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Abstract

Background: Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive

cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the

molecular basis of AD development and progression remains elusive.

Methods: To elucidate molecular systems associated with AD, we developed a large scale gene expression

dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity

spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced

neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region

genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity

and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and

neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692

gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with

the disease traits.
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Results: The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance,

and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell

type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and

network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity

suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the

progression of disease, making them potential translational/treatment development targets and unlikely to be mere

bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association

with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as sites

associated with the greatest and earliest gene expression abnormalities.

Conclusions: This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the

critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms

underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and

development of the canonical neuropathological lesions of AD.

Keywords: Alzheimer’s disease, Dementia, Differential expression, Gene co-expression network, Gene module, Systems

biology, Selective vulnerability, Demyelination, Brain cell types

Background
Alzheimer’s disease (AD) is a complex neurodegenerative

disease characterized by accumulation of amyloid plaques

and neurofibrillary tangles (NFT) in the brain [1–3]. The

development of AD causes irreversible and progressive

loss of neurons resulting in cognitive impairment and ul-

timately dementia [4, 5]. As the disease progresses, more

and more areas of the brain become damaged but AD

does not affect all brain regions simultaneously or uni-

formly [6]. Some brain regions are more vulnerable to AD

than others [7, 8]. Yet, the molecular basis of AD develop-

ment and progression remains elusive.

Whole transcriptome analyses have shown much prom-

ise in understanding how altered gene expression contrib-

utes to complex diseases such as cancer [9], obesity [10],

schizophrenia [11], and neurodegenerative disorders [12,

13]. The unbiased quantification and bioinformatic ana-

lysis of genome-wide RNA expression provides insights

into biological pathways that regulate cellular processes

and disease progressions at the molecular level. Transcrip-

tome analysis has been widely applied to investigate the

pathogenesis of AD in mouse models [14, 15] and human

postmortem brain tissues [16–18]. Analysis of gene ex-

pression abnormalities in the human postmortem brain

affected to greater or lesser degrees can identify genes and

pathways dysregulated by AD. However, the power of

transcriptomic analysis is hindered by the analysis of very

limited number of brain regions and restricted severity

stages in the previous studies of AD.

Although complex human diseases such as AD likely re-

sult from the interplay of many genetic and environmental

factors involving thousands or tens of thousands of tran-

scripts and proteins, core features of the disease can be

characterized by studying affected molecular networks

through the cognitive and neuropathological progression

of the disease [19]. Gene co-expression network analysis

approaches have been developed to capture interactions

among genes and to identify higher order network struc-

tures such as modules comprising highly interconnected

genes. Using a dataset consisting of gene expression

profiles from laser-captured neurons from the middle

temporal gyrus, entorhinal cortex, hippocampus, and pos-

terior cingulate cortex from 34 AD patients and 13 con-

trols [20], Ray and Zhang [21] constructed co-expression

networks and found differential connectivity between

region-specific networks enriched for two broad categor-

ies of functional pathways: inflammation/immune-related

pathways and cytoskeleton remodeling pathways. More

recently, Zhang et al. [18] performed a multiscale gene

network analysis (MNA) of a much larger cohort of hu-

man brain specimens from dorsolateral prefrontal cor-

tex (PFC), visual cortex (VC), and cerebellum (CB) in

376 AD patients and 173 non-demented controls. MNA

revealed many facets of the molecular-interaction struc-

tures in AD and formally rank-ordered gene subnet-

works based on their relevance to AD pathological and

clinical traits. Using less sophisticated analytical ap-

proaches, Haroutunian et al. [16] staged regional tran-

scriptional dysregulation based on the severity of global

cognitive compromise.

In this study, we significantly expand the characterization

of molecular networks associated with AD across multiple

brain regions by generating and then analyzing a large-

scale transcriptomic dataset [16] from 1053 postmortem

brain tissues spanning 19 brain regions from 125 subjects

with a full spectrum of AD severity in brains devoid of

AD-unrelated confounding neuropathologies, such as cere-

brovascular disease. Gene co-expression network analysis

was applied to these data to identify subnetworks that were

dysregulated in AD and/or associated with AD pathology.
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We further rank-ordered these subnetworks by the degree

of dysregulation and association to AD to discover novel

pathways and key genes that may serve as effective targets

for therapeutic intervention.

Methods

Microarray gene expression profile and data

preprocessing

The RNA samples collected from the current Mount

Sinai Medical Center Brain Bank (MSBB) AD cohort

were profiled on two Affymetrix microarray platforms,

Human Genome (HG) U133A and U133B, except in two

brain regions, amygdala (AMYG) and nucleus accum-

bens (NAc), for which the Affymetrix HG U133 Plus 2.0

array was used. Since there were a limited number of

common probesets between HG U133A and HG U133B,

the probesets from the two platforms were merged in

the analyses, with signals of common probesets aver-

aged. Affymetrix HG U133 Plus 2.0 includes all probe-

sets on U133A and U133B and 9921 additional

probesets representing approximately 6500 additional

genes. The array probes were annotated according to the

Ensembl version 72 (genome build GRCh37.p11; June

2013) using the R/Biomart library. The raw microarray

data were first quantile normalized with all probesets on

the arrays by making use of the RMA [22] method im-

plemented in the R/Bioconductor package affy (v1.44)

with the default parameters and then corrected for co-

variates including sex, postmortem interval (PMI), pH,

and race using a linear regression model.

An integrative network approach to analyze the MSBB data

We applied an integrative network-based approach to

identify critical genes and gene networks associated with

AD in 19 brain regions (Fig. 1a and b). We first identified

gene signatures associated with clinical/neuropathological

outcomes through differential expression (DE) and gene-

trait correlation analyses. We tested enrichment of cell

type-specific genes in the DE signatures and rank-ordered

brain regions in relevance to AD by the number of gene

signatures associated with different clinical/neuropatho-

logical traits. Next, we computed gene-gene correlations

and performed hierarchical clustering analysis to con-

struct co-expression networks for each brain region. Based

on the network modules identified in individual brain re-

gions, we constructed a meta-co-expression network to

assess the correlation of networks between brain regions.

Then we rank-ordered the co-expression network mod-

ules across all brain regions by multiple features. We

evaluated the network module topology using gene per-

turbation signatures. Then, for top modules, we tested the

replication of the network modules in an independent

dataset from the Harvard brain bank. Later, we examined

the cell type specificity and enrichment of genetic signal

of the top ranked modules by using AD susceptibility

genes and Aβ pathway genes. Finally, we explored regional

selective vulnerability to the disease with two example

pathways.

Differential expression analysis

We first computed the correlations between gene ex-

pression and six neuropathological or cognitive traits,

including clinical dementia rating (CDR), Braak stage,

Consortium to Establish a Registry for Alzheimer’s Dis-

ease (CERAD) diagnostic certainty, plaque density mean,

sum of neuritic plaque (NP) density estimates, and sum

of NFT density estimates. For each trait, the samples

were classified into three groups according to the disease

status and severity staging defined by the trait: normal,

low severity, and high severity. Additional file 1: Table

S1 tabulates the complete sample demographic informa-

tion and Additional file 1: Table S2 shows the criteria for

defining these disease staging groups with respect to

each trait. We applied a linear model analysis to identify

genes differentially expressed among the disease staging

groups by using R package Limma (v3.26.9) with default

parameters [23]. To adjust for multiple tests, false dis-

covery rate (FDR) was estimated by fitting the same

Limma linear models after repeatedly reshuffling sam-

ple group labels (five times) to derive an empirical null

distribution of the test statistics (limma moderated t-

statistics), and then FDR at a cutoff was estimated as

FDR = n × (FP/N)/P, where P denotes the number of sig-

nificant tests at a given cutoff in the non-permuted

data, n is the number of tests in the non-permuted

data, FP is the number of false positives at a given cut-

off from the permutation, and N is the total number of

tests in permutation. This procedure is essentially the

same as first computing empirical P values based on a

null distribution from permutation and then applied

Benjamini–Hochberg’s (BH) FDR control [24] with the

empirical P values. Probesets with a FDR less than 0.05

and fold change (FC) larger than 1.5 were considered

significant.

Correlations between gene expression and cognitive/

neuropathological traits

Complementing the differential expression analysis

defined above, we carried out correlation analyses to

identify gene expression traits that were positively or

negatively correlated with each of the six cognitive/

neuropathological traits described above. Since CDR,

Braak, and CERAD were measured as discrete ordinal

scores, Spearman’s rank correlation coefficient analysis

was used to compute the strength of correlation between

these clinical/neuropathological traits and gene expres-

sion traits. FDR was estimated by first computing a null

distribution of Spearman’s correlation coefficients through
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permutation of trait phenotypes (five times) and then

applying a similar FDR control procedure as described in

differential expression analysis. We used a FDR of 0.05 as

the significance threshold.

Accessing brain cell type-specific gene signatures

To characterize if certain brain cell types were dysregu-

lated in disease, we computed a panel of cell type-

specific genes for five major brain cell types, including

astrocytes, endothelial, neurons, microglia, and oligoden-

drocytes by making use of a large scale human brain single-

cell RNA-sequencing (RNA-seq) dataset [25]. We down-

loaded RNA-seq read count data from GEO (accession no.

GSE67835) and selected samples corresponding to the five

major brain cell types: astrocyte, endothelial, microglia,

neuron, and oligodendrocyte. Genes with less than 50 reads

across all samples were discarded. The remaining gene

count data were analyzed by a Bayesian negative binomial

Fig. 1 Data generation and analysis flow. a Schematic illustration of the 19 brain regions profiled in the current study. The numbered areas

highlighted in yellow are the Brodmann (BM) areas, while the arrows indicate caudate nucleus (CD), nucleus accumbens (NAc), putamen (PT),

amygdala (AMYG), and hippocampus (HIPP), respectively. b An overview of the analysis flow. RNA samples from 19 brain regions of 125 MSBB

specimens were collected and profiled using Affymetrix Genechip microarrays. From the microarray RNA expression data, we first identified gene

signatures associated with cognitive/neuropathological outcomes through differential expression and gene-trait correlation analyses. We

tested enrichment of cell type-specific genes in the differentially expressed gene signatures and rank-ordered brain regions in relevance to AD

by comprehensively comparing the number of gene signatures identified in each region for each trait. Next, we constructed a gene co-expression

network for each brain region. Based on the network modules identified in individual brain regions, we constructed a meta-co-expression network to

assess the correlation of networks between brain regions. Then we rank-ordered the co-expression network modules across all brain regions by

multiple features. We evaluated the network module topology using gene perturbation signatures. Then, for top modules, we tested the replication of

the network modules in an independent dataset from the Harvard brain bank. Later, we examined the cell type specificity and enrichment of genetic

signal of the top ranked modules by using AD susceptibility genes and Aβ pathway genes. Finally, we explored regional selective vulnerability to the

disease with two example pathways
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regression model with cell type identity, basal expres-

sion (or library size), and subject source incorporated

as predictors by making use of the RStan source code

provided in [26]. Using numerical samples obtained by

Markov chain Monte Carlo (MCMC), we calculated the

posterior probability that gene expression was enriched

in one cell type compared to basal expression given by

the regression. A gene was considered cell type-specific

if it met two criteria: (1) it was enriched with 99.9 %

posterior probability in one cell and not enriched in

any other cells; and (2) its expression in the enriched

cell was on average fivefold larger than basal expression

in the numerical samples. The inferred brain cell type-

specific gene signatures are provided in Additional file

1: Table S3.

Set enrichment analysis

Set enrichment analysis (or set overlap test) was carried

out using Fisher’s exact test assuming the sets of genes,

such as differentially expressed genes (DEGs), module

genes, and network neighbors, were identically inde-

pendently sampled from the genome-wide genes pro-

filed by the array. To control for multiple testing, we

employed the BH approach to constrain the FDR. For

functional enrichment analysis of signature genes, the

gene ontology (GO) annotations and canonical path-

ways (Biocarta, KEGG and Reactome) gene sets were

obtained from the Molecular Signatures Database

(MSigDB) v4.0 [27].

Co-expression network analysis

Weighted gene co-expression network analysis (WGCNA)

[28] was performed to identify the gene modules with

coordinated expression patterns for each brain region.

Briefly, Pearson’s correlation coefficients were calcu-

lated between all pairs of probesets after microarray

data normalization. Next, the correlation matrix was

converted into an adjacency matrix using a power func-

tion f(x) = xβ, where x was the element of the correl-

ation matrix and parameter β was determined such that

the resulting adjacency matrix was approximately scale-

free [28]. In the present study, we used β = 6 with other

parameters set by default and this led to a truncated

scale-free index greater than 0.95 for all the 19 co-

expression networks. The adjacency matrix was subse-

quently transformed into a topological overlap matrix

(TOM) [29] which captured both the direct and indir-

ect interactions between a pair of probesets. Average

linkage hierarchical clustering was then employed to

cluster probesets based on the TOM. Finally, a tree cut-

ting algorithm [30] was used to dynamically cut the

hierarchical clustering dendrogram branches into

highly connected modules, each of which was assigned

a distinct color code. The whole network construction

procedure was based on an R package WINA, a computa-

tionally optimized version of the WGCNA package.

Sort brain regions and network modules using an

ensemble ranking metric

For each clinical/neuropathological trait, we had per-

formed differential expression between any pair of disease

severity groups and also called trait associated genes

(TCGs). The number of DEGs (or TCGs) identified from

different brain regions could be regarded as a variable (or

feature) for ranking order the brain regions in relevance to

the variation of a particular trait. In total, there were 24

variables useful for ranking: six sets of TCGs, and 18 sets

of DEGs including three sets (i.e. medium versus low, high

versus medium, and high versus low) from each of the six

traits. To congregate rankings from all 24 variables, we

proposed to compute a composite importance score of a

brain region i as the geometric mean of the functions of

all ranking variables:

Si ¼
Yn

j ¼ 1
f K ij

� �

� �1=n

where n = 24 denotes the number of ranking variables,

Kij denotes the number of genes identified for ith brain

region regarding jth ranking variable, and f is a trans-

formation function. Here we used log transformation

function as it can shrink the gene counts of different

variables to a more comparable scale. The choice of f is

beyond the scope the present study. Then the composite

importance scores were scaled to be in the range of 0–1

by dividing the maximum score. Finally, the brain region

with the highest composite importance score was ranked

in the top, while the brain region with the lowest com-

posite importance score was ranked in the bottom.

We applied the above ensemble ranking metric to rank-

order co-expression network modules. For each module,

the ranking variables included the P values of strength of

correlations between module eigengene expression and

clinical/neuropathological traits and P values of enrich-

ment for DEGs and TCGs. We used minus log as the

transformation function for P values.

Results

Development of a large AD cohort

A total of 125 human brains were accessed from the

Mount Sinai/JJ Peters VA MSBB cohort, which holds

over 1800 well-characterized brains. This cohort was

assembled after applying stringent inclusion/exclusion

criteria and represents the full spectrum of clinical and

neuropathological disease severity in the absence of

discernable non-AD neuropathology. All neuropsycho-

logical, diagnostic and autopsy protocols were approved

by the Mount Sinai and JJ Peters VA Medical Center
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Institutional Review Boards. Neuropathological assess-

ments, cognitive, and medical and neurological status

determinations were performed according to previously

published procedures as described in detail [16]. For

each sample, a number of cognitive and neuropathological

outcomes were recorded and analyzed herein, including

CDR, Braak (Braak NFT score) [31, 32], CERAD diagnoses

and ratings of pathology (Consortium to Establish a Regis-

try for Alzheimer’s Disease diagnosis) [33], plaque density

mean (PLQ_Mn, average of NP counts in five cardinal

cortical regions), sum of neuritic plaque density estimates

(NPrSum, sum of CERAD semi-quantitative rating scores

for all cortical regions examined neuropathologically), and

sum of neurofibrillary tangles density estimates (NTrSum,

sum of semi-quantitative NFT density ratings for all cor-

tical regions examined). Detailed sample demographic in-

formation is provided in Additional file 1: Table S1 and a

brief description of the cognitive and neuropathological

traits is provided in Additional file 1: Table S2a.

RNA samples from 19 brain regions (Fig. 1a) isolated

from the 125 MSBB specimens were collected and pro-

filed using Affymetrix Genechip microarrays as described

in “Methods” (Additional file 1: Table S2b). RNA quality

was assessed using a combination of a 260/280 ratio

derived from a high resolution electrophoresis system

(LabChipTM, Agilent Technologies, Palo Alto, CA, USA)

and 3’–5’ hybridization ratios for glyceraldehyde-3-

phosphate (GAPDH) probes. Not all brain regions for all

subjects were available for analysis. There was an average

of 55 subjects per brain region with varying degrees of AD

pathological and cognitive abnormalities. After data pre-

processing, we used an integrative network approach to

identify critical genes and gene networks associated with

AD (see “Methods” and Fig. 1b for details).

Correlation analysis of cognitive and neuropathological

traits

Figure 2 shows the Spearman correlation coefficients

among age and the cognitive and neuropathological

traits analyzed across all samples. All neuropathological

traits were highly positively correlated with the cognitive

status outcome CDR, which is consistent with both

NFTs and NP being strongly associated with cognitive

decline in AD [3]. Age was not correlated with any of

the cognitive and neuropathological traits at a threshold

of 0.01 for correlation P value. Though it is known that

the gene expression and some indices of neuropathology

might be related to age, we chose not to correct for age

for two reasons. First, age is a risk factor to AD and cor-

rection for age would lose/weaken disease signal. Sec-

ond, more than 81.4 % of the genes differentially

expressed regarding disease traits in age un-corrected

Fig. 2 Correlations among age, cognitive, and neuropathological traits. The number in each cell indicates the Spearman’s correlation coefficient

between row and column variables, with color intensity indicating the P value at minus log 10 scale
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data were also detected from age corrected data (data

not shown), suggesting that the impact of age on the

analysis is very small in this study.

Differential expression analysis

For each cognitive or neuropathological trait, we separated

samples into three groups, normal, low disease severity,

and high disease severity (Additional file 1: Table S2c) and

then performed differential gene expression between any

two groups for every brain region using a linear model

analysis. We followed previous practices to subdivide sam-

ples regarding Braak tangle staging (0–2, 3–4, and 5–6)

[34], CDR (0, 0.05–2, 3–5) [16], and CERAD (normal,

possible or probable AD, definite AD) [16, 35]. To the best

of our knowledge, we are the first to systematically analyze

gene expression changes associated with the three neuro-

pathological quantitative traits, plaque density mean, sum

of NP density estimates across multiple cortical regions,

and sum of NFT density estimates across multiple cortical

regions. For each of these three traits, we assigned clean

brains (without plaque or tangle) as normal and then di-

vided the remaining brains into low and high severity

groups with roughly equal numbers of sample size. At a

FDR of < 0.05 and FC > 1.5, we detected a total of 6037

probesets across 19 brain regions and six traits (Additional

file 1: Table S4a). Additional file 1: Figure S1a illustrates

the number of DEGs. The number of DEGs varied greatly

between the different brain regions and traits. For

example, DEGs were detected in 11 brain regions when

stratification was based on cognitive status (CDR) while

DEGs were detected in only two brain regions for sum of

NFT density estimates. Of course, the absolute numbers

of brain regions associated with any given trait varied

depending on the FDR and FC thresholds set.

A number of 34 AD risk genes have been identified so

far, including APOE, APP, BIN1, PSEN1, PSEN2, and

TREM2 (reviewed in [36]). We studied whether these

genes were dysregulated in low and/or high severity status

as defined by each of the six cognitive/neuropathological

traits. As shown in Additional file 1: Table S4b, different

brain regions showed different patterns of gene expression

dysregulation emerged for PSEN1, MEF2C, PICALM, and

PLD3 depending on the cognitive or neuropathological

trait under investigation. The brain regions significantly

associated with altered expression of the transcripts of

these genes included the inferior temporal gyrus (BM20),

the middle temporal gyrus (BM21), and the inferior and

superior frontal gyri (BM44 and BM8).

We next tested whether specific GO and functional

pathway terms were enriched within the DEG signatures

using the MSigDB gene annotation database (Fig. 3 and

Additional file 1: Tables S5a and b). The DEGs, especially

the downregulated genes, between the high and low Braak

neuropathology stage in the superior frontal gyrus (BM8)

and the middle temporal gyrus (BM21), presented the

most significant enrichment of signaling pathways such as

GPCR pathway, calcium signaling, neurotrophin signaling,

opioid signaling, epithelial signaling, and GnRH signaling.

As expected, several well-established pathways such as

GABA A receptor activation, neuronal systems, neuro-

transmitter receptor binding, and synaptic transmission

were associated with some disease severity traits in mul-

tiple brain regions. However, these pathways may change

in different directions (i.e. upregulation and downregula-

tion) in different brain regions. For example, the synaptic

transmission pathway was enriched for the downregulated

genes between high and low Braak stages and between

severe and minor dementia, but this same pathway was

enriched for upregulated genes during early stages of

disease, i.e. low Braak stage versus controls or low CERAD

versus normal brain in the superior frontal gyrus (SFG) or

the superior parietal lobule (SPL). Although additional

molecular studies in postmortem human brain and animal

studies are needed to confirm these complex relationships,

the results described here are consistent with a hypothesis

of compensatory upregulation of genes in this pathway in

early disease states followed by their significant downregu-

lation as the disease progresses.

Neuron-specific, oligodendrocyte-specific, and astrocyte-

specific genes were most enriched in the DEG signatures

In complex neurodegenerative diseases such as AD, there

is mounting evidence that the different cell types that

comprise the human brain are targeted differentially and

may be affected at different stages of the disease. To inter-

rogate if particular cell types were more or less susceptible

to dysregulation, we compiled a number of gene signa-

tures specific for astrocytes, endothelial cells, microglia,

neurons, and oligodendrocytes (see “Methods”). As ex-

pected, using Fisher’s exact test, we found the gene signa-

tures specific to neurons were most significantly enriched

in the DEGs identified in multiple regions with respect to

multiple traits (Additional file 1: Table S6 and Fig. 4). The

neuron specific genes were primarily enriched for down-

regulated gene signatures of high versus low with respect

to the traits Braak in regions BM8-SFG and BM21-MTG,

CDR in regions BM7-SPL, BM8-SFG, BM44-IFG, and HIPP,

CERAD in region BM44-IFG, and plaque density mean in

regions BM32-AC and BM46-PFC. The neuronal specific

genes were also found to be enriched for upregulated genes

of high versus low when comparing plaque density mean in

BM44-IFG and sum of NP density estimates in BM17-

OVC, low versus normal for trait CERAD in BM7-SPL and

Braak in BM8-SFG. Not surprisingly, astrocyte-specific

genes followed a similar pattern of enrichment for up-

regulated genes in high versus low comparisons with

respect to CDR in BM44-IFG and BM7-SPL.
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It is of interest that oligodendrocyte specific genes,

such as UGT8, which encodes a key enzyme involved in

lipid biosynthesis in myelinating oligodendrocytes, were

also enriched for DEGs as a function of brain region

and disease severity. For example, the oligodendrocyte-

specific genes were significantly enriched with upregu-

lated DEG signatures when comparing CERAD or

Braak stage low to normal in the ITG (BM20) and the

SFG (BM8), respectively. These observations indicate

that oligodendroglials become involved relatively early

during the disease process, when neuron-specific DEGs

are also upregulated (see above), and that their involve-

ment may not necessarily be a natural consequence of

axonal degeneration.

Gene-trait correlation analysis

Complementing the differential expression signatures

comprising expression traits that vary between severity

groups defined by each trait, we also identified TCGs

whose expression levels were positively or negatively

correlated with the cognitive and neuropathological vari-

ables through Spearman’s rank correlation analysis. TCG

analysis aimed to identify genes showing trend-like

expression response to disease progress that may be

otherwise missed by differential expression analysis.

Additional file 1: Table S7 lists the 1215 TCGs identified

at a FDR threshold of 0.05 for each of the six traits. As

illustrated in Additional file 2: Figure S1b, the number of

TCGs varied dramatically across brain regions and traits.

More than 84 % of the TCGs were identified from three

brain regions for three different traits, including 759

TCGs from the putamen (PT) associated with CDR, 150

TCGs from the region of parahippocampal gyrus

(BM36-PHG) associated with mean cortical neurotitc

plaque density (PLQ-Mn), and 118 TCGs from the

superior temporal gyrus (BM22-STG) associated with

the sum of cortical neurofibrillary tangle density ratings

(NTrSum). The most significant TCG is METTL13

(methyltransferase like 13), which was correlated with

sum of NFT density estimates in the superior parietal

Fig. 3 Heat map showing the top functional pathways enriched in the DEGs identified between low and normal severity groups and between

high and low severity groups with respect to each of the six cognitive/neuropathological traits. The heat map color intensity denotes the

statistical significance of the enrichment as calculated from Fisher’s exact test after correction for multiple tests
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lobule (BM7-SPL) (r = 0.70, P value = 1.25 × 10–8). The

protein product encoded by this gene is the antiapopto-

tic protein FEAT, which is also aberrantly overexpressed

in various human cancer tissues [37]. Among the list of

the top trait correlated genes is AKT2, which encodes a

serine/threonine-protein kinase Akt. The Akt kinase is a

downstream mediator of the PI3K pathway and can

phosphorylate a wide range of transcription factors and

kinases such as GSK-3β. Akt regulates multiple bio-

logical processes including cell signaling, cell survival,

proliferation, growth, and glycogen metabolism and the

PI3K/AKT/GSK-3β has been shown to be implicated in

multiple studies of AD including hyper-phosphorylation

of Tau [38].

The GO categories and functional pathways significantly

overrepresented in the TCGs are summarized in Add-

itional file 1: Table S8. At a FDR threshold of 0.05, we only

identified functional enrichment for the TCGs negatively

correlated with dementia severity (CDR) in the PT. The

most significant functional terms include several energy

metabolism related pathways and cellular components,

such as oxidative phosphorylation, TCA cycle and respira-

tory electron transport, and mitochondria. Increasing evi-

dence implicates a role for mitochondrial dysfunction and

oxidative damage in the pathogenesis of AD [39–41]. One

possible mechanism of oxidative stress pathogenesis in

AD is that abnormal mitochondria produced prominent

neuronal oxidative stress in the surrounding cytoplasm

which caused cytoplasmic damage in susceptible neurons

[42]. Alternatively, it has been argued that the pathogen-

esis of AD is, at least in part, associated with reduced en-

ergy metabolism [43]. It is noteworthy that mitochondrial

abnormalities have been linked to CDR in previous studies

[44, 45]. Several neurodegenerative disease gene sets are

also enriched in the TCGs negatively correlated with CDR

in the PT, including the Parkinson’s disease KEGG path-

way (fold enrichment (FE) = 5.6, FDR adjusted P value =

3.5 × 10–4), the Huntington’s disease KEGG pathway (FE

= 6.3, FDR adjusted P value = 2.8 × 10–3), and the AD

KEGG pathway (FE = 5.0, FDR adjusted P value = 0.011).

Brain region interaction and ranking in relevance to AD

We have computed the interactions among brain regions

by the pairs of correlated microarray probesets between

any two brain regions. As illustrated in Fig. 5a, strong

interactions were detected between several brain regions

with strong physical interconnectivity. For example, the

PT and caudate nucleus (CD), two closely linked regions

in the dorsal striatum that form the main components

of the basal ganglia, presented more than 8.8 million

significant probeset pairs which accounted for 0.4 % of

the total number of probeset pairs at FDR of 0.05. Simi-

larly, the parahippocampal gyrus (BM36-PHG) and the

temporal pole (BM38-TP), two adjacent regions located

in the temporal lobe, presented 7.9 million significantly

correlated probeset pairs. Strong interactions were also

found between the middle temporal gyrus (BM21-MTG)

and the hippocampus (HIPP), between the anterior

Fig. 4 Cell type specificity of the DEG signatures identified between low and normal severity groups and between high and low severity groups

for each of the six cognitive/neuropathological traits. The heat map color intensity denotes the statistical significance of the enrichment as calculated

from Fisher’s exact test after correction for multiple tests
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cingulate (BM32-AC) and the CD, and between the an-

terior cingulate gyrus and the parahippocampal gyrus.

Based on the differential gene expression and gene-

trait correlation, we could rank-order brain regions in

relevance to AD by comparing the number of DEGs and

TCGs identified in each brain region with respect to

cognitive or neuropathological trait. Using an ensemble

ranking metric that congregates rankings from multiple

sorting features as described in “Methods,” we ranked

the 19 brain regions as shown in Fig. 5a. While sample

sizes were different among the brain regions, which, as a

result, might impact the power in detecting the DEGs

and TCGs, we found this was not the case in the current

dataset as ranking score and sample size were not corre-

lated (Pearson’s correlation coefficient = 0.18, P = 0.458).

Several regions from the temporal lobe were ranked at

the top, including the majority of the temporal cortical

regions examined (Fig. 5a and b). The top ranked tem-

poral cortex from this analysis is consistent with the

roles of the temporal cortex in cognitive processes (e.g.

perception of sensory input (visual, auditory, olfactory,

and gustation), language comprehension, and memory

formation and recall) as well as neuroimaging and

neuropathological findings that identify the temporal

lobe as the brain region closely associated with demen-

tia onset and the earliest stages of AD and mild cogni-

tive impairment [46, 47]. This study is perhaps the first

effort to provide a comprehensive and objective ranking

of many brain regions involved in AD based on un-

biased molecular evidence and underscores the signifi-

cance of several regions in temporal lobe to AD and its

etiopathogenesis.

Gene co-expression network analysis

AD, like many other phenotypes, is a complex process

involving dysregulation of genes in different pathways.

Since genes within the same pathway may show similar

expression profiles, we employed weighted gene co-

expression network analysis (WGCNA) to capture the

coordinated gene expression for each brain region

Fig. 5 Brain regions rank-ordered by the relevance to AD pathology. a Brain regions rank-ordered by the number of DEGs and TCGs with respect

to six cognitive/neuropathological traits. From outside to inside, the bar chart in the first track shows the scaled ranking scores with the bar

height proportional to the ranking score, the heat maps in tracks 2–7 show the ranking of regions by the number of DEGs between high and normal

severity groups with respect to the traits CDR, Braak, CERAD, plaque density mean, sum of NP density estimates, and sum of NFT density estimates, re-

spectively; the heat maps in tracks 8–13 show the ranking of regions by the number of TCGs for traits CDR, Braak, CERAD, plaque density mean, sum of

NP density estimates, and sum of NFT density estimates, respectively; while the size and color intensity of the ribbons in the center show the number

of correlated gene pairs at FDR < 0.05 between any two brain regions. The legend color intensity shows the number of DEGs/TCGs with respect to a

trait at log scale. b The locations of the top ranked brain regions in (a) are highlighted by a dotted line
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separately. The co-expression networks are illustrated by

heat maps of topological overlap matrix (TOM) plots

(Additional file 2: Figure S2). In each of the TOM plots,

the rows and columns represent the same set of genes

sorted by the hierarchical clustering tree of TOM with

modules represented by colored labels. The number of

modules identified from different brain regions ranged

from 56 in the frontal pole (BM20-ITG) to 111 in the

precentral gyrus (BM4-PCG). The fraction of genes that

were successfully assigned into modules was quite simi-

lar: 79.3 ± 7 %.

The co-expression network modules were annotated

with functional categories using gene set enrichment ana-

lysis. The top functional terms for each of the network

modules are listed in Additional file 1: Table S9. Across all

of the network modules, peptide chain elongation and

ribosome genes were the most significantly enriched func-

tional pathways. In fact, peptide chain elongation and

ribosome were significantly enriched in at least one mod-

ule in each of the 19 gene co-expression networks. For ex-

ample, 65 of the 82 genes in module chocolate of brain

region superior temporal gyrus (BM22-STG) were anno-

tated with the peptide chain elongation pathway, resulting

in more than 192-fold enrichment (FDR = 3.19 × 10–147).

Peptide chain elongation is the process of linking to-

gether amino acids to extend the growing protein chain

during protein biosynthesis in the ribosome. How these

peptide chain elongation or ribosome enriched molecu-

lar processes influence the AD phenotype remains to

be elucidated. Among the top functional categories

were a number of immune response pathways, e.g. im-

mune system and interferon signaling. Interestingly, we

also found 37 modules enriched with the AD KEGG

pathway, e.g. the yellow module of the network for the

brain region PT presented a 3.5-fold enrichment of this

pathway (FDR adjusted P value = 1.56 × 10–19).

The co-expression network analysis identifies gene

modules, i.e. groups of genes, which show highly corre-

lated expression profiles across samples. As a result,

the pattern of correlated expression facilitates reduction

of the module expression profile to one representative

feature, the module eigengene [48], which is specifically

defined as the first principal component of the stan-

dardized module expression data. It has been demon-

strated that eigengenes among different modules often

exhibit correlations, allowing for the construction of

co-expression networks from eigengene expression pro-

files, similar to the construction of these networks

using gene expression data [49]. To investigate how the

network modules in different brain regions interact, we

constructed a co-expression network based on the

eigengene correlations among all the modules in each

brain region gene co-expression network. For simpli-

city, the eigengene based network is referred to as the

meta-co-expression network and the modules from the

meta-co-expression network are referred to as meta-

modules.

Fifteen meta-modules were identified from the meta-co-

expression network analysis (Fig. 6 and Additional file 1:

Table S10). Among the meta-modules, 13 were composed

primarily of eigengenes from single brain regions (ranging

from 70 % to 100 % of the meta-module members),

reflecting tissue-specific correlation structures among 13

brain regions. The six brain regions not reflected in the

brain region specific meta-modules are BM10-FP, BM20-

ITG, BM21-MTG, BM22-STG, BM44-IFG, BM8-FC,

and NAc. Eigengenes from these six brain regions par-

ticipated in two different meta-modules: black and blue

(highlighted in Fig. 6). The black meta-module consists

of eigengenes from 17 brain regions, but with roughly

53 % of the eigengenes coming from four brain regions

BM17-OVC (20.3 %), BM20-ITG (11.0 %), BM36-PHG

(11.0 %), and BM38-TP (10.1 %). The blue meta-

modules comprised eigengenes from 18 brain regions,

with brain region BM20-ITG as the major contributor,

accounting for more than 27.3 % of the eigengenes.

We further explored the conservation of modules

across the brain regions by computing the similarity be-

tween all pairs of modules in terms of gene membership

using the Jaccard index measure: A∩Bj j

A∪Bj j
, i.e. the size of the

overlap divided by the size of the union of the gene sets of

two modules A and B. Of all pairs of modules tested, 1037

were found with a Jaccard index > 0.5, suggesting the

presence of putative consensus modules in different brain

regions. Interestingly, the members of the blue meta-

module were enriched for immune response related func-

tional pathways, including immune system, systemic lupus

erythematosus, response to external stimulus, leishmania

infection, allograft rejection, interferon signaling, IL6_7

pathway, and response to stress (Additional file 1: Table

S10), suggesting that immune response is a common and

coordinated feature of the multiple brain regions studied.

Another immune-related gene present in co-expression

modules of 19 brain regions examined was TYROBP the

binding partner of which, TREM2, has recently been

identified in strong association with AD. In the blue meta-

module comprising eigengenes from 18 brain regions,

TYROBP was present in 17 region-specific members.

These observations are not only consistent with historical

observations of immune/inflammation-related dysfunction

in AD, but also with our recent observations of the in-

volvement of immune-related transcripts, such as TYR-

OBP,TREM2, and others [18, 50, 51].

Validation of modules using gene perturbation signatures

As the co-expression network analysis aims to identify co-

regulated modules (or clusters), it is of great interest to
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evaluate whether the present WCGNA modules indeed

capture biological meaningful co-regulation signals rather

than random noise. For this purpose, we identified in vitro

and in vivo gene perturbation signatures and examined

how faithfully the predicted network modules reflected ex-

perimental targets in response to the perturbation of each

gene.

First, we collected a set of Tyrobp gene knock-down

(KD) expression signatures derived from mouse micro-

glia cell lines reported in one of our previous studies

[18]. This Tyrobp KD gene signatures contained 1524

genes which have corresponding human orthologues,

among which 1302 human orthologues were covered by

the current microarray platforms. In the current data-

set, as summarized in Additional file 1: Table S11a, the

KD signatures were significantly enriched with TYR-

OBP-containing modules by at least 1.7-fold (FDR adjusted

P value < 0.012) in all 19 brain regions.

Second, we used PSEN1 mutation gene signatures from

a previous study that identified DEGs in familial AD

(FAD) caused by PSEN1 coding mutations [52]. We de-

fined a gene set specific to PSEN1 mutations by excluding

FAD DEGs that were shared with sporadic early onset AD

DEG signatures. PSEN1 gene was represented by four

different probesets in the present microarray platforms.

Fifty-one modules containing one or more PSEN1 probe-

sets were identified across 19 brain regions. Forty-five of

these modules were significantly enriched for PSEN1

mutation signatures at FDR adjusted P value of 0.05

(Additional file 1: Table S11b).

Third, we re-analyzed the data from a previous study

that performed transcriptional profiling of cultured mouse

oligodendrocytes with a deletion of the myelination tran-

scription factor Myrf, myelin regulatory factor, also known

as C11orf9 [53]. The set of genes differentially expressed

in the cells with a Myrf deletion compared with the

Fig. 6 The meta-co-expression network constructed from module eigengenes identified across 19 brain regions. The lower triangular of the heat

map shows the topological overlap matrix (TOM) while the upper triangular of the heat map shows the eigengene conservation across brain regions

in terms of gene membership as measured by Jaccard index. The outer color bars along the x- and y-axes denote the origin of brain region for each

eigengene and the inner color bar denotes the meta-module membership. Most of the meta-modules are brain region specific except the two

highlighted in rectangles, i.e. blue and black
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control was significantly enriched in 35 of 45 modules that

contained MYRF gene across 19 brain regions (Additional

file 1: Table S11c).

Overall, we observed strong enrichment of in vivo and

in vitro gene perturbation signatures in the network

modules harboring the perturbed target. Across different

brain regions, the enrichment in target-harboring mod-

ules was much stronger than that in modules that did

not contain the perturbation target (with one-tailed

Wilcox rank sum test P value = 3.7 × 10–10, 5.8 × 10–5,

and 7.1 × 10–16 for Tyrobp, Myrf, and PSEN1, respect-

ively) (data not shown), suggesting the target genes

(i.e. Tyrobp, Myrf, and PSEN1) and their perturbation

responders tend to be close in the co-expression net-

work and hence clustered in the same module, thus

partly validating the biological meaningfulness of the

network modules being tested in the present data. The

current validation model is not perfect because a single

module cannot capture the whole tissue gene regula-

tory activity. Thus, we were unable to evaluate the

functional role of every module. Nevertheless, the

analyses showed that co-expression modules captured

network sub-structures of meaningful gene–gene inter-

action relationships, which was to some degree vali-

dated in gene perturbation data for the three genes

analyzed here.

Module relevance to AD pathology and severity of clinical

dementia

The co-expression network structures, and the expres-

sion variation underlying the brain networks, collectively

reflect molecular processes associated with AD. How-

ever, beyond a mere association with AD, the relation-

ship of gene expression perturbations and their modular

interrelationships to cognition, cognitive compromise,

and the canonical neuropathological lesions of AD is of

particular and paramount translational interest. To

prioritize the gene modules with respect to their associ-

ation to AD neuropathology, we ranked the modules by

multiple features, including correlations between module

eigengenes and cognitive/pathological traits, and enrich-

ment for gene expression signatures such as the DEGs

and TCGs calculated above. To measure whether mod-

ule and phenotypic traits were correlated, we computed

the Spearman’s correlation coefficient between module

eigengene expression profiles and each trait measure

(i.e. dementia severity (CDR), global probability of AD

pathology (CERAD), cortical NP density (NP and NPrSum,

and neurofibrillary tangle involvement severity (Braak stage

and NTrSum). While the modules could be sorted by each

individual feature of interest, we performed a comprehen-

sive ranking by aggregating the rankings of all features as

described in the “Methods.” The module rankings are pro-

vided in Additional file 1: Table S12. Figure 7 shows the

ranking of the top 50 modules, with multiple tracks illus-

trating the different properties of the modules, including

ranking score, strength of correlation between eigengene

expression and the six traits, significance of enrichment

with TCGs and DEGs, and correlations among the module

eigengenes.

Table 1 lists the 20 top ranked modules and their brain

regions, top functional terms, and module ranking

scores. Strikingly, six of the 20 top modules are from

one region in the temporal lobe, the inferior temporal

gyrus (BM20-ITG), which is consistent with the fact that

temporal lobe regions ranked top in relevance to disease

as described above. A number of functional pathways

known to be implicated in AD were enriched in the top

ranked modules. These included: an axonal guidance

module (gray17) associated with the superior parietal

lobule (BM7-SPL) ranked number 11; a nervous system

development module (tan) involving the PT ranked

number 12; and a synaptogenesis module (yellow2) in

the inferior temporal gyrus (BM20-ITG) ranked number

15. Two cytoskeleton related pathways are present in the

top ranked modules, including the number 2 module-

tan in BM20-ITG and number 5 module-orchid in the

parahippocampal gyrus (BM36-PHG). The relevance of

these modules is underscored by a growing body of evi-

dence suggesting that tau accumulates preferentially in

axons and may mediate neurotoxicity by altering the

organization and dynamics of the actin cytoskeleton and

abnormalities of the actin cytoskeleton could be critical

in synaptic loss in AD [54, 55]. Two cytoplasm modules

were identified in the top 20, including the number 3

module-blue in the inferior frontal gyrus (BM44-IFG)

and the number 6 module-salmon in the superior frontal

gyrus (BM8-SFG).

In addition to the pathways implicated in AD previ-

ously, we found several novel functional categories

enriched in the top modules. The first category, nu-

cleus, was enriched in the top ranked module, yellow in

the inferior frontal gyrus (BM44-IFG), and also in the

number 8 module (brown) in the superior parietal

lobule (BM7-SPL), number 14 module (green) in the

superior frontal gyrus (BM8-SFG), and number 18

module (brown) in the occipital visual cortex (BM17-

OVC). Nucleus is the organelle of eukaryotic cells in

which chromosomes are housed and genes are tran-

scribed. We also identified three transcription regula-

tion modules in the top modules: red2 and mediumblue

in the inferior temporal gyrus (BM20-ITG) and gray24 in

the precentral gyrus (BM4-PCG). The second category,

biopolymer biological process including biopolymer meta-

bolic process, glycoprotein catabolic process and macro-

molecular complex, was enriched in three modules: the

purple module in the anterior cingulate (BM32-AC), ma-

roon module in the inferior temporal gyrus (BM20-ITG),
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and the yellow module in the PT. Biopolymers are poly-

meric biomolecules formed in a biological system, such

as polypeptides, polynucleotides, and polysaccharides.

Essentially, the GO categories biopolymer biological

process and cellular component nucleus, which contain

1684 and 1430 genes, respectively, share 706 genes,

suggesting that half of the top modules enriched for the

two GO categories as well as the transcription regulation

pathways likely represented preserved functional networks

across different brain regions. As transcriptional and

translational dysregulation is expected in AD, some or all

members of the biopolymer metabolism/nucleus modules

may play important roles in AD pathogenesis.

Astrocyte-specific, oligodendrocyte-specific, and neuronal-

specific genes are enriched in the top ranked modules

To interrogate the gene expression dataset and determine

whether the top ranked modules could be characterized

by particular cell types, we overlapped the modules to

panels of brain cell type-specific genes (Additional file 1:

Table S3). Focusing on the top 20 ranked modules, we

found ten modules were enriched for genes expressed in

specific cell types at a 5 % FDR (Table 1 and Additional

file 1: Table S13). Astrocyte specific genes were

enriched in two nucleus modules (yellow in BM44-IFG

and brown in BM7-SPL) and one module of positive

regulation of cell differentiation (navy in BM20-ITG).

Oligodendrocyte specific genes were enriched in the

number 2 module actin cytoskeleton (tan) from the in-

ferior temporal gyrus (BM20-ITG). The oligodendro-

glial myelin-associated pathways were closely linked to

the AD-associated neuropathology variables, providing

further evidence for targeting oligodendrocyte/myelin

disruption as a new therapeutic option to prevent or re-

verse neuronal impairment leading to AD. Unsurpris-

ingly, neuronal specific genes were enriched in six of

the top ranked modules, including a cytoplasm module

(blue in BM44-IFG), a membrane module (blue in

Fig. 7 The top 50 ranked modules in the co-expression networks of the 19 brain regions. From outside to inside, the bar chart at track 1 shows

scaled ranking scores, the heat maps at tracks 2–7 show the correlation coefficients (r) between module eigengenes and six cognitive/neuro-

pathological traits (in the order of CDR, Braak, CERAD, mean plaque density, sum of NP density estimates, and sum of NFT density estimates), the

heat maps at tracks 8–13 show − log10(P value) of the enrichment for the DEGs identified for the six traits, the –at tracks 14–19 show − log10(P

value) of the enrichment for the genes correlated with the six traits, and the links in the middle illustrate the significant correlations (FDR < 0.05;

red for correlation > 0.8, blue for correlation < -0.8) among the modules
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BM8-SFG), a nervous system development module (tan

in PT), a nuclear part module (pink in BM8-SFG), a nu-

cleus module (brown in BM17-OVC), and one macromol-

ecular complex module (yellow in PT). Strong enrichment

of astrocyte-specific, oligodendrocyte-specific, and

neuron-specific genes in the top ranked modules is con-

sistent with the observation that genes specific to these

cell types were enriched for differential expression signa-

tures as shown above. Identification of potential cell types

in the top ranked modules associated with AD pathology

argues for the development of interventions that target

specific molecular pathways in homogeneous cells with in-

creased precision devoid of heterogeneous variation.

The top ranked network modules were preserved in an

independent (Harvard) brain bank AD dataset

To validate the top ranked networks constructed from

the 19 brain regions described herein, we performed in

silico analysis of an independent dataset (Fig. 1b). The

top ranked modules were first projected onto co-

expression networks constructed from the independent

Harvard brain bank (HBB) AD dataset [18] to verify

whether the top modules were replicable. We assem-

bled the co-expression networks constructed from a

combined transcriptome profiling of three brain re-

gions, dorsolateral prefrontal cortex (PFC), visual

cortex (OVC), and cerebellum (CB), in 376 late onset

AD patients of the HBB AD cohort [18]. For conveni-

ence, the network modules identified from the present

study sample were referred to as MSBB modules while

the network modules from the HBB dataset were re-

ferred to as HBB modules. We compared the networks

identified from the two datasets and found that 37 %

and 25 % of the MSBB modules from BM46-PFC and

BM17-OVC, respectively, significantly overlapped with

the HBB networks at FDR < 0.05. Conversely, 47 % and

34 % of the HBB modules significantly overlapped with

the MSBB BM46-PFC and BM17-OVC networks, re-

spectively. On the other hand, 36 % of all the 1558

MSBB modules significantly overlapped with the HBB

networks (Additional file 2: Figure S3) while 77 % of

the HBB modules were significantly overlapping with

the MSBB networks. If we considered the rankings of

networks in relevance to AD pathology in the two data-

sets, 35.9 % of the top 5 % MSBB modules significantly

overlapped with the top 5 % HBB modules, suggesting

high consistency of network rankings between inde-

pendent datasets despite the fact that the HBB data

contain only late-stage AD patients while the MSBB

data contain the full spectrum of disease status/severity

including specimens from normal individuals, persons

meeting criteria for mild cognitive impairment and

Table 1 The 20 top ranked modules

Region Module Top GO annotation term Cell type specificity Risk genes enrich.a Score Rank

BM44-IFG Yellow Nucleus Astrocytes IGAP 1 1

BM20-ITG Tan Actin cytoskeleton Oligodendrocytes Aβ 0.89 2

BM44-IFG Blue Cytoplasm Neurons IGAP, Aβ 0.62 3

BM20-ITG Red2 Positive regulation of transcription from RNA polymerase II
promoter

- 0.6 4

BM36-PHG Orchid Cytoskeleton organization and biogenesis - - 0.56 5

BM8-SFG Salmon Cytoplasm - IGAP, Aβ 0.51 6

BM20-ITG Mediumblue Regulation of transcription DNA dependent - - 0.5 7

BM7-SPL Brown Nucleus Astrocytes IGAP 0.5 8

BM32-AC Purple Biopolymer metabolic process - IGAP 0.46 9

BM8-SFG Blue Membrane Neurons IGAP, Aβ 0.46 10

BM7-SPL Gray17 Axon guidance - - 0.43 11

PT Tan Nervous system development Neurons IGAP 0.43 12

BM20-ITG Maroon Glycoprotein catabolic process - Aβ 0.4 13

BM8-SFG Green Nucleus - IGAP 0.39 14

BM20-ITG Yellow2 Synaptogenesis - - 0.39 15

BM8-SFG Pink Nuclear part Neurons Aβ 0.39 16

BM20-ITG Navy Positive regulation of cell differentiation Astrocytes - 0.38 17

BM17-OVC Brown Nucleus Neurons IGAP, Aβ 0.38 18

BM4-PCG Gray24 Regulation of transcription - - 0.38 19

PT Yellow Macromolecular complex Neurons IGAP, Aβ 0.37 20

a Indicating whether IGAP or Aβ network genes were enriched in the module
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donors in the early stages of AD with only modest AD-

associated neuropathology.

Among the top 20 ranked MSBB modules, 13 signifi-

cantly overlapped with six of the top 20 HBB modules

(Additional file 1: Table S14). The most enriched HBB

modules were primarily enriched for nerve ensheath-

ment (an oligodendroglial/myelin pathway), cytoskeletal

protein binding, cell junction, exocytosis, and oxidoreduc-

tase activity, while the corresponding preserved MSBB

modules were enriched for actin cytoskeleton, glycopro-

tein catabolic process, cytoplasm, nucleus, regulation of

transcription DNA dependent, nervous system develop-

ment, macromolecular complex, and biopolymer meta-

bolic process. Taken together, these results highlighted the

preserved networks that are promising as targets for the

treatment of AD pathology.

The top ranked modules were enriched for AD genetic risk

factors

The top ranked networks identified above could either

play a causal role in AD or be reactive to or independent

of the disease. While postmortem gene expression studies

cannot directly assess causality of the top ranked networks

given by themselves, combinatorial analyses with genetic

datasets can help address this question, at least partially.

We tested whether the modules identified through ana-

lysis of gene expression were enriched for known AD gen-

etic risk factors identified from genome-wide association

studies (GWAS). We used a set of AD susceptibility genes

from a large scale meta-analysis by the International Gen-

omics of Alzheimer’s Project (IGAP) [56]. We screened

for candidate single nucleotide polymorphisms (SNPs)

with a nominal P value less than 0.05 and then extracted

genes near any of the candidate SNPs. We used the re-

laxed significance threshold for the IGAP gene set with

the aim of including de novo causal gene loci of small ef-

fect sizes that were unable to exceed the genome wide sig-

nificance due to insufficient statistical power. A recent

study demonstrated that combining genes with nominally

significant GWAS P values and tissue-specific networks

were powerful in building machine learning classifiers for

identifying novel genes associated with disease [57]. There

was a total of 864 IGAP nominally associated genes

that were also profiled in the current microarray gene

expression dataset. Table 1 and Additional file 1: Table

S15 summarized the enrichment of the IGAP gene sets

in the top 20 ranked MSBB modules at an FDR < 5 %.

Ten modules from six brain regions were significantly

enriched for the IGAP gene set. Four of these modules

belonged to the nucleus subnetworks and five were

enriched for neuron cell type-specific genes. The top

module, yellow from the BM44-IFG network, which

was astrocyte cell type-specific and annotated with

nucleus function category, was 1.5-fold enriched for

IGAP genes (FDR adjusted P value = 1.6 × 10–4).

One prevalent pathology hypothesis of AD is accumu-

lation of toxic Aβ cascade in the brain. Since its formu-

lation in the early 1990s, the amyloid hypothesis has

been somewhat refined but remains the most influential

conceptual framework for AD [58]. Centered on Aβ,

Campion et al. manually curated a biological network of

335 genes/proteins which have been shown to interfere

with Aβ production, clearance, aggregation, or toxicity,

including amyloid precursor protein APP, beta-secretase

BACE1, gamma-secretases PSEN1/PSEN2, and Aβ clear-

ance proteins like APOE and CLU (reviewed in [59]). Of

these 335 genes, 330 were profiled by the current

microarray dataset. We assessed whether the 330 Aβ-

centered biological network genes were enriched in the

top 20 modules and found significant overrepresenta-

tion in eight top modules as summarized in Table 1

and Additional file 1: Table S16. Interestingly, five of

the eight modules overrepresented with Aβ-centered

biological network genes were also enriched for IGAP

GWAS gene sets (Table 1), including blue in BM44-

IFG, salmon and blue in BM8-SFG, brown in BM17-

OVC, and yellow in PT. Note that the APP gene was

present in one module, blue in BM44-IFG. APOE was

present in two modules: blue in BM8-SFG and brown

in BM17-OVC. Enrichment of the Aβ-centered network

in the top modules provided additional support of the

relevance of these modules regarding AD pathology.

The strong enrichment of AD genetic risk factors and

Aβ-centered network within the top modules further

reinforce their strong association with AD. On the other

hand, this also identifies other members of these modules

that may not only have critical roles in Aβ production and

processing, but also represent upstream mechanism that

drive Aβ and other pathological processes.

Selective vulnerability of brain regions in AD

Functional neuroimaging and neuropathological analyses

have shown that different brain regions may have different

vulnerability to AD. One of the outstanding questions in

studying AD is when (i.e. under what conditions) and

where (i.e. which brain regions) the disease emerges. Since

this MSBB cohort consists of the subjects from a full

spectrum of normal, low, and high severity staging with

respect to each cognitive/dementia and neuropathological

trait, we explored further the temporal and spatial pat-

terns of the disease by intersecting the gene signatures

associated for each trait and the co-expression modules,

to relate region-specific subnetworks to the molecular

changes at different stage of dementia and neuropathol-

ogy. As an example, we examined two functional cat-

egories across all brain regions: nucleus and actin

cytoskeleton, which were enriched in the top two
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modules and repeatedly observed in the top ranked

modules for relevance to AD pathology (Table 1). For

each of the 19 brain regions examined, we screened for

the MSBB modules significantly enriched for the gene

sets related to the two functional categories (FDR <

0.05) and then picked the MSBB module with the high-

est ranking as the representative of the brain region

with respect to the given functional category. We

sorted the 19 regions by their region-specific ranking of

the representative modules. Meanwhile, we intersected

these region-specific representative modules with the

previously defined DEG signatures. The results are

shown in the bar charts while the intersections between

the modules and the DEG signatures are shown in the

heat maps in Fig. 8.

Overall, the analysis of region-specific subnetworks

showed that different brain regions were affected differ-

ently in AD in light of biological processes ranking and

enrichment of DEGs. For the nucleus subnetworks, the

inferior frontal gyrus (BM44-IFG) was ranked at the

top, followed by the superior frontal gyrus (BM8-SFG),

the superior parietal lobule (BM7-SPL), and the anter-

ior cingulate (BM32-AC). For the actin cytoskeleton

subnetworks, the inferior temporal gyrus (BM20-ITG)

was ranked at the top, followed by the inferior frontal

gyrus (BM44-IFG), the temporal pole (BM38-TP), and

the PT. The subnetworks enriched for the nucleus

genes were enriched for differential expression signatures

in 16 brain regions. Specifically, the DEGs between the

high and low CDR groups were enriched in nine brain

region-specific subnetworks, with upregulation or down-

regulation directions varying among brain regions, sug-

gesting dysregulation of nucleus genes was more likely to

be involved in the advanced stage as defined by dementia

severity (CDR). For the traits including Braak neurofibril-

lary pathology stage, CERAD, sum of NP density esti-

mates, and mean plaque density, we found enrichment for

the upregulated DEGs between the low and normal

Fig. 8 Selective vulnerability of the 19 brain regions to AD as exemplified by actin cytoskeleton (top panel) and biopolymer metabolic process

(bottom panel) subnetworks. The bar charts on the left, as colored by the representative modules’ name, show the region-specific ranking orders.

The two heat maps illustrate the enrichment of the DEG signatures in the corresponding co-expression modules. The color intensity shows the

FDR corrected P value of the enrichment test for a module and a DEG signature at minus log10 scale
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groups and the downregulated DEGs between the high

and low groups in multiple region-specific subnetworks,

suggesting an elevated expression of the nucleus genes

in the early stage but reduced expression of the path-

way in advanced stage of AD with respect to those

traits. Only five region-specific actin cytoskeleton sub-

networks showed significant enrichment for DEGs, in-

cluding the upregulated genes of high–low for Braak

neurofibrillary pathology stage, CDR, sum of NP dens-

ity estimates, and mean plaque density, in regions

BM44-IFG, BM21-MTG, BM38-TP, and PT. Specific-

ally, the subnetwork from the top ranked region BM20-

ITG was enriched for upregulated DEGs of low–normal

as defined by Braak and CERAD, suggesting the upreg-

ulation of actin cytoskeleton gene expression might

emerge in the early stage (low severity) of disease pro-

gression for this particular region. A parsimonious in-

terpretation of these directional changes implicates the

region specific pattern of degeneration of cells in the

late stages of the disease and the processes that are at

play early in the disease before significant degeneration

ensues. These opposing directional changes in gene ex-

pression based on the early versus late stages of disease

highlight the power of this dataset which includes speci-

mens from donors in early stages of disease progression.

A focus on the transcriptional changes that accompany

the early stages of AD could help identify not only transla-

tional treatment targets associated with disease onset, but

also suggest the direction of change that treatments

should induce to counter disease progression.

Discussion

This is the first large-scale study to characterize gene ex-

pression regulations and also gene transcriptional net-

works in multiple regions of each neocortical lobe and

in subcortical structures in AD. Among the unique fea-

tures of the present sample cohort is that it contains a

continuum spectrum of clinical and neuropathological

disease stages from normal to severe. These two features

have allowed us to systematically examine the spatial

and temporal patterns of molecular pathways and mod-

ules in varying physiological states of the disease. We

identified more than 6000 probesets which were differ-

entially expressed as a function of cardinal phenotypic

features of AD in multiple brain regions (Additional file

1: Table S4a) and also rank-ordered co-expression net-

work modules relevant to AD pathology. By making use

of a large-scale human brain single-cell RNA-seq data-

set, we identified signatures and network modules with

overrepresentation of gene transcripts expressed pre-

dominantly in neurons, oligodendrocytes, and astrocytes.

To conduct a comprehensive evaluation of the relative

involvement of the genes in AD, we ranked the genes by

assembling the strengths of association with every trait

in every brain region, using a similar ranking metric as

that used for network (Additional file 3: Table S17).

Genes are known to be organized into functional net-

works according to cellular processes and pathways and

gene co-expression networks are able to characterize

coordinated transcriptional relationships between gene

transcripts in various biological contexts including

complex diseases [19]. The present study utilizes an in-

tegrative network analysis to highlight and prioritize

pathways and gene targets underlying AD at different

stages of dementia and neuropathology. We rank-ordered

the 19 brain regions by systematically comparing the

number of gene signatures identified for six phenotypic

traits encompassing the cognitive, NFT, and NP dimen-

sions. Interestingly, several top ranked regions (BM36-

PHG, BM20-ITG, and BM21-MTG) are located in the

temporal lobe including the perirhinal cortex (Fig. 5), a

region where tangle pathology is thought to develop early

in the disease process. Consistently, half of the top 20

modules were from these same regions, highlighting the

significance of these regions in light of disease pathology

at the functional pathway level. We verified that the top

modules were more likely to be preserved and more than

half of them were showing significant overlap with the

top ranked modules in an independent AD dataset,

underscoring the power of integrative network analysis

in revealing functional modules/pathways underlying

the disease traits. We identified well established path-

ways implicated in AD, such as nervous system devel-

opment, axon guidance, and cytoskeleton, among the

top modules expressed in neurons, oligodendrocytes,

and astrocytes. In addition, we also identified less stud-

ied pathways including biopolymer metabolism and nu-

cleus, providing novel pathway level target to enhance

our understanding of the molecular regulation of the

disease.

The adult human brain is a complex tissue, comprising

multiple cell types with different functions, topologies,

and molecular characteristics. As different cell types might

present different vulnerability to brain disorder, it is of

great value to dissect cell type signals and identify cell

type-specific expression change [25, 26, 60]. We utilized a

set of cell type-specific genes to identify which cell type-

specific marker genes were enriched in the DEGs and the

top modules. While tissue homogenate-based postmortem

studies preclude definitive resolution of cell type-specific

contributions to the disease, the current analysis revealed

astrocytes, oligodendrocytes, and neurons specific genes

to be enriched for dysregulation. Although the involve-

ment of neurons in the disease process is obvious and ex-

pected, a prominent role for the involvement of astrocytes

and oligodendrocytes has been postulated less frequently.

We also assessed the regional specificity of cell type ex-

pression changes. Specifically, the inferior temporal gyrus
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(BM20-ITG) was enriched primarily for upregulated genes

which were overrepresented with oligodendrocyte-specific

genes (Additional file 1: Table S6), suggesting that the

changes in the nerve ensheathment/oligodendrocyte

emerge in this region at an early stage of dementia. Oli-

godendrocytes coat axons with a fatty sheath of myelin,

which promotes faster communication between neurons.

Recent evidence suggests that insufficient axon myelin-

ation or inability to adequately maintain extant myelin by

oligodendrocytes might render the affected axonal pro-

cesses vulnerable to disease-related damage, such as

inflammation, oxidative stress, fibrillogenic Aβ, or to

phospho-tau species [61]. Additionally, since oligodendro-

cytes have been implicated in maintaining axonal integrity,

their dysfunction could contribute to neurodegeneration

directly. We hypothesize that the disruption of nerve en-

sheathment/myelin integrity is an early indicator of AD

pathology in certain brain regions such as BM20-ITG.

The complex relationship among over 1000 co-

expressed gene modules built from 1053 postmortem

brain tissues across 19 brain regions was summarized

by a meta-co-expression network based on correlations

between module eigengene expression profiles. The ma-

jority of the meta-modules were brain region specific, i.e.

dominated by eigengenes from one brain region, reflect-

ing, on the one hand, strong gene expression correlation

within brain regions, and on the other hand, possibly the

difference in the biological functions that different brain

regions play. However, significant correlations among

brain regions were also detected. Specifically, two meta-

modules were identified as comprising highly correlated

consensus network modules from at least 17 brain regions

and these consensus modules were enriched primarily for

immune response related functional pathways. This result

suggests the immune response is regulated in a coordi-

nated way in different areas of the brain and/or as a result

of AD progression throughout the brain. Increasing evi-

dence suggests strong interactions with immunological

mechanisms in AD pathogenesis. For example, a number

of genes expressed in immune cells of the central nervous

system (CNS) carry genetic variants associated with in-

creased risk of AD, including CD33 [62],TREM2 [63], and

CR1 [64].

GWAS have been widely employed to identify genetic

variants influencing risk for complex diseases, including

AD. Although a number of genetic risk loci have been

identified, the functional variants and specific genes re-

main elusive for most loci [65]. Transcriptional profiling

enables the capture of a multidimensional view of this

complexity, reflecting the interplay of genomic and envir-

onmental effects. We examined the expression regulation

of 34 AD susceptibility genes and found four genes,

PSEN1, MEF2C, PICALM, and PLD3, to be differentially

expressed in several regions primarily in the advanced

stage of disease. While most of the AD susceptibility genes

showed no evidence of expression changes, this highlights

a big gap between genetic factors and transcription regula-

tions in a complex disease such as AD, further supporting

the use of the network analysis that leads to discovery of

subnetworks associated with AD clinical and pathological

traits.

Conclusions

In summary, this study provides a comprehensive pan-

cortical analysis of genome-wide genes and gene co-

expression structures associated with AD pathology in

an unprecedented number of brain samples collected

from well-characterized individuals with a continuum

spectrum of dementia and neuropathology. For the first

time we were able to systematically rank-order 44,692

gene probesets, 1558 co-expressed gene modules, and

19 brain regions based upon their association with six

AD cognitive and pathological traits. The higher-order

network organization of transcriptome uncovered by

this study not only narrows down generic pathways to

disease-associated specific gene modules but also

pinpoints individual genes across 19 brain regions. We

validated the network topology of modules using per-

turbation signatures. More than half of the top ranked

gene modules were enriched for AD risk genes and rep-

licated in another independent AD study cohort, fur-

ther demonstrating the validity and novelty of this

study. Such results provide functional contexts for AD

risk genes and enable the development of novel hy-

potheses for further experimental validation. We com-

puted human brain cell type-specific genes from single-

cell RNA-seq data and then identified DEG signatures

and top network modules specific to neurons, oligo-

dendrocytes, and astrocytes. This study has not only

identified novel networks and pathways associated with

AD but it has also provided new insights into promin-

ent molecular mechanisms underlying selective re-

gional vulnerability to AD. The data, the results, and

the findings from this study have painted a global pic-

ture about changes in gene expression and gene–gene

interactions in AD and will facilitate future research on

the molecular mechanisms of this complex disease and

potentially aid in the development of treatment strat-

egies that can target molecular events associated with

the earliest documentable stages of disease onset.
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