatively small.
More clinical trials with larger sample sizes are necessary to
confirm the findings. Second, the history of NAC was known for
the patients in the TCGA cohort, but that information was not
publicly available for patients in the other 6 retrospective cohorts,
which might consist of NAC and non-NAC patients. Third, bulk
RNA-seq and microarray GE data are confounded by signals
from a mixture of cell populations, making it necessary to col-
laborate these RNA-based findings with multiplex immunohis-
tochemistry to investigate tumor cell intrinsic changes and its
crosstalk with the immune and stromal microenvironments that
dictate therapy response. Finally, we are aware that a recent study
using the consensus classification method in a different patient
cohort revealed basal/squamous tumors exhibited a poor
response to chemotherapy62. It is unclear if these findings are
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related to previous functional studies showing basal cancer stem
cell repopulation is a contributing driver to chemoresis-
tance63. Future studies will be essential to shed light on the
current controversies.

Methods
Multi-omics data sets. The MIBC multi-omics data were generated by TCGA and
the level-3 data were downloaded from http://firebrowse.org/. Among the 412 TCGA
patient samples, 388 samples with complete somatic mutation, DNA copy number,
methylation, and RNA-seq GE data were used for iCluster analysis. Among the
388 samples, 378 samples were collected from patients who received no NAC and
10 samples were collected from patients who received NAC. IMvigor210 RNA-seq GE
data (n= 348) were from a large phase 2 trial investigating the clinical activity of PD-
L1 blockade therapy using atezolizumab in locally advanced and metastatic urothelial
carcinoma6 and made available by Mariathasan et al.29. Eight microarray data sets
were obtained from ArrayExpress64 including CIT (Curie Institute, Paris, France) (E-
MTAB-1803; n= 85)14 and from GEO65 including MDA1 (MD Anderson Cancer
Center, Houston, USA) (GSE48277; n= 57)16, MDA2 (GSE48075; n= 73)16, CNU
(Chungbuk National University, Chungbuk, South Korea) (GSE31507; n= 61)30,
MSK (Memorial Sloan-Kettering Cancer Center, New York, USA) (GSE31684; n=
66)32, LU (Lund University, Lund, Sweden) (GSE32894; n= 93)19, MDA MVAC
(GSE52219; n= 23)16 and MDA MVAC+ B (GSE69795; n= 38)31. In the MDA
MVAC study, patients were enrolled for a phase III clinical trial and treated with
MVAC (methotrexate, vinblastine, doxorubicin, and cisplatin)66. In the MVAC+ B
study, patients were treated with dose-dense MVAC plus bevacizumab (MVAC+ B)
in a phase II clinical trial31. The other 6 studies were retrospective and the detailed
information for chemotherapy was not publicly available. The collection and mole-
cular profiling analysis of the samples were approved by individual Institutional
Review Board and informed consent was obtained from each subject as part of
previously published studies.

Integrative clustering and bioinformatics analyses. iCluster analysis of the
MIBC multi-omics data were performed using the iClusterBayes method28. To
perform the analysis, we processed the MIBC multi-omics data sets to form 4 data
matrixes with columns corresponding to the common samples (n= 388) and rows
corresponding to omics features. A flowchart summarizing the process was shown
in Supplementary Fig. 8. Specifically, the somatic mutation data were summarized
by a binary matrix with value 1 (mutation) and 0 (normal) indicating genes’
mutation status. A gene was said to be mutated if it contained frameshift deletion/
insertion, in-frame deletion/insertion, missense/nonsense/nonstop mutation, RNA,
splice site, or translation start site mutation. The genes with mutation rate ≥2%
(3610) were used for iCluster analysis. For the copy number data, we condensed the
genomic segments to 6,290 regions using the methods as described by Mo et al.27.
For the methylation data, we used the beta values that had minimum correlation
with corresponding mRNA expression and selected the top 25% (4226) most
variable probes for iCluster analysis. For the mRNA expression data, we used the
top 25% (5134) most variable genes. In order to fit the model better, we performed
logit transformation of the methylation beta values and log2 transformation of the
mRNA-seq normalized count values. To find an optimal number of clusters, we
tested the cluster number parameter K from 1 to 6. For each K, we ran 36,000
Markov chain Monte Carlo (MCMC) iterations for estimation of model parameters,
of which the first 18,000 were discarded as burn-in. After examining the deviance
ratio, Bayesian information criterion and heatmap for each possible number of
clusters, we found that a 2-cluster solution was optimal (Supplementary Fig. 9) and
the samples were divided into 2 clusters according to their latent variable (Z) values
(Cluster 1: Z ≥ 0;Cluster 2: Z < 0). Omics features with posterior probability >0.5
were considered as the drivers for sample clustering (Supplementary Fig. 10).

To examine if the GE signature (the 42 basal-luminal genes and the 18 TD
genes, respectively) identified by the iCluster analysis had prognostic value, we
performed classification analysis using the k-nearest neighbor method in which the
TCGA GE data were used as the training data set, and the other GE data were used
as the testing data sets. The number of k (k= 5 for the 42 genes, and k= 15 for the
18 genes) was chosen so that the cross-validation error was minimum in the TCGA
GE data. For the microarray GE data, when a gene’s expression was measured by
multiple probes, we used the one with the largest variance for the classification
analysis. To make the data sets comparable for classification analysis, the GE values
were standardized across genes for each sample. Pathway and gene set enrichment
analysis were performed using GSEA 3.0 (https://www.gsea-msigdb.org/gsea).
Gene ontology term enrichment analysis was performed using the DAVID
bioinformatics tools (v. 6.7) (https://david.ncifcrf.gov). Cell type enrichment
analysis was performed using xCell (2017) (https://xcell.ucsf.edu/).

Statistics and Reproducibility. Subtype-specific survival was estimated by
Kaplan–Meier method and compared by log-rank test. Fisher’s exact test was used to
evaluate if somatic mutations were associated with subtypes. Two sample t-test (or
Wilcoxon rank-sum test) was used to compare two groups of samples with continuous
measurement, and Analysis of Variance (ANOVA) was used for comparison of three or
more groups. All the statistical analyses were performed using R 3.6.1 (https://www.r-
project.org). P values were two-sided and P-value < 0.05 was considered statistically

significant. If multiple comparisons were involved, p-values were adjusted using
Benjamini–Hochberg method.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All the data used in this study are publicly available as described in the Methods section.

The data behind the figures are available in the supplementary data. The other data will

be available from the corresponding author upon request.

Code availability
The iClusterBayes function in the iClusterPlus package (v. 1.22.0) (https://bioconductor.

org/packages/release/bioc/html/iClusterPlus.html) was used for the integrative clustering

analysis. R code used for the analyses will be available from the corresponding author

upon request.
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