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Abstract

Module network inference is an established statistical method to reconstruct co-expression
modules and their upstream regulatory programs from integrated multi-omics datasets mea-
suring the activity levels of various cellular components across different individuals, exper-
imental conditions or time points of a dynamic process. We have developed Lemon-Tree,
an open-source, platform-independent, modular, extensible software package implement-
ing state-of-the-art ensemble methods for module network inference. We benchmarked
Lemon-Tree using large-scale tumor datasets and showed that Lemon-Tree algorithms com-
pare favorably with state-of-the-art module network inference software. We also analyzed
a large dataset of somatic copy-number alterations and gene expression levels measured
in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree cor-
rectly identifies known glioblastoma oncogenes and tumor suppressors as master regulators
in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree
were validated using tumor pathway and survival analyses. Lemon-Tree is available from
http://lemon-tree.googlecode.com under the GNU General Public License version 2.0.
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Introduction

Recent years have witnessed a dramatic increase in new technologies for interrogating the
activity levels of various cellular components on a genome-wide scale, including genomic,
epigenomic, transcriptomic, and proteomic information [1]. It is generally acknowledged
that integrating these heterogeneous datasets will provide more biological insights than
performing separate analyses. For instance, in 2005, Garraway and colleagues combined
SNP-based genetic maps and expression data to identify a novel transcription factor in-
volved in melanoma progression [2]. More recently, international consortia such as The
Cancer Genome Atlas (TCGA) or the International Cancer Genome Consortium (ICGC) have
launched large-scale initiatives to characterize multiple types of cancer at different levels (ge-
nomic, transcriptomic, epigenomic, etc.) on several hundreds of samples. These integrative
studies have already led to the identification of novel cancer genes [3, 4].

Among the many ways to approach the challenge of data integration, module network in-
ference is a statistically well-grounded method which uses probabilistic graphical models
to reconstruct modules of co-regulated genes (or other biomolecular entities) and their up-
stream regulatory programs and which has been proven useful in many biological case stud-
ies [5, 6]. The module network model was introduced as a method to infer regulatory net-
works from large-scale gene expression compendia [5] and has subsequently been extended
to integrate eQTL data [7,8], regulatory prior data [9], microRNA expression data [10], clini-
cal data [11], copy number variation data [12] or protein interaction networks [13]. The orig-
inal module network learning algorithm depended on a greedy heuristic, but subsequent
work has extended this with alternative heuristics [14], Gibbs sampling [15] and ensemble
methods [16]. Module network inference can be combined with gene-based network recon-
struction methods [17, 18] and recently a method has been developed to reconstruct module
networks across multiple species simultaneously [19]. This methodological and algorith-
mic work has complemented studies that were solely focused on applying module network
methods to provide new biological and biomedical insights [20–27].

Although the success of the module network method is indisputable, the various method-
ological innovations have been made available in a bewildering array of tools, written in a
variety of programming languages, and, when source code has been released, it has never
been with an OSI compliant license (Table 1). Here we present Lemon-Tree, a ‘one-stop
shop’ software suite for module network inference based on previously validated algorithms
where a community of developers and users can implement, test and use various methods
and techniques. We benchmarked Lemon-Tree using large-scale datasets of somatic copy-
number alterations and gene expression levels measured in glioblastoma samples from The
Cancer Genome Atlas and found that Lemon-Tree compares favorably with existing module
network softwares and correctly identifies known glioblastoma oncogenes and tumor sup-
pressors as master regulators in the inferred module network. Novel candidate driver genes
predicted by Lemon-Tree were validated using pathway enrichment and survival analysis.

Design and Implementation

Lemon-Tree is a platform-independent command-line tool written in Java which implements
previously validated algorithms for model-based clustering [15] and module network infer-
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ence [16]. The principal design difference between Lemon-Tree and other module network
softwares (e.g. Genomica [5] or CONEXIC [12]) consists of the separation of module learning
and regulator assignment. We have previously shown that running a two-way clustering al-
gorithm until convergence, and thereafter identifying the regulatory programs that give rise
to the inferred condition clusterings for each gene module results in higher module network
model likelihoods and reduced computational cost compared to the traditional approach of
iteratively updating gene modules and regulator assignments [14, 16]. Hence Lemon-Tree is
run as a series of tasks, where each task represents a self-contained step in the module net-
work learning and evaluation process and the output of one task forms the input of another
(a work flow representation of the different steps is illustrated in Figure 1):

Task “ganesh” Run one or more instances of a model-based Gibbs sampler [15] to simulta-
neously infer co-expression modules and condition clusters within each module from
a gene expression data matrix.

Task “tight clusters” Build consensus modules of genes that systematically cluster together
in an ensemble of multiple “ganesh” runs. Consensus modules are reconstructed by
a novel spectral edge clustering algorithm which identifies densely connected sets of
nodes in a weighted graph [28], with edge weight defined here as the frequency with
which pairs of genes belong to the same cluster in individual “ganesh” runs. Details
about the tight clustering algorithm are provided in the Supplementary Methods.

Task “regulators” Infer an ensemble of regulatory programs for a set of modules and com-
pute a consensus regulator-to-module score. Regulatory programs take the form of a
decision tree with the (expression level of) regulators at its internal nodes. The regula-
tor score takes into account the number of trees a regulator is assigned to, with what
score (posterior probability), and at which level of the tree [16]. An empirical distri-
bution of scores of randomly assigned regulators is provided to assess significance.
Regulator data need not come from the same data that was used for module construc-
tion but can be any continuous or discrete data type measured on the same samples.
When multiple regulator types are considered, the “regulators” task is run once for
each of them.

Task “experiments” For a fixed set of gene modules, cluster conditions separately for each
module using a model-based Gibbs sampler [15] and store the resulting hierarchical
condition trees in a structured XML file.

Task “split reg” Assign regulators to a given range of one or more modules. This task al-
lows parallelization of the “regulators” task and needs the output of the “experiments”
task as an input.

Task “figures” Draw publication-ready visualizations for a set of modules in postscript for-
mat, consisting of a heatmap of genes in each module, organized according to a con-
sensus clustering of the samples, plus heatmaps of its top-scoring regulators, separated
according to the regulator type (cf. Supplementary Figure 1).

Task “go annotation” Calculate gene ontology enrichment for each module using the BiNGO
[29] library.
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While a typical run of Lemon-Tree will apply tasks “ganesh”, “tight clusters” and “regula-
tors” in successive order, the software is designed to be flexible. For instance, the “tight clusters”
task can be equally well applied to build consensus clusters from the output of multiple
third-party clustering algorithms, regulators can be assigned to the output of any clustering
algorithm, etc. To facilitate this interoperability with other tools, input/output is handled via
plain text files with minimal specification, the only exception being the storage of the regula-
tory decision trees which uses an XML format. Tasks also permit customization by changing
the value of various parameters. We have purposefully provided default values for all pa-
rameters, based on our experience accrued over many years of developing and applying the
software to a great variety of datasets from multiple organisms, and avoided mentioning
any parameter settings in the Tutorial such that first-time users are presented with a simple
workflow. Detailed instructions on how to integrate or extend (parts of) Lemon-Tree and
a complete overview of all parameters and their default values are provided on the project
website (http://lemon-tree.googlecode.com/).

Results

Benchmark between Lemon-Tree and CONEXIC

We compared the performance of Lemon-Tree with CONEXIC (COpy Number and Expres-
sion In Cancer), a state-of-the-art module network algorithm designed to integrate matched
copy number (amplifications and deletions) and gene expression data from tumor samples
[12]. The general framework is the same for the algorithms, with modules of co-expressed
genes associated to a list of regulators assigned via a probabilistic score. However, the prob-
abilistic techniques used to build the modules and to assign regulators are different. We ran
the two programs on the same large-scale reference data set to evaluate these differences.
We used Gene Ontology (GO) enrichment and a reference network of protein-protein inter-
actions to compare the co-expressed modules and the regulatory programs.

We downloaded gene expression and copy number glioblastoma datasets from the TCGA
data portal [3] and we build an expression data matrix of 250 samples and 9,367 genes. We
limited the number of samples for this benchmark study in order to save computational
time. For the candidate regulators, we selected the top 1,000 genes that were significantly
amplified or deleted as input genes for both CONEXIC and Lemon-Tree. To run CONEXIC,
we followed the instructions of the manual and more specifically used the recommended
bootstrapping procedure to get robust results. For Lemon-Tree, we generated an ensemble
of two-way clustering solutions that were assembled in one robust solution by node clus-
tering. Then we assigned the regulators using the same input list as with CONEXIC. A
global score was calculated for each regulator and for each module and we selected the top
1% regulators as the final list (see Supplementary Methods). The total run-time for the two
software programs on the benchmark dataset was quite similar, with a small advantage for
Lemon-Tree (Supplementary Table S5).

To compare the Gene Ontology (GO) categories between Lemon-Tree and CONEXIC, we
built a list of all common categories for a given p-value threshold and converted the cor-
rected p-values to − log10(p-value) scores. We selected the highest score for each GO cate-
gory and we counted the number of GO categories having a higher score for Lemon-Tree or

http://lemon-tree.googlecode.com/
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CONEXIC, and calculated the sum of scores for each GO category and each software. The
results shown in Figure 2 indicate that Lemon-Tree clusters have a higher number of GO cat-
egories with lower p-values than CONEXIC (Figure 2A), and that globally the p-values are
lower for Lemon-Tree clusters (Figure 2B). To benchmark the regulators’ assignment of each
software, we used a scoring scheme developed by Jornsten et al. [30]. For a given interaction
distance in a reference protein-protein interaction network, we calculated the relative enrich-
ment of known interactions in the networks inferred by Lemon-Tree and CONEXIC with
respect to known interactions in networks where edges have been randomly re-assigned
(see Supplementary Methods). Figure 2C shows the relative enrichments for interaction dis-
tances ranging from 1 (direct interaction) to 4. The Lemon-Tree inferred network is enriched
for short or direct paths, a desired characteristic for well-estimated networks [30].

These results are consistent with a previous study conducted on bacteria and yeast data,
where we showed a better performance in terms of enrichment in functional categories and
known regulatory interactions of the algorithms underlying the Lemon-Tree software over
Genomica (a software tool on which CONEXIC is based) [17]. Taken together, these results
show that Lemon-Tree compares favorably with state-of-the-art module network inference
algorithms.

Integrative analysis of TCGA glioblastoma expression and copy-number data

Lemon-Tree can be used to integrate various types of ’omics’ data and generate new bio-
logical and biomedical insights. Here, we exemplify how to integrate copy-number and
expression data for a large dataset of glioblastoma tumor samples and show that the results
are enriched in known key players of canonical tumor pathways as well as novel candi-
dates. Malignant gliomas are the most common subtype of primary brain tumors and are
very aggressive, highly invasive and neurologically destructive. Glioblastoma multiforme
(GBM) is the most malignant form of gliomas, and despite intense investigation of this dis-
ease in the past decades, most patients with GBM die within approximately 15 months of
diagnosis [31]. Somatic copy-number alterations (SCNA) are extremely common in cancer
and affect a larger fraction of the genome than any other types of somatic genetic alterations.
They have critical roles in activating oncogenes and inactivating tumor suppressor genes,
and their study has suggested novel potential therapeutic strategies [32, 33]. However, dis-
tinguishing the alterations that drive cancer development from the passenger SCNAs that
are acquired over time during cancer progression is a critical challenge. Here we use the
module network framework implemented in the Lemon-Tree software tool to build a mod-
ule network relating genes located in regions that are significantly amplified or deleted to
modules of co-expressed genes. In other words, the module network selects and priori-
tizes copy-number altered genes that might play a role (direct or indirect) for clusters of
co-expressed genes, performing important biological functions in glioblastoma. The result-
ing module network is used to prioritize SCNA genes that are amplified or deleted, and to
provide novel hypotheses regarding drivers of glioblastoma.

We downloaded data from the TCGA project portal [3] and we selected 484 glioblastoma tu-
mor samples from different patients (representing 91% of the available samples). We selected
7,574 gene expression profiles and generated an ensemble of two-way clustering solutions
that were assembled in one robust solution by node clustering, resulting in a set of 121 clus-
ters composed of 5,423 genes (Supplementary Methods and Supplementary Table S1). We
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assembled a list of genes amplified and deleted in glioblastoma tumors from the most recent
GISTIC run of the Broad Institute TCGA Copy Number Portal on glioblastoma samples.
GISTIC [34] is the standard software tool used for the detection of peak regions significantly
amplified or deleted in a number of samples from copy-number profiles. We also included
in the list a number of key genes amplified or deleted from previous studies [34–36]. The
final list is composed of 353 amplified and 2,007 deleted genes (with all genes present on sex
chromosomes excluded). We did not use extremely stringent statistical thresholds for the
selection, to avoid the exclusion of potentially interesting candidates. From this list we built
SCNA gene copy-number profiles using TCGA data and used those profiles as candidate
regulators for the co-expressed gene clusters. We assigned regulators independently for am-
plified and deleted genes, and we selected the top 1% highest scoring regulators as the final
list (a cutoff well above assignment of regulators expected by chance), with 92 amplified
and 579 deleted selected genes (Supplementary Methods and Supplementary Tables S2 and
S3). The resulting glioblastoma module network is composed of 121 clusters of co-expressed
genes, together with associated prioritized lists of high-scoring SCNA genes (associated to
amplified and deleted regions).

More than 60% of the clusters have a significant Gene Ontology (GO) enrichment (corrected
p-value < 0.05, Table 2 and Supplementary Table S4). Several of those enriched clusters
can be related to the hallmarks of cancers, ten distinctive and complementary capabilities
that have been defined as the fundamental biological capabilities acquired during tumor de-
velopment [37, 38]. For instance, we have 11 clusters enriched for GO categories related to
cell cycle processes and regulation (p-value < 0.05), with three of them having very strong
enrichment (corrected p-values 4×10−18, 6×10−24 and 9×10−71, Table 2). The cell cycle is
deregulated in most cancers and is at the heart of the “sustaining proliferative signaling”
hallmark. Eight clusters are enriched for categories related to immune response, with two
of them displaying strong enrichment (corrected p-values 6×10−33 and 6×10−45, Table 2).
Most tumor lesions contain immune cells present at various degrees of density. Intense re-
cent research has shown that this immune response is linked to two phenomena. First, it is
obviously an attempt by the immune system to eradicate the tumor, but secondly, there is
now a large body of evidence showing that immune cells also have strong tumor-promoting
effects, and both aspects are categorized as part of the hallmarks of cancer [38]. For instance,
microglia are a type of glial cells that act as macrophages of the brain and the spinal cord and
thus act as the main form of immune response in the central nervous system. They consti-
tute the dominant form of glioma tumor infiltrating immune cells, and they might promote
tumor growth by facilitating immunosuppression of the tumor microenvironment [39]. The
development of blood vessels (angiogenesis) is another crucial hallmark of cancer, provid-
ing sustenance in oxygen and nutrients and a way to evacuate metabolic wastes and carbon
dioxide [38]. Glioblastoma multiforme is characterized by a striking and dramatic induc-
tion of angiogenesis [31]. There are seven clusters enriched for GO categories related to
angiogenesis and blood vessel development, with two of them having strong enrichment
(corrected p-values 4×10−6 and 9×10−16, Table 2). A recent large-scale integrative study
of hundreds of glioblastoma samples has shown that chromatin modifications could poten-
tially have high biological relevance for this type of tumor [40]. Interestingly, we have a
cluster highly enriched in chromatin assembly and organization (corrected p-value 5×10−17

and 9×10−24, Table 2). Taken together, these results show that the clusters of co-expressed
genes in the module network are representative of the molecular functions and biological
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processes involved in tumor in general and more specifically in glioblastoma.

In the glioblastoma module network, we inferred a list of amplified and deleted SCNA genes
linked to one or more clusters of co-expressed genes. Some of those SCNA genes are highly
connected, representing potential master copy-number regulators for module activity. To
identify and analyze those SCNA hub genes, we calculated for each high-scoring regulator
the sum of the scores obtained in each module, and ranked them by decreasing score for
amplified (Table 3) and deleted (Table 4) genes. Among these genes, we find many well-
known oncogenes and tumor supressors that are frequently amplified, deleted or mutated
in glioblastoma. Those genes include EGFR, PDGFRA, FGFR3, PIK3CA, MDM4, CDKN2A/B,
PTEN and are all members of the core alterated pathways in glioblastoma controlling key
phenotypes such as proliferation, apoptosis and angiogenesis (Figure 3, [3,35,40,41]). Those
genes and pathways are also frequently impaired in many other types of tumors [42–44]. In
addition, we find in those lists of hub genes a number of interesting new candidates, both
in amplified and deleted genes, that have not been associated with glioblastoma before. To
better visualize the importance and role of both the well-known and novel SCNAs prior-
itized by Lemon-Tree, we represent those that are part of the three core pathways altered
in glioblastoma as a network with edges representing activation or inhibition relationships,
together with their levels of gene gains and losses in glioblastoma samples (Figure 3).

Within the list of amplified gene hubs (Table 3), we find a number of genes that have been
rarely or never associated before with glioblastoma. INSR is a gene encoding for the insulin
receptor, a transmembrane receptor activated by insuline and IGF factors, member of the
tyrosine receptor kinase family, and playing a key role in glucose homeostasis. INSR is
selected as a high-scoring regulator in 15 modules and ranked in third position in the list
of amplified gene hubs. It is found to be amplified as low-level gain or higher in 39% of
the samples (Table 3). Beyond its well-known role in glucose homeostasis, INSR stimulates
cell proliferation (Figure 3) and migration and is often aberrantly expressed in cancer cells
[45]. Consequently, amplification of INSR in glioblastoma may enhance proliferation. MYCN
encodes a transcription factor (N-myc) highly expressed in fetal brain and critical for normal
brain development. It is also a well-known proto-oncogene, and amplification of N-myc
is associated with poor outcome in neuroblastoma [46]. MYCN is amplified as low-level
gain or higher in 8% of the glioblastoma samples and is connected to 21 modules (Table 3).
MYCN is part of the RB signaling pathway, and is also strongly connected to the RTK / PI3K
and p53 pathways (Figure 3), with a direct influence on proliferation. For that reason, its
amplification may also favor proliferation in glioblastoma. KRIT1 (also known as CCM1) is
a gene crucial for maintaining the integrity of the vasculature and for normal angiogenesis.
Loss of function of this gene is responsible for vascular malformations in the brain known
as cerebral cavernous malformations [47, 48]. It is amplified as low-level gain or higher in
83% of the glioblastoma samples and it is listed in the top 10 hubs in our list (Table 3). The
consequences of KRIT1 amplification are not completely clear, but we may hypothesize that
it is required for proper angiogenesis development, which is a hallmark of glioblastoma [31],
and that it may also help decrease apoptosis (Figure 3).

In the list of putative deleted genes, PAOX (polyamine oxidase) is ranked first, with a connec-
tion to 54 modules and the highest sum of scores value. It is classified as single loss (GISTIC
call value of -1 or lower) in 89% of the samples. This is a very high value, comparable to the
value obtained for the classical tumor suppressor CDKN2A (75%, Table 4). Amine oxidases
are involved in the metabolism of polyamines, regulating their intracellular concentrations
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and elimination. The products of this metabolism (e.g. hydrogen peroxyde) are cytotoxic
and have been considered as a cause for apoptotic cell death. Amine oxidases are consid-
ered as biological regulators for cell growth and differentiation, and a primary involvement
of amine oxidases in cancer growth inhibition and progression has been demonstrated [49].
Therefore, PAOX might have a tumor suppressor activity and its deletion in many glioblas-
toma samples could provide a selective advantage to glioblastoma tumor cells. Interestingly,
amino acids metabolism is not part of the standard alterated pathways in glioblastoma (ex-
plaining why we did not represent PAOX on Figure 3), but targeting this pathway could
lead to novel therapeutic treatments [50]. KLLN encodes a nuclear transcription factor and
shares a bidirectional promoter with PTEN. It is activated by p53 and is involved in S phase
arrest and apoptosis [51]. Recent studies show that KLLN has a tumor supressor effect and
is associated with worse prognosis in prostate and breast carcinomas [52,53]. Consequently,
the loss of KLLN that is observed in 88% of the glioblastoma samples (Table 4) would help
the development of tumor cells by decreasing apoptosis and favoring proliferation (Figure
3).

To assess the biological relevance of the amplified and deleted gene hubs in the module net-
work, we analyzed the prognosis value of the top gene hubs by survival analysis, using the
clinical data available for TCGA samples (survival time and status of the patient). We con-
structed Kaplan-Meier estimates using GISTIC putative calls to define genes having single or
deep copy loss (i.e. GISTIC call value ≤ −1) and genes having low-level gains or high-level
amplifications (i.e. GISTIC call value ≥ 1). The differences between groups were formally
tested and a total of 3 amplified genes and 18 deleted genes from the lists displayed in tables
3 and 4 have significant p-values < 0.05 (Figure 4 and Supplementary Table S6). Interest-
ingly, among those genes we find the well-known glioblastoma oncogene EGFR and tumor
suppressors CDKN2A and PTEN, but also novel candidates such as KRIT1 and PAOX de-
scribed in the previous paragraph. Glioblastoma patients having copy-number alterations
for those genes have a worse survival prognostic. This indicates the biological relevance of
those genes that may be used as biomarkers.

Availability and future directions

The Lemon-Tree software is hosted at Google Code (http://lemon-tree.googlecode.com/).
The source code, executables and documentation can be downloaded with no restrictions
and no registration, and are released under the terms of the GNU General Public License
(GPL) version 2.0. Developers and users can join the project by contacting the authors and
there is a mailing list for discussions and news about module networks and the project. A
step-by-step tutorial to learn how to install and use the software is available on the wiki
section, together with the corresponding data sets.

In the future, we intend to extend Lemon-Tree’s support for explicitly modelling causal re-
lations between regulator types and to incorporate complementary algorithms available in
the literature for integrating gene-based methods, physical interactions and cross-species
data. Firstly, the current version of Lemon-Tree is able to associate co-expression modules to
multiple ‘regulator’ types (e.g. expression regulators, structural DNA variants, phenotypic
states, etc.) by assigning each of those independently as regulators of a module. We will
extend the software with Bayesian methods to account for possible causal relations between

http://lemon-tree.googlecode.com/
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regulator types, e.g. when the association between a module and expression regulator can
be partly explained by a structural DNA variant. Secondly, a key long-term objective of
the Lemon-Tree project is to provide a general open-source repository for module network
inference tools with a consistent user interface. As a first step, the current version of Lemon-
Tree implements algorithms previously developed by our group [14–17]. In the future, we
intend to extend it with complementary algorithms developed by other groups, including
algorithms to combine the strengths of module network methods with gene-based meth-
ods [18], to incorporate physical protein-protein or protein-DNA interactions as a prior in
the regulator assignment procedure [13] or to infer module networks from multiple species
simultaneously [19]. A document detailing guidelines to implement new functions in the
Lemon-Tree Java codebase is available on the project wiki.
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Figure 1. Flow chart for integrative module network inference with Lemon-Tree. This
figure shows the general workflow for a typical integrative module network inference with
Lemon-Tree. Blue boxes indicate the pre-processing steps that are done using third-party
software such as R or user-defined scripts. Green boxes indicates the core module network
inference steps done with the Lemon-Tree software package. Typical post-processing tasks
(orange boxes), such as GO enrichment calculations, can be performed with Lemon-Tree or
other tools. The Lemon-Tree task names are indicated in red (see main text for more details).



15

0.05 0.01 0.001

Nb of GO categories with lower p−values

Corrected p−value cutoff

0
20

0
40

0
60

0

Lemon−Tree
Conexic

A
0.05 0.01 0.001

Sum of −log10(p−value)

Corrected p−value cutoff

0
10

00
30

00
50

00
B

●

●

● ●

1.0 2.0 3.0 4.0

1.
0

1.
4

1.
8

2.
2

PPI enrichment ratios

Interaction distance

E
nr

ic
hm

en
t r

at
io

C

Figure 2. Comparison between Lemon-Tree and CONEXIC. Gene Ontology (GO) enrich-
ment of the co-expressed gene clusters, indicated by counting the number of GO categories
having a lower p-value (A) and by comparing the sum of the quantity -log10(p-value) (B)
for different global p-value cutoff levels (x-axis). (C) Relative enrichment of inferred interac-
tions by Lemon-Tree and CONEXIC to known molecular protein-protein interactions (PPI),
for increasing interaction distances.
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Figure 3. Glioblastoma signaling pathway alterations for top hub regulators. Copy num-
ber alterations for a selection of predicted hub regulators are indicated for canonical glioblas-
toma signaling pathways p53, RB and RTK/PI3K. Genes selected by the algorithm are indi-
cated in black boxes, while light grey boxes depict genes that were not selected by the algo-
rithm but are key factors for the pathway. Purple hexagons indicate phenotypes. Percentage
of copy gain or loss is indicated by value and by color shades of red for gene gains and
green for gene losses. The values are taken from GISTIC putative calls for low-levels gains
or single-copy losses on 563 glioblastoma samples (data from the Broad institute).
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Figure 4. Kaplan-Meier survival curves for a selection of top hub glioblastoma genes pre-
dicted by the Lemon-Tree algorithm. The top three panels are genes having low-levels gains
or high-level amplifications (magenta) compared to normal (blue), the bottom three panels
are genes having single-copy loss or homozygous deletions (green) compared to normal
(blue). All genes display significant differences between the groups (p < 0.05, see Supple-
mentary Table S6 for a full list of p-values). Patient with putative gene gains or losses have
significantly worse prognosis (lower values on the y-axis). The x-axis on all figures represent
the time in number of days
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Table 2. GO enrichment for glioblastoma modules

Group Module Module Corrected p-value GO category
number nb of genes

Cell Cycle
1 85 9×10−71 cell cycle phase

2×10−67 cell cycle process
6×10−63 mitotic cell cycle

11 60 6×10−24 cell cycle phase
6×10−24 mitotic cell cycle

33 36 4×10−18 cell cycle phase
1×10−17 mitotic cell cycle

Immune response
3 145 6×10−45 immune response

6×10−45 immune system process
1×10−26 inflammatory response
4×10−23 innate immune response

14 127 6×10−33 response to type I interferon
8×10−24 innate immune response

26 54 7×10−6 defense response
9×10−6 immune response

48 37 1×10−6 immune system process
Vasculature

27 40 4×10−16 vasculature development
2×10−15 blood vessel development
7×10−13 angiogenesis

37 81 3×10−10 extracellular matrix organization
9×10−6 blood vessel development

Chromatin modifications
70 12 9×10−24 chromatin assembly

8×10−24 nucleosome assembly
5×10−17 chromatin organization

Selection of clusters of co-expressed genes from the glioblastoma module network highly
enriched for GO categories related to cancer hallmarks. Enriched categories are grouped
into broader functional groups. Only a subset of the GO categories are displayed in this
table. The full list is available as Supplementary Table 1.



20

Table 3. High-scoring amplified gene hubs detected by Lemon-Tree

Symbol Pathway Band Nm Sum score % amp. M-list P-list
CHIC2 4q12 32 5884 19 x x
EGFR EGFR signalling 7p11.2 24 5184 87 x x
INSR EGFR signalling 19p13.2 15 3918 39 x x
ASAP1 Membrane cytoskeleton interactions, cell motility 8q24.21 16 3119 11
MYCN Regulation of transcription 2p24.3 21 3028 8 x
C1orf101 1q44 19 2980 17 x
RHOB Rho protein signal transduction 2p24.1 19 2731 7
KRIT1 Small GTPase mediated signal transduction 7q21.2 11 2242 83
CCNE1 Regulation of cell cycle 19q12 14 1980 36 x x
SDCCAG8 1q43 14 1973 17 x
ADCY8 Intracellular signal transduction 8q24.22 12 1949 11
PDGFRA Cell proliferation, signal transduction 4q12 10 1874 18 x x
DDX1 Regulation of translation 2p24.3 16 1763 8
MDM4 p53 regulation 1q32.1 9 1385 27 x x
mir-4283-2 7q11.21 10 1374 80
PRDM2 Regulation of transcription 1p36.21 8 1323 15
FGFR3 Cell growth 4p16.3 5 1031 8 x x
SCIMP Immune response, signal transduction 17p13.2 8 1022 8
GSDMC Epithelial cell proliferation and apoptosis 8q24.21 8 919 11
COL4A1 Angiogenesis 13q34 2 743 5 x
PIK3CA Cell signalling, cell growth 3q26.3 7 743 17 x

List of the top 20 amplified genes ordered by decreasing sum of score values. Nm: number
of modules in which the gene is selected as a high-scoring regulator. % amp.: percentage of
samples in which the gene is classified as low-level gain or high-level amplification
(according to GISTIC putative calls). M-list: presence in a list of genes frequently mutated
in cancer, compiled from [42–44]. P-list: presence in a list of genes recurrently amplified or
deleted in 11 cancer types [33].
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Table 4. High-scoring deleted genes detected by Lemon-Tree

Symbol Pathway Band Nb modules Sum score % del. M-list P-list
PAOX Polyamine homeostasis, apoptosis 10q26.3 54 7937 89 x x
CDKN2A Negative regulation of cell proliferation 9p21.3 31 4785 75 x
mir-3201 22q13.32 21 3030 37 x
mir-340 5q35.3 35 3030 10 x
mir-604 10p11.23 49 2930 82 x
mir-938 10p11.23 45 2921 82
C9orf53 9p21.3 29 2897 75 x
ATAD1 10q23.31 55 2433 88
KIAA0125 14q32.33 30 2117 28 x
mir-548q 10p13 35 2017 81
OMG Cell adhesion 17q11.2 21 1697 13 x
EVI2B 17q11.2 19 1629 13 x
KRTAP5-6 11p15.5 18 1564 21
SRGAP1 Cell migration 12q14.2 20 1397 14
KLLN Cell cycle arrest, apoptosis 10q23.31 34 1374 88 x
FLT4 Protein tyrosine kinase signalling 5q35.3 12 1022 10 x
EFCAB4A Metabolic process 11p15.5 33 964 23
HBD 11p15.4 38 964 20
DMRTA2 Regulation of transcription 1p32.3 28 926 5
TBC1D30 12q14.3 15 791 13
ART5 Protein glycosylation 11p15.4 11 785 21
FAM19A5 22q13.32 4 745 37 x
EVI2A 17q11.2 17 709 13 x
ARID2 12q12 5 681 14 x
WDR37 10p15.3 21 614 81
MOB2 Death receptor signalling 11p15.5 15 599 23
PTEN EGFR signalling, AKT pathway 10q23.31 19 593 89 x x
MUC4 Cell matrix adhesion, transport 3q29 10 588 11
IDI1 Isoprenoids synthesis 10p15.13 23 569 81
CSMD1 8p23.2 8 566 12 x
CDKN2B Negative regulation of cell proliferation 9p21.3 19 565 75 x

List of top 30 deleted genes ordered by decreasing sum of score values. % del.: percentage
of samples in which the gene is classified as single-copy loss or deep loss (according to
GISTIC putative calls). Nm, M-list and P-list: see Table 3.



22

A Supplementary methods

Tight clustering algorithm

Lemon-Tree uses a tight clustering step to extract consensus modules from an ensemble of
clustering solutions. A novel spectral edge clustering algorithm [28] was implemented in
Lemon-Tree for this purpose. This algorithm proceeds as follows:

Pre-processing

First, let C(k) be the cluster assignment matrix for the kth ganesh run, i.e. C(k) is an N ×Mk
matrix where N is the number of genes and Mk the number of clusters in the kth run such
that

C(k)
im =

{
1 if gene i belongs to cluster m in run k
0 otherwise

.

Ganesh clusters are non-overlapping and all genes belong to a cluster, i.e. ∑m C(k)
im = 1 for all

i. Next, an N × N co-clustering matrix O(k) for the kth run is defined as

O(k)
ij =

{
1 if gene i and j belong to the same cluster in run k
0 otherwise

.

O(k) is obtained from C(k) via the matrix multiplication

O(k) = C(k)(C(k))T.

Averaging O(k) over all K runs gives the co-occurence frequency matrix

G =
1
K

K

∑
k=1

O(k).

Entries of G close to 1 represent pairs of genes which robustly cluster together irrespective of
the stochastic fluctuations introduced by the ganesh Gibbs sampling algorithm, whereas en-
tries close to 0 represent noisy relations between gene pairs accidentally clustering together
by random chance. We convert G to a sparse weighted adjacency matrix A by choosing a
threshold ε and setting

Aij =

{
Gij if Gij > ε

0 otherwise
.

In our experience, thresholds in the range ε ∈ [0.2, 0.4] produce suitably sparse graphs while
retaining all information about robust gene pairings. The default value is set to ε = 0.25.
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Spectral clustering

Tight clusters are defined as subsets of genes X with a high total edge weight in the thresh-
olded co-occurence frequency graph, as expressed by a score function

S(X) =
∑i,j∈X Aij

|X| ,

where |X| denotes the number of elements in X. The spectral edge clustering algorithm
iteratively searches for the set X which (approximately) maximizes S, removes X from the
graph, and repeats the procedure until no more edges remain. Specifically:

1. Calculate the dominant eigenvector x corresponding to the largest eigenvalue of A; x
is normalized to have ∑i x2

i = 1, and by the Perron-Frobenius theorem, all its elements
are positive xi ≥ 0.

2. Find the set X for which the vector uX with components uX,i = 1 for i ∈ X and 0
otherwise is as similar as possible to x, more precisely

X = argmax
Y

1
|Y|1/2 ∑

i∈Y
xi.

Since all xi ≥ 0, X must be of the form X = {i : xi > c} for some threshold value c and
is easily found.

3. Store X and perform one of two alternatives

(a) (Node clustering) Remove all nodes in X from the graph, i.e. set

Aij ← 0 if i ∈ X OR j ∈ X

(b) (Edge clustering) Remove all edges in X from the graph, i.e. set

Aij ← 0 if i ∈ X AND j ∈ X

4. Repeat 1− 3 until A = 0.

The solution for X in step 2 is an approximation to the real solution X = argmaxY S(Y).
However, because the dominant eigenvector x maximizes the quantity

x = argmax
y

∑N
i,j=1 Aijyiyj

(∑N
i=1 y2

i )
1
2

.

over all possible choices of vectors y, including vectors of the form uY, it can be shown that
the approximate solution is in some sense optimal. More precisely, the quantity maximized
by x provides an upper bound to the (unknown) maximum value maxY S(Y) and numerical
simulations on a variety of graphs have shown that the score of the approximate solution is
always close to the upper bound, and therefore also to the true maximum. For more details,
see [28].

Removal of nodes [step 3(a)] implies that every gene can belong to only one tight cluster
whereas removal of edges [step 3(b)] results in possibly overlapping tight clusters. In mod-
ule network applications, we always apply node clustering, because only non-overlapping
clusters can be given a statistical interpretation in the form of an underlying Bayesian net-
work model.
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Post-processing

The spectral clustering algorithm runs until all edges in the thresholded co-occurence fre-
quency graph A have been removed, but not all clusters found represent well-supported
tight clusters, particularly towards the end of the algorithm when tight clusters will consist
of very few nodes and edges. We therefore apply a post-processing step whereby clusters
that are too small or have too low value for the score function S are removed. The default
values are to keep all tight clusters with minimum size of 10 genes and score value (i.e.
weighted edge to node ratio) of 2. As a result, some genes may not belong to any tight
cluster and are discarded from any subsequent analysis.

Benchmark between Lemon-Tree and CONEXIC

We downloaded gene expression and copy number glioblastoma datasets from the Can-
cer Genome Atlas (TCGA, [3]) data portal and we selected a set of 250 samples that were
matched for copy number and gene expression data. We built a matrix of gene expression
ratios (normal/disease) and discarded genes having a flat profile (standard deviation <0.25),
keeping a total of 9,367 genes. To build a list of candidate regulators, we applied the pro-
gram JISTIC on copy-number profiles to determine genes that were significantly amplified
or deleted in the samples (with a default q-value cutoff of 0.25), and we selected the top
1,000 genes for each category as input for the candidate regulators for both CONEXIC and
Lemon-Tree.

To run CONEXIC, we followed the instructions of the manual and more specifically used
the recommended bootstrapping procedure to get robust results. For the Single Modulator
step (initial grouping of genes into modules), we performed 100 bootstrap runs, with 10,000
permutations each. We selected the regulators that appear in at least 90% of the runs for the
final Single Modulator run. We also performed 100 bootstrap runs for the Module Network
step (learning the modulators that best fit the data and improving the grouping of genes into
modules). We selected regulators appearing in at least 40% of the bootstrap files for the final
Module Network run. The final network was composed of 281 modules and 6,292 genes.

For Lemon-Tree, we generated 150 two-way clustering solutions that were assembled in one
robust solution by node clustering (minimum weight 0.33), resulting in a set of 257 clusters
composed of 5,354 genes. Then we assigned the regulators using the same input list as with
CONEXIC, with 10 hierarchical trees for each module. A global score was calculated for each
regulator and for each module and we selected the top 1% regulators as the final list.

The GO enrichment for the CONEXIC and Lemon-Tree clusters were calculated using the
built-in tool of the Lemon-Tree software package, which is based on the BiNGO Java li-
brary. The same list of reference genes, GO ontology file and annotation file were used
for the two sets (see the latest version for the gene ontology file at http://geneontology.
org/page/download-ontology, and the latest version for human gene association file at
http://geneontology.org/page/download-annotations). To compare the GO categories
between Lemon-Tree and CONEXIC, we built a list of all common categories for a given p-
value threshold and converted the corrected p-values to converted the corrected p-values to
− log10(p-value) scores. We selected the highest score for each GO category and we counted
the number of GO categories having a higher score for Lemon-Tree or CONEXIC, and calcu-
lated the sum of scores for each GO category and each software.

http://geneontology.org/page/download-ontology
http://geneontology.org/page/download-ontology
http://geneontology.org/page/download-annotations
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We downloaded all the human protein-protein interactions (PPI) from Reactome, Intact and
HPRD through the Pathway Commons portal. The resulting network was composed of 9,599
genes and 168,117 interactions. We calculated the shortest paths between all pairs of genes in
the network, using Dijkstra’s algorithm from the JUNG library (http://jung.sourceforge.
org). Interaction distances can be defined as the number of steps needed to ’walk’ from one
gene to another.

For a network G and interaction distance k, we followed [30] and calculated the enrichment
ratio Er (as a relative proportion) as:

Er =
P(Rij = k|i and j are connected in G)

P(Rij = k|i and j are connected in Gpermuted)

where Rij is the shortest path length in the PPI network between nodes i and j, and Gpermuted
was generated by random permutations of the non-diagonal G elements (network edges).

Integrative analysis of TCGA glioblastoma expression and copy-number data

We downloaded data from the Cancer Genome Atlas project portal (TCGA [3]) and we se-
lected 484 glioblastoma tumor samples from different patients, matched for mRNA expres-
sion and copy-number data. The expression data was composed of a total of 12,042 genes.
We selected genes differentially expressed (ttest p-value < 0.05, Benjamini-Hochberg cor-
rection, all calculations done with R) compared to normal tissue samples. We excluded
genes having flat profiles (standard deviation < 0.3), resulting in an expression matrix of
7,574 genes that was centered, scaled and taken as input for Lemon-Tree. We generated 127
two-way clustering solutions that were assembled in one robust solution by node clustering
(minimum weight 0.33, minimum size 10, minimum score 2), resulting in a set of 121 clus-
ters composed of 5,423 genes (median cluster size of 34 genes, see complete list of genes and
clusters in supplementary table S1).

We assembled a list of genes amplified and deleted in glioblastoma tumors from the most
recent GISTIC run of the Broad Institute TCGA Copy Number Portal on glioblastoma sam-
ples (http://www.broadinstitute.org/tcga/home). GISTIC [34] is the standard software
tool used for the detection of peak regions significantly amplified or deleted in a number of
samples from copy-number profiles. We also included in the list a number of key genes am-
plified or deleted from previous studies [34–36]. The final list is composed of 353 amplified
and 2,007 deleted genes (with all genes present on sex chromosomes excluded). To build the
copy-number matrix profiles, we downloaded the segmented data (level 3 files) correspond-
ing to Affymetrix Human SNP Array 6.0 hybridizations for all glioblastoma samples, and
mapped all genes and miRNAs to the segments in each sample. Each gene is then assigned
the copy-number value corresponding to the segment in which it is located or a missing
value if there is no segment corresponding to the location of the gene. All the profiles were
centered and scaled and used to infer the regulation programs. We assigned regulators inde-
pendently for amplified and deleted genes lists, and we selected the top 1% highest scoring
regulators as the final list (a cutoff well above assignment of regulators expected by chance),
with 92 amplified and 579 deleted selected genes (see supplementary tables S2 and S3).

http://jung.sourceforge.org
http://jung.sourceforge.org
http://www.broadinstitute.org/tcga/home
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