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Abstract Locomotion in an organism is a consequence of the coupled interaction between brain,

body and environment. Motivated by qualitative observations and quantitative perturbations of

crawling in Drosophila melanogaster larvae, we construct a minimal integrative mathematical model

for its locomotion. Our model couples the excitation-inhibition circuits in the nervous system to

force production in the muscles and body movement in a frictional environment, thence linking

neural dynamics to body mechanics via sensory feedback in a heterogeneous environment. Our

results explain the basic observed phenomenology of crawling with and without proprioception,

and elucidate the stabilizing role that proprioception plays in producing a robust crawling

phenotype in the presence of biological perturbations. More generally, our approach allows us to

make testable predictions on the effect of changing body-environment interactions on crawling,

and serves as a step in the development of hierarchical models linking cellular processes to

behavior.

DOI: 10.7554/eLife.11031.001

Introduction
A complete theory of locomotory behavior requires an integrative approach linking the nervous sys-

tem in an organism to the body in which the nervous system lives and the environment that the

body interacts with (Pearson et al., 2006; Tytell et al., 2011; Chiel et al., 2009). However, most

studies focus on rhythmic gait and its maintenance in an organism driven by the presence of a cen-

tral pattern generator (CPG) that drives coordinated motor activity (Marder and Bucher, 2001;

Ijspeert, 2008). While the existence of a CPG has been validated in a variety of organisms

(Marder and Bucher, 2001; Grillner, 2006) and exploited in artificial systems (Ijspeert, 2008;

Boxerbaum et al., 2012), growing evidence suggests that sensory feedback plays an important role

in maintaining robust and stable locomotion. Indeed recent studies on C. elegans (Wen et al., 2012;

Boyle et al., 2012) focusing on local sensory feedback and proprioception show that these modali-

ties suffice to modulate the locomotory pattern and explain gait transitions associated with undula-

tory swimming and crawling, without the need for a central pattern generator. This has led to recent

attempts to include proprioceptive coupling and build an integrative theory of locomotion in exam-

ples such as anguilliform swimming in fish (Ekeberg, 1993; Ekeberg and Grillner, 1999), swimming

in leech (Cang and Friesen, 2002), walking in insects (Kukillaya et al., 2009; Proctor et al., 2010;
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Proctor and Holmes, 2010; Holmes et al., 2006) and humanoids (Verdaasdonk et al., 2009). How-

ever, the complexity of the brain-body-environment coupling in these organismal systems has been

a substantial impediment in the use of models to make testable predictions on the biological mecha-

nisms regulating locomotion.

Here, we consider the rectilinear crawling behavior of a model organism, the larva of the fruit fly,

D. melanogaster (Video 1), which has increasingly become the focus of molecular, cellular, genetic

and behavioral studies using a variety of experimental probes (Suster and Bate, 2002; Fox et al.,

2006; Hughes and Thomas, 2007; Crisp et al., 2008; Song et al., 2007; Lahiri et al., 2011;

Inada et al., 2011; Berni et al., 2012; Heckscher et al., 2012; Crisp et al., 2011; Fushiki et al.,

2013; Gjorgjieva et al., 2013; Vogelstein et al., 2014; Kohsaka et al., 2014; Itakura et al., 2015;

Pulver et al., 2015). The larva is a soft bodied cylindrical organism about 4 mm in length and

about 800 mm in diameter in the third instar stage. It moves in a manner similar to other long soft-

bodied creatures such as earthworms and leeches by exploiting the peristaltic propagation of muscu-

lar relaxation and contraction waves along their bodies to induce forward locomotion, or crawling

(Trueman, 1975); despite biomechanical differences between these different organisms, the crawling

gait seems to be a convergent strategy across species. The dynamical process that triggers, coordi-

nates and maintains the propagation of such waves has attracted the attention of researchers for a

century (Garrey, 1915). Early experimental efforts tried to understand the macroscopic mechanics of

soft bodied animal locomotion (Trueman, 1975) by focusing on one of the underlying subsystems:

body mechanics, muscular force production and neural dynamics. More recently, there is a growing

realization that the coupling between the nervous system, the body and the substrate in the presence

of sensory feedback plays a major role in development and maintenance of crawling gaits, and per-

haps even in evolution (Chiel et al., 2009). For example, the locomotory behavior of Manduca sexta

larvae, an organism where proprioceptive sensing displays a wide range of behaviors (Simon and

Trimmer, 2009), is known to be dependent on substrate stiffness that modulates the role of external

stimuli and on body deformation rate (Lin and Trimmer, 2010). In the D. melanogaster larva, there is

strong evidence that proprioception plays as important a role as the CPG in generating coordinated

motion. Eliminating proprioception with genetic (Hughes and Thomas, 2007) and optogenetic

(Inada et al., 2011) methods leads to qualitative changes in the crawling gait: peristaltic waves have

a period that is » 4 times longer or may even stop propagating (Song et al., 2007), and body seg-

ments contract » 2 times more (Hughes and Thomas, 2007). Experiments that block sensory input in

the embryo show that crawling behavior still develops in the larva, but with longer peristaltic wave

periods (Suster and Bate, 2002; Fushiki et al., 2013), providing further evidence for the importance

of proprioception. Together, the classical and modern studies on locomotory physiology and the

modern studies on the molecular and cellular subsystems in the larva suggest that it is an excellent

biophysical testbed for an integrative theory that spans multiple scales.

In this paper, we present a mathematical model of crawling in D. melanogaster larvae that is

guided by the anatomy and the kinematics of the gait of the organism. Our theory explicitly accounts

for the mechanics of the passive deformable soft body, properties of the substrate on which the crawl-

ing occurs, active muscular forcing, neural dynamics and the interactions and feedbacks between

these sub-systems. This allows us to reproduce the robust crawling gait that is consistent with experi-

mental findings in first (Heckscher et al., 2012) and third (Hughes and Thomas, 2007) instar larvae.

Furthermore, our model qualitatively and quantitatively captures the effects of a) optogenetic pertur-

bations of neural activity (Inada et al., 2011; Kohsaka et al., 2014), and b) silencing proprioception

with genetic (Hughes and Thomas, 2007) and optogenetic (Inada et al., 2011) methods.

Our integrated model also allows us to make specific experimentally testable predictions. In par-

ticular, by changing the strength of coupling between adjacent segments in the CPG, both in the

absence and presence of proprioception, we show how proprioception increases the robustness of

crawling. This leads to the prediction that there should be much more variability in crawling metrics

among individuals with silenced or weakened proprioception. Furthermore, we predict that larvae

could use the strength of CPG coupling as a means of controlling the speed of gait. Finally, we show

that changing the frictional interactions of the organism with the substrate should yield observable

effects on the efficiency of locomotion.

More broadly, our study also aims to provide a set of plausible scenarios for the biophysical

mechanisms underlying crawling, by linking body mechanics, muscular forcing, neural dynamics, the

properties of the substrate and their coupling, with natural implications for engineering applications.
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Mathematical model

Overview
We start with a broad overview of our model

leaving aside the mathematical details and

experimental justifications behind them in the

rest of this section.

In Figure 1, we show our model of a D. mela-

nogaster larva. Anatomically, the larva has 3 tho-

racic (T1-T3) and 8 abdominal (A1-A8) segments,

Figure 1A. In addition, there is a head/mouth

and a tail, but due to the lack of sharp bound-

aries in their musculature, experiments have not

been able to distinguish the dynamics of the

head motion from that of T1 and the tail from that of A8 (Lahiri et al., 2011; Heckscher et al.,

2012). We therefore treat the head as a part of the T1 segment, and the tail as a part of the

A8 segment. Moreover, here we focus on the simplest locomotory behavior associated with rectilin-

ear motion along the anterior-posterior axis (Hughes and Thomas, 2007; Heckscher et al., 2012),

thus ignoring the individual dynamics of hemisegments which move together in rectilinear crawling,

and enumerate segments from 0 to 10 starting from the head.

The larva is modeled as a set of discrete, repetitive units, one unit for each body segment. The

main features of each unit are illustrated in Figure 1B, while Figure 1C shows the collective dynam-

ics of the multiple units. When stationary, each segment has length L, a parameter that sets the

length scale in the model. The larva is soft-bodied and the elastic properties of body segments are

approximated by a set of linear springs and dampers. A key parameter here is the stiffness of the

springs that sets the scale of forces in the model. Each unit has a neural controller made of excita-

tion-inhibition circuits in the Ventral Nerve Cord (VNC), which governs the reaction time of excitation

in the neural controller. The excitatory neurons act also as motor neurons, and drive a muscle within

the segment, which exerts a contractile force to the segment when activated. Crawling occurs on a

substrate when the force rises above a threshold controlled by friction. Larvae lift segments off the

ground when they contract (Heckscher et al., 2012) and hence control friction actively.

The contraction wave propagates through the body by a sequential activation of neural control-

lers in the VNC, leading to propagation through two channels (Figure 1D): 1) A proprioceptive chan-

nel that is mediated by ’Stretch receptors’, which respond to changes in segmental length, get

activated when a segment contracts beyond a threshold and send two excitatory signals. One of

them feeds the excitatory neurons in the next anterior segment and propagates the neural activity.

The other signal feeds to the inhibitory neurons in the same segment, leading to the inhibition of

excitatory neurons that then causes contraction to be stopped. This model of proprioception is con-

sistent with the ’mission accomplished’ model of proprioception, proposed in (Hughes and Thomas,

2007). 2) A neural channel that is mediated by excitatory neurons in adjacent segments that are cou-

pled from posterior to anterior direction.

Finally, our model also involves long range mechanical and neural/proprioceptive coupling

between head and tail to trigger a new cycle of crawling as soon as the head starts moving. At the

beginning of each crawling cycle, it has been observed that the head and the tail of a larva move

concurrently in a motion called the ’visceral piston phase’ of crawling (Heckscher et al., 2012;

Simon et al., 2010), because the gut moves with the head and the tail, in advance of the surround-

ing body tissues. We model this behavior by forcing the displacement of head and tail segments to

be the same. Once the peristaltic wave reaches the head, it propagates to the tail through assumed

long range neural and proprioceptive couplings of T2 and A8 segments, and a new wave is initiated.

Our study builds on and extends a recent minimal model for crawling locomotion (Paoletti and

Mahadevan, 2014) that shows how a local sensory feedback-based mechanism is capable of induc-

ing rhythmic locomotion in soft bodied organisms by accounting for a fully coupled excitatory-inhibi-

tory neural circuit, and the nonlinear frictional interaction with the substrate, while hewing close to

experiments on the D. melanogaster larva.

It is useful to also contrast with a recent study (Gjorgjieva et al., 2013), which focused on the

neural dynamics of the VNC and studied conditions under which activity propagates in the VNC. The

Video 1. GFP imaging of Drosophila larva forward

crawling body segment and gut movements. Courtesy

of Ellie Heckscher. See also reference

(Heckscher et al., 2012). Original video is available at:

https://www.youtube.com/watch?v=1d7zMYWLjLI

DOI: 10.7554/eLife.11031.002
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Figure 1. Schematic of the model. (A) Drosophila larvae have segmented bodies. (B) An overview of the model for

one segment. Only input neural and proprioceptive signals are shown to the neural controller, its output is not

shown. Shades mark subsystems. Red lines show excitatory neural synapses, blue denotes inhibitory synapses. (C)

The larva body is modeled as a linear chain of masses, connected by damped linear springs. Head and tail

segments are coupled mechanically, denoted by the green line. Each segment feels friction due to contact with

the substrate. Body segments are actuated with muscular forces, fi, that are excited by input from the larva VNC.

VNC is modeled as a chain of excitatory, Ei, and inhibitory, Ii, neural populations. Self-coupling of populations are

not shown. VNC gets proprioceptive input that signals contraction of a particular segment, shown by lines with

arrows on both ends. (D) Segment-to-segment propagation of neural activity happens through neural (wEn) and

proprioceptive (wEp) couplings. Detailed description and model equations are given in the Model section.

DOI: 10.7554/eLife.11031.003
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model differs from our neural model most importantly by including anterior-to-posterior couplings

and intersegmental coupling from inhibitory to excitatory neurons, both of which were necessary to

achieve bidirectional wave propagation in the VNC. The same study also considered a bilateral VNC

model and examined its left-right synchronization properties. However, unlike the present study, this

model did not include any mechanical, muscular and environmental coupling.

Neural dynamics: excitation, inhibition and proprioceptive coupling
We model the neural dynamics of the ventral nerve chord (VNC) in terms of the classical Wilson-

Cowan equations (Wilson and Cowan, 1972) for the activity of excitatory and inhibitory populations

of neurons in a segment. This choice leads to a more realistic model than the single population

phase oscillators used in (Paoletti and Mahadevan, 2014) and is thus similar to recent approaches

that consider the purely neural aspects of the locomotory circuit (Gjorgjieva et al., 2013):

tE _Ei ¼�Eiþsn½wEEEiþwEI Ii þ hEi � �̂E�;

tI _Ii ¼�Ii þsn½wIEEiþwII Iiþ hIi � �̂I �; i¼ 1; . . . ;10: ð1Þ

Here EiðtÞ and IiðtÞ are the activity levels of the excitatory and inhibitory neuron populations

respectively, wEE;wEI ;wIE, and wII are the weights for the excitatory-excitatory, excitatory-inhibitory

and inhibitory-inhibitory couplings, �̂E and �̂I are activation thresholds for the different neural popu-

lations, sn½E� ¼ 0:5þ 0:5tanhðgnEÞ is a sigmoid characterizing the switching threshold with gn the

dimensionless gain, and h
E;I
i refer to external inputs to these segmental populations. The external

inputs take two forms: neural coupling that links to the neural populations in the neighboring poste-

rior segment, and proprioceptive coupling that accounts for mechano-sensory feedback from the

body to the VNC, shown in Figure 1B,C and D. A minimal mathematical description of this leads to

the following dynamics of inputs hEi ðtÞ;h
I
i ðtÞ :

hEi ¼wEnEiþ1 þwEpsp½uiþ1� ui� û�; i¼ 1; . . . ;9;

hE10 ¼wEnE1 þwEpsp½u1 � u0 � û�;

hIi ¼wIpsp½ui� ui�1 � û�; i¼ 1; . . . ;10: (2)

For inputs to excitatory neurons, i.e. the first two equations, the first term on the right hand side

corresponds to the input from the neural populations, which did not exist in (Paoletti and Mahade-

van, 2014), while the last term corresponds to the proprioceptive input from the body. Here wEn

governs the strength of neural coupling, wEp and wIp the strengths of the proprioceptive couplings,

uiðtÞ is the location of segment i, û being the segmental contraction threshold, and

sp½u� ¼ 0:5þ 0:5tanhðgpu=LÞ, where gp is the gain. The last Equation in (2) characterizes propriocep-

tive input to inhibitory neurons thresholded by û. We have assumed that the response time of the

stretch receptors is relatively fast compared to the dynamics of the VNC neural populations, and

model the input from the stretch receptors as sigmoids, sp, weighted by parameters wEp and wIp.

Thus, when wEp ¼ 0 and wIp ¼ 0 there is no proprioception; as we will see, varying these parameters

may be directly related to recent experimental manipulations (Hughes and Thomas, 2007;

Inada et al., 2011).

Observations show that larvae can crawl without proprioceptive feedback (Suster and Bate,

2002; Hughes and Thomas, 2007; Inada et al., 2011) or input from the brain (Berni et al., 2012).

Furthermore, the central nervous system, when isolated from the body, can still produce waves of

neural activity propagating from posterior to anterior (Pulver et al., 2015). Therefore, the VNC

should be able to propagate neural activity purely by segment-to-segment neural coupling; in our

model this is achieved by introducing excitatory neural couplings from posterior to adjacent anterior

segments, strengths of which are governed by the parameter wEn (Figure 1B,C and D).

For the proprioceptive coupling we assume the ’mission accomplished’ model (Hughes and

Thomas, 2007; Song et al., 2007) (Figure 1B,C and D). In (Hughes and Thomas, 2007) silencing

bipolar dendrite and class I multidendritic types of sensory neurons was shown to slow down fre-

quency of peristaltic waves significantly. The ’mission accomplished’ model (Hughes and Thomas,

2007) proposes that these neurons signal the VNC at the end of a successful contraction in a body

segment. When a segment contracts relative to an adjacent anterior segment beyond a threshold,
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an excitatory signal is sent to the next anterior VNC segment to initiate contraction. Simultaneously,

activity in the current segment is suppressed by exciting the inhibitory population, a mechanism that

was not accounted for in our earlier minimal model (Paoletti and Mahadevan, 2014).

We also assume neural and proprioceptive inputs from segment T2 to segment A8, as modeled

by the second Equation (1); these naturally lead to reinitiation of the crawling cycle. This again dif-

fers from (Paoletti and Mahadevan, 2014) and (Gjorgjieva et al., 2013) where reinitiation is

achieved by external inputs. Such long range coupling, also used in stick insect models (Daun-

Gruhn and Tóth, 2011), is plausible as neurons that extend across multiple segments have been

observed in Drosophila larva VNC (Schmid et al., 1999). We note that this is not the only possible

mechanism to reinitiate crawling cycles, and an alternative is discussed in the Appendix 1.

Body mechanics: active muscular and passive tissue mechanics
At the anatomical level, we assume that each segment has mass m, length L and is linked to its

immediate neighbors by linear springs with stiffness k and damping coefficient c, as shown in

Figure 1C and similar to what is described in (Paoletti and Mahadevan, 2014). As we will see, this

minimal mechanical model suffices to explain a range of experimental observations.

One cycle of larval forward crawling has two phases (Heckscher et al., 2012): (i) the ’visceral pis-

ton’ phase (Simon et al., 2010), where the gut moves forward in advance of the surrounding tissues,

concurrently with the head and the tail, followed by (ii) the wave phase, where the peristaltic wave

propagates from posterior to anterior in the remaining segments. The mechanism underlying the

tail-head coordination during the visceral piston phase is unknown, however the observation that the

gut moves together with the head and the tail (Heckscher et al., 2012), is consistent with the sug-

gestion that the gut mechanically couples the head and the tail and leads to visceral piston-like

action as seen in other organisms such as the Manduca sexta larvae (Simon et al., 2010). We chose

to minimally implement this coupling by linking the head and the tail with a rod, i.e. an infinitely stiff

spring, thus enforcing a ’periodic’ boundary condition that leads to concurrent head-tail movement.

Softening the spring will introduce a small temporal delay and allows for changes in the length of

the larva during peristalsis, but does not change the qualitative nature of our results. Our model

ignores the frictional interactions of the gut with the body segments, however in the absence of

experimental data to guide modeling such interactions, we choose to keep our model minimal.

Another mechanism for enforcing such periodic boundary condition could be synchronized neural

drive at the head and the tail segments, which requires more elaborate models that we explore in

the Appendix 1.

Further, since the maggot and its segments move relatively slowly, we assume that inertial effects

are negligible so that segmental forces are balanced by friction locally. Although experimental meas-

urements of these forces do not yet exist, a simple estimate shows that this hypothesis is justified.

The mass of a third instar larva is » 10-3 g and the acceleration of the larvae is on the order of »10-3

m/s2, which leads to an inertial force of »10-6 gm/s2. In an experimental study (Wallace, 1969), fric-

tion forces to draw a glass fiber of the size of a small nematode on an agar surface was measured to

be » 5�10-2 gm/s2, justifying our approximation.

Collecting all these arguments together, the displacement of individual segments uiðtÞ are gov-

erned by the equations:

0¼ k ui�1 � 2ui þ uiþ1ð Þþ c _ui�1 � 2 _uiþ _uiþ1ð Þþ fi� fiþ1�F
f
i ; i¼ 1; . . . ;9

0¼ k u9� u10þ u1� u0ð Þþ c _u9 � _u10þ _u1 � _u0ð Þþ f10 � f1 �F
f
10�F

f
0;

0¼ u10� u0 � 10L; (3)

where F
f
i is the frictional force on the body segments, and fi are the muscular forces. Here, the penu-

ltimate equation characterizes the mechanics of the first segment, while the last equation describes

our enforced periodic boundary condition to model the concurrent head-tail motion in the visceral

piston phase, a boundary condition that was not used in our earlier model (Paoletti and Mahade-

van, 2014) that required an external periodic excitation signal to achieve sustained crawling.

Muscles in each segment provide contractile forces in the anterior-posterior axis necessary for

locomotion (Heckscher et al. (2012)). They are activated by excitatory input from the neurons of the

corresponding segment of the VNC. This is consistent with the observation that the propagation of

contraction waves can be temporarily stopped by locally inhibiting the motor neurons in one
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segment (Inada et al. (2011)). As detailed studies of the muscular dynamics are not available in the

larva, we model this behavior using a simple first-order dynamical law for the muscular force

tf
_fi ¼�fiþ fmaxsf ½Ei � Ê�; i¼ 1; . . . ;10; (4)

where fmax is the maximum force exerted by muscles, sf ½E� ¼ 0:5þ 0:5tanhðgfEÞ, where gf is the gain

and Ê is a threshold for muscle activation.

Due to the assumed head-tail coupling, contraction of the tail segment leads to stretching of the

head segment driven by f10, consistent with the observation in (Heckscher et al., 2012), that tail

muscles contract in the visceral piston phase. In (Heckscher et al., 2012), it was speculated that tail

contraction provides both a moving of the tail forward and pushing of the gut forward. Our model

could be interpreted as adding to this speculation that the push gets transferred to the head by the

gut and causes its motion. It is possible that motion in head segment is not totally passive, but medi-

ated actively by contraction of muscles in the head. However, experimental evidence on this issue is

not decisive (Heckscher et al., 2012) and we do not consider this scenario here.

Environmental mechanics: substrate frictional coupling
Directed rectilinear locomotion is a consequence of body contraction coupled to the anisotropic and

inhomogeneous friction of the body relative to the substrate. Frictional inhomogeneity arises as seg-

ments are lifted off the ground when they contract (Heckscher et al., 2012), allowing them to slip

and providing the organism active control of friction. Indeed, activity of the muscles that coordinate

segment lifting are synchronized with the activity of muscles that provide contractile forces in the

segment (Heckscher et al., 2012). Consistent with this, we assume that the frictional resistance F
f
i

vanishes when fi is above a threshold, i.e.

F
f
i ¼ Fmaxsignð _uiÞsF ½f̂ � fi�; i¼ 1; . . . ;10;

F
f
0 ¼ Fmaxsignð _u0ÞsF ½f̂ � f10�; (5)

where Fmax is the maximum frictional force, sF ½f � ¼ 0:5þ 0:5tanhðgF f =kLÞ, where gF is the gain, and f̂

is the threshold segmental muscular force associated with segment lifting and the resulting vanishing

of friction. This nonlinear frictional interaction is different from that in our earlier minimal model

(Paoletti and Mahadevan, 2014) where the strength of friction was dependent on the direction of

motion. Again, the last equation describes the head-tail coupling. We note that the frictional interac-

tion of the body with the substrate decouples segments far from each other both mechanically (due

to inhomogeneous deformation) and neurally (due to inhomogeneous proprioception). Manipulating

the body-substrate coupling by changing Fmax=kL allows us to make experimentally testable predic-

tions for gait changes.

Equations (1–5) characterize the coupled neuromechanics of the larva linking the brain, body and

environment by incorporating the neural dynamics that induces muscle contraction, the passive and

active mechanics of the body, and the frictional interaction with the substrate on which the maggot

moves, and the various interactions between these subsystems. Together with initial conditions, this

completes the formulation of the problem. Our differential equations have strong nonlinearities

associated with the sigmoids, which makes them numerically stiff. Introducing small inertial contribu-

tions for the segments allow us to use explicit numerical integration schemes encoded in MATLAB,

although our results are robust with respect to changes in this parameter (see Appendix 2). We note

that our numerical solution method differs from that used in (Paoletti and Mahadevan (2014)),

where a continuum limit (when the number of segments is large) was taken first to derive a partial

differential equation that was then solved numerically.

Parameters
Our model is characterized by a number of dimensionless parameters that are given by the dimen-

sionless damping ctE=k, the scaled maximum frictional force Fmax=kL, the scaled maximum muscular

force fmax=kL, the scaled threshold muscular force that causes segment lifting f̂ =kL, the activation

thresholds for neural populations �̂E and �̂I , the activation threshold for muscular forces Ê, the scaled

segment displacement û=L, neural network weights wEE, wEI , wIE, wII , wEn, wEp, wIp, the gains gn, gf ,
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gp, gF and the scaled muscular relaxation time scale and inhibitory time scale tf =tE, tI=tE. All our

results are reported in units of segment length L, neural excitation time constant tE and body stiff-

ness k. To initiate crawling, we apply a rectangular pulse of height 0.61 for a duration of 10tE to the

appropriate segment’s excitatory neuron.

The dimensionless parameters in the problem were adjusted to approximate the quantitative

results reported in (Heckscher et al., 2012; Hughes and Thomas, 2007), and reproduce the effects

of optogenetic perturbations of neural activity in the VNC (Inada et al., 2011; Kohsaka et al., 2014)

(Table 1). First, the VNC model parameters were chosen so that the VNC by itself could produce

repeated propagation of activity. We made sure that the VNC was configured much below the maxi-

mum excitation it can carry, to make room for the additional proprioceptive input when the full

model is put together. Next, the scaled muscular force was chosen so that fmax=kL � 1 for stability,

and to allow for the large contractions observed in crawling without proprioception. Finally, the

scaled friction force was chosen so that Fmax=kL >> 1 to avoid slippage. Together, this allowed us to

find a stable crawling solution that matches experimental results (Heckscher et al., 2012;

Hughes and Thomas, 2007; Inada et al., 2011; Kohsaka et al., 2014).

Results
We start with a quantitative description of our model results and their comparison to experiments

before turning to make testable predictions.

Experimental validation of the model
The model produces sustained crawling with metrics matching experiments
Crawling is initiated with a short excitatory pulse to the excitatory neural population in the most pos-

terior segment. We do not model the source of this initiation command; it could be, for instance, a

descending signal from the brain initiating forward movement or sensory feedback from the tail initi-

ating an escape. This yields a sustained crawling gait shown in Figure 2, where a kymograph of

body segments of the larva (Figure 2A) as well as the corresponding muscular (Figure 2B) and neu-

ral activity (Figure 2C) are shown (also see Video 2). We see that head and tail segments move

together in the visceral piston phase (Heckscher et al., 2012; Simon et al., 2010), followed by a

peristaltic wave with neural activity leading in phase, followed by muscular and contraction activity

(Figure 2), propagating from posterior to anterior segments. Crawling can be stopped by shutting

down the activity of excitatory neurons in the most posterior segment by an inhibitory input (see

also section 3.1.2).

Our simulations show that the larva produces approximately 0.04 waves per unit time associated

with the relaxation of the excitatory neurons tE, where waves start when the tail moves off the

ground, leading to a larval speed » 0:04L=tE. Hughes and Thomas (Hughes and Thomas, 2007)

found that third instar larvae of typical length 10L »4 mm (estimated from Figure 1 of (Hughes and

Thomas, 2007)) produce »1.5 waves/s. Using this latter number, we can estimate the time scale:

tE » 25 ms, a reasonable time constant for activity of neural populations. Combining the time scale

estimate and the length of the third instar larvae, our model predicts a speed of »0.5 mm/s, compa-

rable with the observed speed of »1 mm/s (estimated from Figure 1 of Hughes and Thomas,

[2007]). In another experiment, for first instar larvae with typical length 10L »600 mm (estimated

Table 1. Dimensionless parameters of our model and their default values used in numerical

simulations.

ctE=k 3.5 fmax=kL 5/6 tf =tE 0.4

Fmax=kL 25/3 f̂ =kL 5/12 tI=tE 3

wEE 1 wEI -2 wIE 0.6

wII 0 wEn 0.6 wEp 1.95

wIp 1.95 Ê 0.4 �̂E;I 0.6

û=L -17/18 gn 40000 gf ;p;F 1000

DOI: 10.7554/eLife.11031.004
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from Figure 1 of Heckscher et al. [2012]), Heckscher et. al. Heckscher et al. (2012) give a range of

0.5 � 1.5 waves produced per second, which suggests the neural time scale range tE » 25 � 75 ms,

again a reasonable time constant range. Combining the time scale estimate and the length of the

first instar larvae, our model predicts a speed range of »30 � 90 mm/s, in agreement with the range

reported in (Heckscher et al., 2012): »40 � 125 mm/s. Our simulations show that typically (median

across time steps), three segments are off the ground, defined by the number of segments in which

fi is above f̂ and thus friction vanishes, consistent with observations (Heckscher et al., 2012). Fur-

thermore, we find that peak segmental contraction, averaged over segments and waves, is »30%,

consistent with observations (Hughes and Thomas, 2007).

The model reproduces the effects of optogenetic VNC perturbations
Our model shows that normal segment-to-segment propagation of activity arises through two differ-

ent but coordinated channels, the posterior-to-anterior neural coupling between excitatory popula-

tions in adjacent segments, and via proprioceptive coupling (Figure 1C and D). Experimental

perturbations of these channels are known to change the crawling modalities.

For example, recent advances in optogenetics have allowed for targeted manipulations of specific

neuron types in the VNC (Inada et al., 2011; Kohsaka et al., 2014; Itakura et al., 2015). When seg-

ment-to-segment propagation was perturbed

with optogenetic inhibition of motor neurons in a

VNC segment (Inada et al., 2011), crawling

stopped when the wave reached that segment.

Conversely, when the inhibition is removed after

up to 10 s, the larva resumed crawling from the

same segment. To see whether this observation

is reproduced in our model, we performed an

acute shutdown of the excitatory population in a

segment, modeling the effect of optogenetic

inhibition on motor neurons. Figure 3A–C and

Video 3 show the results of this simulation.

Crawling is stopped at segment A6 (u8) by setting

E8 ¼ 0 when t 2 ½65; 95�. We note that crawling

continues in this time frame until it reaches seg-

ment A6, consistent with that observed experi-

mentally (Figure 7 of (Inada et al., 2011)).

Figure 2. Sustained crawling. Time is in units of tE . Model is simulated for 500tE , only first 100tE is shown. All simulations were based on Equations (1–

5), with parameter values as specified in the Table 1. Shade shows the duration of an example peristaltic wave. (A) Kymograph of body segments.

Distance is measured in units of L. (B) Muscular forces in segments. Same color code is used as in the A). (C) Neural activity in segments. Solid line

denotes excitatory neuron population activity, and dashed lines denote inhibitory population. Same color code is used as in the A)

DOI: 10.7554/eLife.11031.005

Video 2. Crawling simulations of full model larva. To

illustrate the changes in friction, body segments are

drawn off the ground when fi exceeds f̂ in

Equation (5).

DOI: 10.7554/eLife.11031.006
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Additionally, even after crawling stops, contraction of the body segment A7 keeps producing propri-

oceptive input to E8 and I9. This can be seen by the sustained activity of I9 during stopping, while

the activity of E9 dies out. When the optogenetic inhibition is removed, allowing E8 to evolve accord-

ing to its normal dynamics (Equation (1)), proprioceptive input drives E8 to firing and the larva

resumes crawling from A6.

In our model (Figure 3), during a stop, the memory of crawling phase is kept in the contraction of

the body and the proprioceptive channel which drives the proprioceptive activity. In Inada et. al.’s

experiments (Inada et al., 2011), it is possible to resume crawling even after the neighboring poste-

rior segment to the one being inhibited completes a contraction and relaxes back to its equilibrium

length (Figure 7 of (Inada et al., 2011)). Hence, Inada et. al. propose that the memory is held in the

VNC. At first this might seem to contradict our result that the memory is kept in the body and the

proprioceptive channel, but, although our model does not include such mechanism, it is possible for

the proprioceptive neurons to exhibit self-sustained activity and be the location of memory. We also

want to point that in (Inada et al., 2011) the memory can last as long as 10 s. Whether in the VNC

or in the proprioceptive neurons, the mechanism that creates such long time intervals from neural

time scales of a few tens of milliseconds is an open problem.

More recent experimental studies (Kohsaka et al., 2014; Itakura et al., 2015) identified pre-

motor inhibitory neuron populations that play a role in locomotion. Specifically, during forward

crawling, period-positive median segmental interneurons (PMSIs) were found to be activated slightly

later than the motor neurons in the same segment (Kohsaka et al., 2014) and their optogenetic acti-

vation leads to inhibition of motor neuron activity locally, arresting peristaltic crawling. These obser-

vations match nicely with the dynamics of the inhibitory neurons in our model, which are activated

slightly later than the excitatory neurons in the same segment (Figure 2C). Further, increasing their

activity above what is normally seen during normal crawling led to the local arrest of crawling. In

Figure 3D–F and Video 4, we show the results of a simulation where crawling is stopped at segment

A6 (u8) by setting I8 ¼ 1, the maximum inhibitory population activity in our model, over the time

period t 2 ½65; 95�. Increased inhibitory neuron activity prevents the excitatory neurons from becom-

ing active and stops the peristaltic wave. This causes the behavior of the model to be similar to the

previous case where E8 was shut down, except that here I8 is active in the time frame of perturba-

tion. When I8 is left to evolve according to to its normal dynamics (Equation (1)), proprioceptive

input drives E8 to fire and larva resumes crawling from A6.

In the optogenetic inhibition experiments of Kohsaka et al. (2014), when the activation of PMSIs

is removed, the peristaltic wave did not continue from the inhibited segment, but a new wave from

the posterior end started. This is in contrast to our model, where crawling continues from the inhib-

ited segment. Other observations on PMSIs (Kohsaka et al., 2014) that remain to be incorporated

into future models are: when inhibited using genetic and optogenetic methods, speed of peristalsis

greatly decreased, duration of motor neuron bursting and muscle contraction increased however

degree of segmental contraction did not change.

The model reproduces effects of silencing proprioception
In another set of experiments, it was shown that silencing proprioceptive feedback to VNC using

genetic (Hughes and Thomas, 2007; Suster and Bate, 2002) and optogenetic (Inada et al., 2011)

methods leads to an increase in peak segmental contraction from » 30% to » 65% (Hughes and

Thomas, 2007), and a reduction in rate to approximately one fourth (Inada et al., 2011) and to one

tenth (Hughes and Thomas, 2007), and reduced speed (Hughes and Thomas, 2007). To under-

stand this, we implemented a purely neural coupling in our model by setting proprioceptive cou-

plings wEp ¼ 0 and wIp ¼ 0. With purely neural coupling, the model still produces sustained crawling

but with a qualitative change in the crawling pattern (Figure 4 and Video 5). Only a single segment

is off-the-ground at a time, while peak segmental contraction, averaged over all segments, increases

to » 65% of segmental length ( »70% for only A3-A4 segmental distance, Figure 4E) the larva pro-

duces a reduced rate of » 0.01 waves per tE and moves with speed » 0:01L=tE (Figure 4A and D), in

agreement with experiments. Furthermore, we see that inhibitory neural dynamics show a significant

modulation, due to the removal of excitatory proprioceptive input to these populations, and peak

activity of inhibitory population is reduced and delayed, as shown in Figure 4C. However, the phases
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of muscular and neural activity within a wave do not change, but the contraction phase is slightly ear-

lier (Figure 4F).

Figure 3. Perturbations of VNC. Top row: E8 is inhibited for t 2 ½65; 95�, shown in purple. Bottom row: I8 is maximally excited in the range t 2 ½65; 95�,

shown in purple. Color code and parameters are the same as Figure 1. (A) and (D) Kymograph of body segments. (B) and (E) Muscular forces in

segments. (C) and (F) Neural activity in segments. We note that in these simulations, crawling is started at t ¼ 0 with an excitatory pulse applied to E6 of

the stationary larva, demonstrating that our model allows for the peristaltic wave to start at any segment.

DOI: 10.7554/eLife.11031.007

Video 3. Crawling simulations of full model larva. Cycle

is started at A4 and temporarily stopped at A6 by

inhibiting the excitatory population.

DOI: 10.7554/eLife.11031.008

Video 4. Crawling simulations of full model larva. Cycle

is started at A4 and temporarily stopped at A6 by

exciting the inhibitory population.

DOI: 10.7554/eLife.11031.009
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Predictions
Role of proprioceptive coupling
We tried the converse of silencing proprioception, and implemented a purely proprioceptive cou-

pling with no neural coupling by setting the posterior-to-anterior neural coupling wEn ¼ 0. In this

case, we find that our model produces sustained crawling almost identical to what is shown in Fig-

ure 2 (see also below) where both channels are intact. This shows that a spatially coordinated CPG

is not necessary for crawling, as was also suggested and shown in the simpler model put forward in

(Paoletti and Mahadevan, 2014). While this might not be biologically realistic in an adult, our model

shows that this plausible arrangement might be relevant in engineering coordinated locomotion,

and even of some interest in an evolutionary or developmental setting.

The relative insensitivity of our model to variations in the parameters that describe neural cou-

pling and the qualitative changes that result from silencing proprioception led us to investigate the

stabilizing effect of proprioception in more detail. To this end, we varied posterior-to-anterior neural

coupling, wEn, and investigated its effect when proprioception was silenced or intact. In Figure 5, we

quantify various metrics characterizing the dynamics of the segments. As a function of wEn,

Figure 5A shows the frequency of peristaltic waves which increases with wEn: stronger neural cou-

pling leads to faster propagation of peristaltic wave. While higher frequency of peristaltic waves

leads to faster locomotion as shown in Figure 5B, the relationship between speed and wave fre-

quency is not linear as the size of step taken per peristaltic wave also increases with wEn, see

Figure 5C. Figure 5D shows that peak contraction falls as wEn increases and Figure 5E shows that

the number of simultaneously off-ground segments increases as wEn increases: faster peristaltic

waves leave less time for segments to contract.

This manipulation suggests that proprioception increases robustness of locomotory behavior in

two distinct ways. First, there is a wider range of neural coupling over which sustained crawling can

be achieved. When proprioception is silenced, there is a minimum value of wEn below which crawling

is not possible, due to neural coupling being too weak to excite the neural population in the next

segment (Figure 5). Proprioception provides the extra excitation that allows for sustained crawling

till the neural coupling weight wEn ¼ 0. Second, in all metrics that we used to characterize crawling,

the observed changes as a function of wEn was smaller when proprioception was intact (Figure 5).

Thus, proprioception has a stabilizing effect on crawling. Gjorgjieva et al. (2013) came to a similar

conclusion with their purely neural model.

In Figure 5 all metrics of crawling with and without proprioception show a cross-over around

wEn » 0:65, which also sets the threshold below which sustained crawling in the full model shows no

dependence on wEn. To understand these further, we investigate the propagation delays through

both the neural and proprioceptive channels. In Figure 5F, we plot three quantities: 1) the time it

takes for excitatory neurons in neighboring segments to cross Ê (threshold to activate muscular

forces) in the presence of proprioception (blue line), which quantifies segment-to-segment signal

propagation delay, 2) the time for supra-threshold activation of excitatory neurons without proprio-

ception (dashed red line), which quantifies the propagation delay through the neural channel, and 3)

the time it takes for the excitatory population in a segment to cross Ê and the turning on of proprio-

ceptive signal in that population (black line), which quantifies the propagation delay through the pro-

prioceptive channel. We see that segment-to-segment signal propagation in the full model follows

the faster channel, while in the proprioception silenced model it always follows the neural channel.

Proprioceptive propagation delay becomes comparable to neural propagation delay around

wEn » 0:65, the threshold when the metrics of crawling with and without proprioception cross-over.

Below this threshold, proprioception is faster, explaining why the full model is insensitive to wEn.

Above this threshold, neural propagation is faster, but proprioception still has a stabilizing effect in

this regime because of its inhibitory effect on the neural activity in the moving segment, neutralizing

strong excitation. Furthermore, the proprioceptive channel gets slower beyond the cross-over point:

it takes longer for a segment to contract to the proprioceptive threshold point. This is consistent

with decreased peak contraction and increased number of simultaneously moving segments.

Our results with varied proprioceptive coupling lead us to make the following predictions:

1. Crawling without any direct segment-to-segment coupling in the VNC is possible by segment-
to-segment transmission of activity through the proprioceptive channel (Figure 5).
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2. Variation in parameters can be associated
with variations across individuals in a popu-
lation. Then, there should be much more
variability in crawling metrics among indi-
viduals with silenced or weakened proprio-
ception, a testable prediction using existing
genetic tools (Hughes and Thomas, 2007;
Inada et al., 2011).

3. Our model predicts that in the presence of
proprioception, increase in neural coupling
leads to higher speeds, as was also
observed in (Gjorgjieva et al., 2013) in a
purely neural model. In an analogous sce-
nario in stick insects, experiments suggest
that slow, steady-walking is mainly coordi-
nated by local proprioceptive signals but
faster motion is driven by increased neural
coupling between legs (Büschges, 2012).

Figure 4. Sustained crawling without proprioception. The absence of proprioception induces slower crawling. In the lower panels, “p.” denotes

crawling with proprioception, ’np.’ denotes crawling without proprioception. (A) Kymograph of body segments. (B) Muscular forces in segments. (C)

Neural activity in segments. (D) Kymograph of A4 segment (u6) in the full model vs. the model without proprioceptive feedback. (E) Peak contraction of

A3-A4 (u5 � u6) segmental distance averaged over waves. Here, we plot only one segment interval as in (Hughes and Thomas, 2007) to ease

comparison. (F) Phases of (excitatory) neural, muscular and contraction activity in different segments within a wave, with respect to excitatory neuron

activity in tail segment. To calculate phases, first Discrete Fourier Transform of the relevant signal is obtained. Phase is the negative complex phase of

the fundamental frequency. Contraction of a segment is the difference between its and next anterior neighbor segment’s center of mass

displacements.

DOI: 10.7554/eLife.11031.010

Video 5. Crawling simulations of larva with silenced

proprioception.

DOI: 10.7554/eLife.11031.011
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Then, our model suggests that the larva might modulate the strength of neural coupling to
control speed. This suggestion brings accompanying predictions which can be read directly
from Figure 5, e.g. faster speed comes with decreased peak contraction and a higher number
of simultaneously off-ground segments.

Role of body-substrate frictional coupling
To quantify the effect of the environment on the locomotion, we varied the maximum scaled fric-

tional force, Fmax=kL between body and the substrate. Our results are shown in Figure 6 and

Video 6. Our main observation is that metrics of crawling are robust until friction falls below a

threshold (Fmax=kL ~ 0:4), when muscular forces become stronger than friction, leading to slippage.

At this point the number of moving segments start differing from number of off-ground segments

(Figure 6F). An example kymograph from the slipping regime (Fmax=kL ¼ 0:005), and corresponding

muscular and neural activities are shown in Figure 6A and Video 6. Below the threshold, number of

peristaltic waves per unit time drops (Figure 6B), as is confirmed by increased segment-to-segment

propagation delay in the VNC (Figure 6G). Thus we see an effect on neural propagation due to a

change in the mechanical interaction with the substrate, clearly showing how we cannot ignore the

triad of nervous system-body-substrate in continuous conversation with each other. The speed of

the larva (Figure 6C) also follows an interesting trend; with decreasing friction, speed first increases

due to larger step sizes (Figure 6D), even though the frequency of peristaltic waves decreases

(Figure 6B), but eventually saturates. Peak contraction of segments increase (Figure 6E) with

decreased friction. These effects on behavior are clear testable predictions of our model.

Figure 5. Proprioception increases robustness of crawling. Crawling metrics as a function of wEn. In dashed-red, we show the results from the model

without proprioceptive feedback (np.), while in blue and black, we show the results with proprioception (p.) based on Equation (1–5) with parameter

values as described in the Table 1. (A) Peristaltic waves per unit time (tE ). (B) Speed of crawling in units of L=tE . (C) Step size, defined as the tail

displacement divided by number of waves. It is measured in units of (L) D) Peak contraction in a segment, averaged over segments and waves. E)

Number of simultaneously off-ground segments. This number is calculated at each time step, and the median number across time steps are plotted. (F)

Propagation delays through neural and proprioceptive channels (see text for a detailed discussion) are shown. ’n-to-n’ denotes neuron propagation

delay. ’n-to-p’ denotes proprioceptive propagation delay.

DOI: 10.7554/eLife.11031.012
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Discussion
Our theoretical model for the forward crawling of a D. melanogaster larva incorporates the coupled

mechanics of the soft body, the neural dynamics of VNC and frictional interactions with the sub-

strate, complementing earlier isolated studies of these sub-systems. It produces a robust, sustained

crawling gait with metrics consistent with experimental findings (Heckscher et al., 2012;

Hughes and Thomas, 2007), and furthermore, can reproduce qualitative and quantitative changes

in crawling gait due to perturbations in proprioceptive (Hughes and Thomas, 2007; Inada et al.,

2011) and neural (Inada et al., 2011; Kohsaka et al., 2014) channels of segment-to-segment wave

propagation.

A surprising finding of our model is its ability to produce sustained crawling with purely proprio-

ceptive coupling between segments, a scenario which was first suggested by us for a very general

model of crawling (Paoletti and Mahadevan, 2014). While both in our model and in experiments

(Hughes and Thomas, 2007; Heckscher et al., 2012), the larvae can crawl without any

Figure 6. Decreasing friction leads to slippage. (A) Kymograph, muscular forces and neural activity as a function of time for Fmax=kL ¼ 0:005. See

Figure 2 and text for explanation of plots. (B,C,D,E) Crawling metrics as a function of Fmax=kL. See Figure 5 and text for explanation of plots.

DOI: 10.7554/eLife.11031.013
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proprioception, albeit much slower, the demon-

stration of purely proprioceptive crawling chal-

lenges the central role of CPG in crawling

locomotion. It will be interesting to see if this

finding can be experimentally tested by disrupt-

ing intersegmental coupling in the VNC.

Our study suggests that proprioception

increases the robustness of crawling by effec-

tively stabilizing segment-to-segment neural

coupling. Interpreting this variation in parame-

ters to that due to variations across individuals in

a population, we predict that there should be

much more variability in crawling metrics among

individuals with silenced or weakened proprio-

ception, a scenario amenable to testing using

existing genetic tools (Hughes and Thomas,

2007; Inada et al., 2011).

In the context of body-nervous system coupling, proprioception is necessary for adaptive behav-

ior, but are both neural and proprioceptive intersegmental coupling needed, since crawling is possi-

ble with only one of them? Neural coupling may be used to control speed. Indeed, our model

predicts that increase in neural coupling leads to higher speeds, even in the presence of propriocep-

tion. This suggestion is supported by experiments in stick insects, which show that slow, steady-walk-

ing is mainly coordinated by local proprioceptive signals but faster motion is driven by increased

neural coupling between legs (Büschges, 2012).

Our model makes testable predictions on how crawling should change if body-substrate coupling

is modified. In particular, decreasing friction below slippage threshold should lead to a higher speed

with larger step sizes but a smaller number of waves per unit time, another testable prediction.

Our minimal model makes a number of assumptions and simplifications. Improvements, some of

which are already pointed out, will be necessary to describe forward crawling as more experiments

become available. For example, in a very recent experiment (Itakura et al., 2015), a new class of

pre-motor inhibitory neurons, Glutamatergic Ventro-Lateral Interneurons (GVLIs), were identified

(glutamate inhibits larva motor neurons (Rohrbough and Broadie, 2002)), which ceased locomotion

in the same segment when optogenetically activated. During unperturbed peristaltic wave propaga-

tion, GVLIs’ activation lagged motor neurons by several segments, suggesting that GVLIs provide a

contraction termination signal when the wave reaches anterior segments. In contrast, inhibitory neu-

rons of our model get activated slightly later than the excitatory neurons in the same segment, and

receive proprioceptive input only from the same segment. Therefore, our current model does not

take into account the role of GLVIs in locomotion. Some other points of improvement could be mov-

ing beyond linear mechanics, taking into account different muscles, introducing dynamics for stretch

receptors, incorporating observations on PMSI’s (Kohsaka et al., 2014), including further specialized

neuron types and accompanying connectivity profiles in a segment of the VNC, introducing possible

long range intersegmental neural and proprioceptive connections, and using more sophisticated

parameter fitting procedures.

Our integrated approach suggests generalizations that can move us beyond prograde rectilinear

locomotion. Backward crawling, for instance, could be achieved by a separate neural circuit running

from anterior-to-posterior, perhaps similar to that in C. elegans (Haspel et al., 2010), or by introduc-

ing anterior to posterior neural coupling between individual segments as in the model of

Gjorgjieva et al. (2013). Additional extensions of the body mechanics to account for bending by dif-

ferential movement of hemisegments, and a bilateral VNC, similar to that in (Gjorgjieva et al.,

2013), allowing for propagation of neural excitation in opposite directions in different hemisegments

will allow us to account for turning, and thus the larger behavioral repertoire of Drosophila larvae

(Vogelstein et al., 2014).

Finally, our model naturally suggests novel biomimetic designs for robotics crawlers. In fact, the

interest in soft robots has significantly grown in the last few years thanks to these systems’ capability

of moving in uncertain environments, a daunting task for traditional rigid robots. For

example Boyle et al., (2013) presented a proprioceptive-driven articulated crawler based on C.

Video 6. Crawling simulations of larva with low

friction.Fmax=kL ¼ 0:005:

DOI: 10.7554/eLife.11031.014
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elegans morphology and showed that it is able to navigate arenas with unknown obstacles without

requiring complex sensory capability. On the other hand, Trimmer and colleagues are developing a

soft platform to build artificial crawlers, see for example (Umedachi et al., 2013) and (Kim et al.,

2013) for a review of current attempts. Our model can then be exploited to merge soft robotics and

proprioception to create novel biomimetic crawlers with an electromechanical circuit implementing

force production and proprioception in a soft gel.
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Appendix 1

Crawling simulations in a model with only head-tail neural
coupling
Our model has two kinds of long range couplings. First is a mechanical coupling between head

and tail, mediated by an infinitely stiff spring, which models the visceral piston-like action of

the gut. Such coupling is important for reproducing the experimental observation that head

and tail move together and provides a simple, passive mechanism for extending the head

segment. Second is the input to E10 of tail segment from the stretch receptors and and the

excitatory neurons in segment T2. Such input is responsible for reinitiating a crawling wave

and sustain crawling gait without a CPG-like, periodic external drive. This kind of coupling

needs to be mediated by neural fibers running across the VNC. Experimentally, interneurons

that extend their axons across multiple VNC segments have been observed in Drosophila

larvae (Schmid et al., 1999).

Is it possible to build a model without any long range coupling? The head-tail synchrony at the

visceral piston phase of crawling requires a means of transmission of timing information.

Therefore, some form of a long range coupling is necessary. In this section, we discuss a

model of crawling with only neural coupling (Appendix 1—figure 1A). Mathematical details of

the model are given below, but first we briefly discuss its main properties.
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Appendix 1—figure 1. Crawling in a model with only head-tail neural coupling. (A) Schematic

of modified model. (B) Perfectly synchronous driving of E0 and E10. A full kymograph, muscular
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activity and neural activity. Below the kymograph, the changes in total length of the larva is

shown. Color code is the same as Figure 1. (C) Delayed forcing of tail by 0.2p radians. Same

figures as B).

DOI: 10.7554/eLife.11031.015

Unfortunately, removal of the head-tail connecting spring from the original model does not

ensue a model that produces a crawling gait, as the force that pushes head forward is

mediated by the spring. To build a working model, first, an extensile muscular force, f0, should

be included at the head segment for it to stretch, which would be implemented by a complex

combination of circumferential and longitudinal muscular forces. Second, a neural circuit that

controls this new muscle need to be introduced with a neural connection that synchronizes

head-tail movements. Such circuit needs to stop the muscular activity when extension is

beyond a threshold and therefore needs to be complemented by a receptor that gets

activated with stretch, as opposed to receptors that gets activated with contraction in other

segments.

Here, we present one such model where head-tail synchronization and crawling cycle

reinitialization is achieved by CPG-like pulse inputs to tail and head segments. These pulses

could be generated by two separate, synchronized, local oscillators in the VNC, or a common

input that feeds both segments. Both cases still require neural fibers that traverse the VNC: in

the former case to initialize oscillators simultaneously, and in the latter case to carry the input

itself. Such model produces sustained crawling, as illustrated in Appendix 1—figure 1B. Not

being constrained by a stiff gut, the total length of the larva oscillates around its stationary

value, with a periodicity around 150tE and changes reaching about 10% of larval length at

peaks. The extensile forcing and stretch activated proprioception in the head segment breaks

the symmetry between segment and thus causes uneven contraction, muscular forcing and

neural activity across segments. An interesting observation is the extended activation of I0
compared to other inhibitory neurons. I0 activates in the begining of the crawling cycle with a

proprioceptive input due to head stretching. Such input is alive until the crawling cycle

propagates from the tail to T2 and the stretch is dampened.

While this new model looks plausible, it is interesting to note that such model is sensitive to

perturbations in synchrony between oscillators. For example, when a delay is introduced to

the tail oscillators, which could happen due to delays in propagation of the external start

signal, the total length of the crawling larva reduced from its stationary length, as illustrated in

Appendix 1—figure 1C.

Details of the model
The dynamical equations are identical to the original model, except that there is an extra

excitatory-inhibitory neural population pair at the head segment, labeled by E0 and I0:

tE _Ei ¼�Ei þsn½wEEEi þwEI Iiþ hEi � �̂E�;

tI
_Ii ¼�Iiþsn½wIEEiþwII Iiþ hIi � �̂I �; i¼ 0; . . . ;10:

Here h
E;I
i are again inputs to these population outside the segment and are given by:

hE0 ¼ P0ðtÞ;

hEi ¼wEnEiþ1þwEpsp½uiþ1 � ui � û�; i¼ 1; . . . ;9;

hE10 ¼ P10ðtÞ;

hI0 ¼wIpsp½u0 � u1 � û�;

hIi ¼wIpsp½ui � ui�1 � û�; i¼ 1; . . . ;10:
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Here, there are a few differences from the original model. First, we show the tonic inputs, P0ðtÞ

and P10ðtÞ, that excite E0 and E10 explicitly. There is no proprioceptive or neuron-to-neuron

input to E10 from segment T2. Finally, the proprioceptive input to I0 comes from a contraction

detector, rather than a strecth detector.

Displacement of the individual segments uiðtÞ are again governed by Newtonian mechanics:

0¼ k u1 � u0 þLð Þþ c _u1 � _u0ð Þ� f1 þ f0 �F
f
0;

0¼ k u0 � 2u1 þ u2ð Þþ c _u0 � 2 _u1 þ _u2ð Þ� f0þ f1 � f2 �F
f
1;

0¼ k ui�1 � 2uiþ uiþ1ð Þþ c _ui�1� 2_uiþ _uiþ1ð Þþ fi � fiþ1 �F
f
i ; i¼ 2; . . . ;9

0¼ k u9 � u10 �Lð Þþ c _u9� _u10ð Þþ f10�F
f
10:

In the absence of ’periodic’ boundary conditions, the extensile force, f0, is responsible for

extension of the head.

Muscular dynamics are identical to the original model except that there is an extra muscle, f0:

tf
_fi ¼�fiþ fmaxsf ½Ei � Ê�; i¼ 0; . . . ;10:

We again assume that the friction F
f
i drops to zero in a segment when fi is above a threshold,

i.e.

F
f
i ¼ Fmaxsignð _uiÞsF ½f̂ � fi�; i¼ 0; . . . ;10:

Parameters of the model are identical to the original model, except wEp
¼ wIp ¼ 2. The inputs,

P0ðtÞ and P10ðtÞ, are rectangular pulses with height 0.7 and witdth 10, with period 33.7. In the

model where the tail input is delayed, P10ðtÞ lags P0ðtÞ by 3.37 time units.
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Appendix 2

Robustness of simulations to inertial contribution of
segments
In our simulations, we introduced a small inertial contribution for the segments that allowed to

use explicit numerical integration schemes. Here we show that our results are robust with

respect to changes in this parameter.

In Appendix 2—figure 1, we re-plot Figure 6C, the speed vs. friction force curve, for various

values of the dimensionless segmental mass, m. The curves differ below Fmax=kL »m. Above,

they agree. Therefore, it is safe to use an m value much smaller than friction. Similar behavior

is observed for all other metrics we looked at. In the main paper, we used the m ¼ 10�5 curve

which was well below the lowest Fmax=kL » 3� 10�4 we plotted.

Appendix 2—figure 1. Speed vs. friction force for different values of inertia.

DOI: 10.7554/eLife.11031.016

Pehlevan et al. eLife 2016;5:e11031. DOI: 10.7554/eLife.11031 23 of 23

Research article Computational and systems biology Neuroscience

http://dx.doi.org/10.7554/eLife.11031.016
http://dx.doi.org/10.7554/eLife.11031

