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Abstract

Rationale: Sepsis isa leadingcauseofmorbidityandmortality.Currently,
early diagnosis and theprogressionof thedisease are difficult tomake. The
integration of metabolomic and transcriptomic data in a primate model
of sepsis may provide a novel molecular signature of clinical sepsis.

Objectives: To develop a biomarker panel to characterize sepsis
in primates and ascertain its relevance to early diagnosis and
progression of human sepsis.

Methods: Intravenous inoculation ofMacaca fascicularis with
Escherichia coli produced mild to severe sepsis, lung injury, and
death. Plasma samples were obtained before and after 1, 3, and 5 days
ofE. coli challenge and at the time of killing. At necropsy, blood, lung,
kidney, and spleen samples were collected. An integrative analysis
of the metabolomic and transcriptomic datasets was performed
to identify a panel of sepsis biomarkers.

Measurements and Main Results: The extent of E. coli invasion,
respiratory distress, lethargy, and mortality was dependent on
the bacterial dose. Metabolomic and transcriptomic changes
characterized severe infections and death, and indicated impaired
mitochondrial, peroxisomal, and liver functions. Analysis of the
pulmonary transcriptome and plasma metabolome suggested
impaired fatty acid catabolism regulated by peroxisome-proliferator
activated receptor signaling. A representative four-metabolite model
effectively diagnosed sepsis in primates (area under the curve, 0.966)
and in two human sepsis cohorts (area under the curve, 0.78 and 0.82).

Conclusions: A model of sepsis based on reciprocal metabolomic
and transcriptomic data was developed in primates and validated
in two human patient cohorts. It is anticipated that the identified
parameters will facilitate early diagnosis and management of sepsis.

Keywords: metabolomics; transcriptomics; bacteremia;
nonhuman primates; mitochondrial dysfunction
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Clinical sepsis is defined by the presence
of two or more criteria of the systemic
inflammatory response syndromes (SIRS) in
a patient with an infection (1, 2). Clinical
sepsis is a complex, heterogeneous disease
with a high, but variable mortality that
accounts for more than half of all in-
hospital deaths (3). The disease is
influenced by the site of infection, causative
organism, acute organ dysfunction, and
underlying comorbidities (1, 2). The
variability of sepsis and lack of specific
symptoms make it difficult for physicians
to make an early diagnosis or estimate of
prognosis, both of which are necessary
for optimal treatment. Some patients have
severe sepsis (sepsis complicated by organ
dysfunction) when first seen by a physician
and yet improve without intensive therapy,
whereas others with mild symptoms
may rapidly progress to septic shock
(hypotension refractory to fluid
resuscitation or hyperlactatemia) or death.

Early goal-directed therapy (EGDT) has
improved sepsis outcomes through
a management protocol designed to provide
antibiotics and optimize cardiac function and

oxygen delivery within the first 6 hours of
developing hypotension or cryptic shock (4).
Accurate diagnosis is critical because delayed
therapy in patients that do not meet the
criteria for the initiation of EGDT at
presentation accounts for up to 56% of in-
hospital sepsis deaths (3). Conversely,
aggressive microbial therapy can also have
negative side effects (5). Withholding
antibiotic treatment in surgical intensive
care unit (ICU)–acquired sepsis until
confirmatory microbiologic data may
improve mortality and reduce the risk
of microbial resistance (6, 7). Better
identification of patients that benefit
from aggressive therapy versus those that
would benefit from a more conservative
approach will likely improve patient
management and reduce the risk of
antimicrobial resistance in hospital
ICUs (2).

We have previously demonstrated
that metabolomic markers implicate
mitochondrial dysfunction and that
a clinicometabolomic model of sepsis
can more accurately predict outcomes
than lactate, Sequential Organ Failure
Assessment, or Acute Physiology and
Chronic Health Evaluation II scores (8).
However, the model lacked temporal
dynamics to determine diagnosis and
matched peripheral transcriptomics analysis
to implicate host genomic responses as
underlying mechanisms. With this in mind,
we performed a holistic integrative analysis
(9) of transcriptomic and metabolomic
changes of infected nonhuman primates
(NHP) to identify novel underlying
pathophysiology and develop a metabolomic
diagnostic panel that can better predict
sepsis than current methods. Some of these
results have been previously reported in the
form of an abstract (10).

Methods

Detailed methods are contained in the
online supplement.

Animals

The protocol and amendments established
for this study were reviewed and approved
by The Lovelace Respiratory Institute’s
Animal Care and Use Committee and
adhered to guidelines established by the
American Association for the Accreditation
of Laboratory Animal Care.

Human Subjects

The Community-acquired Pneumonia and
Sepsis Outcomes Diagnostic (CAPSOD) study
was approved by the Institutional Review
Boards of the National Center for Genome
Resources, Duke University Medical Center,
Durham Veterans Affairs Medical Center, and
Henry Ford Health Systems and filed at
ClinicalTrials.gov (NCT00258869) (8, 11–13).
The Registry of Critical Illness (RoCI) is
approved by the Partners Human Research
Committee under IRB protocol 2008-P-
000495 (14, 15).

Method Summary

Our model in cynomolgus macaques was
a modification of that described by Welty-
Wolfe and coworkers (16). Baseline plasma
measurements from 26 animals served as
a control. Twenty-four animals were then
challenged with heat-killed Escherichia coli
bacteria approximately 12 hours before
an infusion of live E. coli (see Table E1 in the
online supplement). We preferred the “two-
hit” infection model over a single-infusion
model because the hypotension observed
with live E. coli challenge is attenuated by
the prime, allowing more opportunity for
acute lung injury resembling sepsis-induced
acute respiratory distress syndrome (17, 18).
The E. coli O1:K1:H7 strain (American Type
Culture Collection) was chosen given its
activity as an extraintestinal pathogen and
uropathogen (19, 20) when administered
intravenously, along with demonstrated
survival and growth outside of an intestinal
environment (21). Animals were observed
post-challenge for the onset of clinical
symptoms. Animals inoculated with E. coli
that became moribund were killed. Samples
obtained when animals were clinically
ill because of sepsis were labeled as
“infection,” but if sampled during
convalescence, then they were labeled
as “noninfection.” Histopathology,
metabolomics, RNAseq expression
experiments and analyses, statistical analysis,
the Database for Annotation, Visualization
and Integrated Discovery (DAVID) pathway
analysis (22, 23), and global cross-
correlation analysis are described in detail in
the online supplement. Metabolomic studies
were performed by Metabolon, Inc.
(Durham, NC). RNAseq was performed on
a HiSeq2000 at the BioFrontiers Institute
(University of Colorado, Boulder, CO).
Statistical analysis was performed using JMP
Genomics 5.1 (SAS Institute Inc., Cary, NC).

At a Glance Commentary

Scientific Knowledge on the

Subject: Sepsis and septic shock
represent leading contributors to
mortality and morbidity in intensive
care units. Multiorgan dysfunction and
failure are central to sepsis, but the
mechanism and biomarkers of sepsis
severity are largely unknown. For
proper patient management,
intensivists and trauma physicians
need diagnostic tests that can
distinguish among a systemic
inflammatory response syndrome,
sepsis, and trauma.

What This Study Adds to the

Field: Metabolomics, an emerging
approach to survey the entire
organismal system, was used to
elucidate the molecular signatures
in experimental sepsis. The markers
identified from this analysis
represented components of broader
metabolomic changes and
distinguished noninfected SIRS from
sepsis with greater than 90% accuracy
in two human patient cohorts.
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Results

To understand the molecular signatures
of sepsis in the plasma metabolome we
performed an infection challenge in NHPs.
Twenty-four cynomolgus macaques (Macaca
fasciculari) were primed with a heat-killed
inoculation of E. coli (105–109 CFU) in the
blood followed 12 hours later by challenge
with live enteropathogenic E. coli (105–1012)
(see Table E1) (16). A dose range was chosen
to avoid infusion shock (21) and to promote
a gradient of responses. However, four
monkeys did succumb at the time of infusion.
Although these may represent “infusion
deaths,” they were conservatively removed
from further analysis other than baseline
metabolomics. Two animals were used for
baseline transcriptomic profiling. The
remaining animals were monitored for up to
5 days post-challenge. Plasma was taken at
baseline (7 d before challenge), and at 1, 3,
and 5 days, or before euthanasia for moribund
animals (see Table E1). Few clinical
manifestations of illness were noted in low-
dose challenges (prime, 1 3 105 to 1 3 108;
live, 1 3 104 to 5 3 109). In contrast, high-
dose challenges (prime, 1 3 109; live, 1 3

1010 to 5 3 1012) led to respiratory distress,
lethargy, and death (Figure 1A). Bacteria
could be cultured from plasma, lungs, spleen,
and kidney in some low-dose and all high-
dose challenges (see Table E1; Figure 1).
A dose–response effect was observed with
mortality, increased lung weight, and
histologic lung injury at higher bacterial titers
(Figure 1). Lung histopathology revealed
bacteria with a concomitant lung
inflammation, septal wall thickening, and
proteinaceous exudates consistent with
pneumonia. Focal lung hemorrhage was
noted in the two highest doses.

Metabolomic Analysis in NHP Plasma

Global plasma metabolite analysis using
semiquantitative mass spectrometry (8) was
performed in preinfection (baseline) and
postinfection (1, 3, and 5 d) plasma
(Figure 2A). We used a multivariate
technique known as unsupervised principal
components analysis, using Pearson
product-moment correlation coefficient,
which allows us to examine relationships
among many quantitative variables by
three-dimensional clustering. The plasma
metabolomic differences clustered in
concordance with illness duration and
severity (Figures 2B and 2C). Analysis of

variance (all pairwise comparisons, 5%
false discovery rate [FDR] [24, 25]) found
that 127 of 349 (36.4%) metabolites were
significantly different in the low-dose challenge,
whereas 188 metabolites (53.9%) were
significantly different in high-dose/fatal sepsis
comparisons (see Table E2). Most metabolite

concentrations returned close to baseline by
5 days in survivors (Figures 2D–2J).

To determine if the experimental
model reflected changes found in
human sepsis we first looked at lactate
concentration, a clinical marker used for the
initiation of EGDT (4, 26). Lactate was
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challenge. Low-dose challenge (prime, 1 3 105 to 1 3 108; live, 1 3 104 to 5 3 109); high-dose
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Lung sections (3200) were examined blindly for histologic evidence of lung injury. Control animals
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(CFU 1010, CFU 1011) groups exhibited pronounced tissue injury with lung inflammation and edema.

ORIGINAL ARTICLE

Langley, Tipper, Bruse, et al.: Systems Biology Analysis of Experimental Bacteremia 447



L
iv

e
 C

h
a
lle

n
g
e

N
e
c
ro

p
s
y

P
ri
m

e

B
a
s
e
lin

e

Euthanasia

-7d -12h 0d 1d 3d 5d

2.5

2.0

1.5

E F

A D

CB

H I JG

S
c
a
le

d
 i
n
te

n
s
it
ie

s

S
c
a
le

d
 i
n
te

n
s
it
ie

s

S
c
a
le

d
 i
n
te

n
s
it
ie

s

S
c
a
le

d
 i
n
te

n
s
it
ie

s

S
c
a
le

d
 i
n
te

n
s
it
ie

s

1.0

0.5

0.0

30
5

4

3

2

1

0

25

20

15

30 70

60

50

7.5

5.0

2.5

0.0

25

20

15

5.0

2.5

0.0

6

4

2

0

2.5

2.0

1.5

S
c
a
le

d
 i
n
te

n
s
it
ie

s

1.0

0.5

0.0

Bas
el
in
e

1d
 lo

w

3d
 lo

w

5d
 lo

w

3d
 h

ig
h

5d
 h

ig
h

D
ea

th

Bas
el
in
e

1d
 lo

w

3d
 lo

w

5d
 lo

w

3d
 h

ig
h

5d
 h

ig
h

D
ea

th

Bas
el
in
e

1d
 lo

w

3d
 lo

w

5d
 lo

w

3d
 h

ig
h

5d
 h

ig
h

D
ea

th

Bas
el
in
e

1d
 lo

w

3d
 lo

w

5d
 lo

w

3d
 h

ig
h

5d
 h

ig
h

D
ea

th

Bas
el
in
e

1d
 lo

w

3d
 lo

w

5d
 lo

w

3d
 h

ig
h

5d
 h

ig
h

D
ea

th

*

*
*

*

*
*

* *

*

*

*
*

* *

#

# #

#

#

Bas
el
in
e

1d
 lo

w

3d
 lo

w

5d
 lo

w

3d
 h

ig
h

5d
 h

ig
h

D
ea

th

Low Dose

Baseline 1 3 5 3 5 D

citrate

alpha-ketoglutarate

succinate

fumerate

malate

arabitol

gluconate

urate

allantoin
uracil

isobutyrylcarnitine

2-methylbutyrylcarnitine

isovalerylcarnitine
propionylcarnitine

butyrylcarnitine

hexanoylcarnitine

octanoylcarnitine

phenolsulfate

ornithine

urea

creatinine

mannitol

taurine

taurocholate

taurolithocholate 3-sulfate

taurocholenate sulfate

xanthurenate

kynurenate

kynurenine

tryptophan
serotonin

quinolinate

cholesterol

DHEAS

cortisol

4-androsten-3beta,17 beta-diol disulfate

5-alpha-androstan-3beta-diol disulfate
pregnen-diol disulfate

1-palmitoylglycerophosphocholine

2-palmitoylglycerophosphocholine

1-heptadecanoylglycerophosphocholine
1-stearoylglycerophosphocholine

2-oleoylglycerophosphocholine

1-eicosadienoylglycerophosphocholine

High Dose

A
c
y
lG

P
C

s
S

te
ro

id
s

B
il
e

R
e
n

a
l

C
a
rn

it
in

e

T
C

A
N

u
c
le

o
s
id

e
s

a
c
id

s
F

u
n

c
ti

o
n

E
s
te

rs
K

y
n

u
re

n
in

e

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

Prin
1 (2

0.9%
)

P
rin

1 
(2

0.
9%

)
P

ri
n
2
 (
1
2
.7

%
)

Prin3 (8.0%
)

Prin3 (8.0%
)

P
ri
n
2
 (

1
2
.7

%
) –0.3

0.2

0.1

–0.1
–0.2

0

–0.2

–0.1
0

0.1
0.2

–0.3
–0.2

–0.1
0
0.1

0.2

0.3
0.2

0.1

0

–0.1
–0.2

0.2
0.1

0
–0.1

–0.2
–0.3

0.3
0.2

0.1
0

–0.1
–0.2

–0.3

P
ri
n
3
 (

9
.3

%
)

Prin
1 (2

2.7%)

P
rin

2 
(1

3.
7%

)

Prin
3 

(9
.3

%
)

Prin
1 (2

2.7%)

P
ri
n
2
 (

1
3
.7

%
)

0.2

0

–0.2 0.2

0

–0.2

–0.4
0.4

0.2
0

–0.2
–0.4

–0.2

0

0.2
–0.4

–0.2

0

0.2

0.2
0

–0.2
–0.4

Figure 2. Metabolomic changes in nonhuman primates (NHP) two-hit sepsis model. (A) Experimental design. Arrows indicate the time blood was
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moderately increased in fatal cases but was
insensitive to temporal changes despite
bacteremia and histopathologic evidence of
infection (Figures 2D and 2E; see Table E2).
The lack of significant lactate changes in
low- and high-dose survivors suggests the
animals were able to maintain adequate
organ perfusion despite the infection. We
then took an unbiased approach to identify
sepsis biomarkers by comparing the
metabolomes at baseline with temporal
changes in survivors and nonsurvivors.

We identified six distinct metabolic
pathways with dynamic changes in regards
to sepsis diagnosis and severity (e.g., death)
and that are similar to clinical sepsis (8):
(1) decreased acyl-glycerophosphocholines
(acyl-GPCs); (2) increased kynurenine

derivatives; (3) increased bile acids; (4)
increased carnitine esters; (5) increased
tricarboxylic acid (TCA) cycle
intermediates; and (6) increased pregnen-
sulfated and androgenic steroids (Figures 2
and 3; see Table E2). The metabolomic
changes in five of these six pathways
represented a graded response with the
most dynamic changes noted in the
samples taken from moribund animals.
For moribund animals, the plasma
concentrations of carnitine esters,
conjugated bile acids, TCA intermediates,
and kynurenine derivatives were
significantly increased over the 3-day high-
dose challenge samples (see Table E2).
Acyl-GPCs, however, are similarly
decreased at infection regardless of severity.

Of these six pathways, four are already
known to play a prominent role in sepsis.
For example, acyl-GPCs have been
suggested in sepsis diagnosis (27) and
treatment (28); whereas kynurenine,
a known immunosuppressive metabolite,
is a biomarker for active tuberculosis
infections (29). Increased conjugated
bile acids (e.g., taurocholenate and
taurolithocholate-3 sulfate) have been
identified as sensitive indicators of sepsis-
induced cholestasis and poor outcomes
(30). We previously observed increases in
small-chain, medium-chain, and branched-
chain amino acid (BCAA) carnitine
esters, consistent with the finding that
dysregulated b-oxidation and BCAA
degradation precedes sepsis-induced death
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kynurenine (C), kynurenate (D), and quinolinate (E). Analysis of variance (5% false discovery rate). *Significantly different from control, #Significantly different

comparison 1–5 d low-dose or 3–5 d high-dose. Low-dose comparison (2log10 P value> 2.14) or high-dose comparison (2log10 P value> 2.00). (F) Bar chart

for transcriptomic counts data for kynureninase (KYNU) in control (CON), low-dose challenge, high-dose challenge, and death. *2Log10 P value > 3.00.

ORIGINAL ARTICLE

Langley, Tipper, Bruse, et al.: Systems Biology Analysis of Experimental Bacteremia 449



(8). The results suggest that the primate
model and human results share a similar
metabolomic response in sepsis.

Lung Transcriptomic Response

Caused by Severe Escherichia

coli Infections

In light of the lung colonization and injury,
lung transcriptomics were assessed across
all infectious doses. RNAseq digital gene
expression analysis was performed on RNA
isolated from harvested lungs in uninfected
control animals (n = 2), at necropsy (5-d low-
dose, n = 8; 5-d high-dose, n = 4), or at killing
for moribund state (n = 4; sepsis death)
(Figure 4A; see Table E1). On average, 7.143
106 6 0.41 3 106 total reads per sample
aligned to the macaque transcriptome for
a total of 17,476 expressed genes (see
METHODS in the online supplement). A total of
1,544 genes were differentially expressed (all
pairwise comparisons, analysis of variance,
3% FDR) (Figure 3C; see Table E3). Despite
the fact that the baseline control animals
were female (n = 2), whereas all low-dose
challenge animals were male (n = 8), there
were only six genes that were significantly
different (see Table E2), which is consistent
with human results (31). This suggested that
the low-dose survivors had few sex-related
differences and that the transcriptome had
returned to near baseline in the low-dose
survivors. The low-dose survivors provide
a well-powered comparison between high-
dose survivors and nonsurvivors while still in
an early stage of convalescence. Significant
differences were noted between the 5-day
low-dose survivors and the 5-day high-dose
survivors (n = 448), 5-day low-dose survivors
and nonsurvivors (n = 754), and 5-day high-
dose survivors and nonsurvivors (n = 662)
(Figure 4B; see Table E3).

To understand the unbiased
pathophysiologic changes caused by
infection in both survivors and nonsurvivors
we used a functional gene annotation tool
known as DAVID to help define the biologic
relevance of the 1,544 significantly different
genes (22, 23). DAVID identified 109
pathways that were enriched because of
the E. coli challenge in either high-dose
survivors or nonsurvivors. Gene ontology
of 15 pathways identified the mitochondria,
peroxisome, fatty acid metabolism, BCAA-
degradation, transcription factors, and
inflammation as important pathways
involved in sepsis survival and death
(Figure 4D; see Table E4). The results
suggest a genomic response that may
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Figure 4. Transcriptomic analysis of whole-lung RNA. (A) Experimental design: total RNA was
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lead to metabolic and mitochondrial
dysfunction in energy production in high-
dose and lethal challenges and that the
lung at least partially contributes to the
systemic metabolic changes observed in the
plasma. Several of the 94 enriched pathways
(e.g., nucleotide-binding oligomerization-
like receptors, glutathione S-transferase,
propanoate metabolism, and so forth) are
accounted for in the larger inflammation
and metabolism pathways selected as
most relevant. However, there were many
genes related to other pathways, such as
cytoplasm, acetylation, golgi apparatus,
cofactor binding, and endoplasmic
reticulum, which may also be relevant to
the pathophysiology of sepsis but were not
included in this analysis.

Integration Analysis of Lung

Transcriptomics and Plasma

Metabolomics

The transcriptomic data supported the
hypothesis that mitochondrial dysfunction
may lead to problems in b-oxidation and
the increase in acyl-carnitines. We used
a global cross-correlation analysis (8)
between biologically linked metabolomes
and transcriptomes to identify potential
mechanistic associations. Because the
metabolomic changes were dynamic in
response to survival or death with the
highest difference noted in nonsurvivors we
decided to take an unbiased integrative
analysis between high-dose survivors
or nonsurvivors. The results focus on
correlation of change rather than changes
specific to outcome. We selected the 15
functional pathways identified by DAVID
that relate to mitochondrial function,
lipid oxidation, inflammation, and
transcriptional regulation. These pathways
encompass a total of 331 differentially
expressed genes. All pairwise correlations,
using Pearson product-moment
correlation, are calculated for every gene
with every significantly different metabolite
(n = 233). Potentially relevant gene-by-
metabolite associations were determined by
r2 values (0.65 > or < 20.65) (see Table
E4). Then for each gene, we calculated an

average absolute value correlation for
grouped biochemical families (e.g., TCA
cycle metabolites) to determine genes that
highly associate with metabolic pathways
(see Table E5). DAVID pathway analysis is
then used to cluster the relevant genes by
function. Figure E1 presents a hypothetical
integrative model of infection based on
these gene-by-metabolite associations.

Known enzymatic reaction models
should be identified by these gene-by-
metabolite associations. Indeed, we found
that kynureninase (KYNU) had high
absolute value correlation (0.758) to the
kynurenine pathway metabolites (see Table
E6). We also noted that the kynurenine
pathway metabolites strongly correlated
to peroxisomal genes (see Figure E2).
Interestingly, excreted terminally
metabolized kynurenine metabolites are
a marker for peroxisomal activation (32).
Another finding identified by integrating
the metabolomic and transcriptomic
datasets is the strong correlation of TCA
cycle intermediates succinate, malate, and
fumarate to inflammatory response and cell
death genes (Figure 5; see Figure E1, Tables
E5 and E6). These data support a recent
report that demonstrated LPS-challenged
macrophages have increased succinate
concentrations despite an overall decrease
in TCA cycle respiration and that succinate
leads to increased IL-1b production (33).

Acyl-GPCs and carnitine esters had
a strong correlation to genes involved in
BCAA-degradation, b-oxidation, and
peroxisomal lipid oxidation (Figure 5;
see Figure E1, and Tables E5 and E6).
Decreased gene expression in these
pathways likely leads to an accumulation of
upstream metabolic intermediates; this may
explain the observed rise in carnitine esters.
We previously noted that acyl-GPC
concentrations are lowered following
infectious challenge (8). Interestingly, we
found a strong negative correlation with
lysophosphatidylcholine acyltransferase 2
(LPCAT2), which can recycle acyl-GPCs to
phosphatidylcholine or acetylate acyl-GPCs
to form platelet-activating factors after LPS
stimulation (34). Many of the metabolite

families strongly correlated with
transcription factors known to regulate
peroxisome activation, mitochondrial
function, and fatty acid oxidation (PPARG,
PPARG coactivator 1a [PPARGC1A] and
forkhead box O3 [FOXO3]) (Figure 5;
see Figure E1, Tables E5 and E6). The
decreased expression of PPARGC1A, which
is a master coactivator of the peroxisomal
proliferator-activated receptor (PPAR)
pathway, along with the other PPAR-
associated transcription factors may explain
the decreased expression of peroxisomal
and b-oxidation related genes that we and
others have observed (35–40).

Identification of Sepsis Using

Metabolomic Differences in Low-

and High-Dose Challenges

The metabolome demonstrated dynamic
temporal changes in response to infection.We
therefore sought to build logistic regression
models to diagnose infection. Time points
constituting “noninfection” included baseline
(n = 20) and convalescence (5-d low-dose,
n = 12; 5-d high-dose, n = 3). Time points
from animals that were symptomatic defined
“infection” (1-d low-dose, n = 7; 3-d low-
dose, n = 7; 3-d high-dose, n = 4; death,
n = 4). We found that 1-stearoyl-GPC,
kynurenine, and isovalerylcarnitine were
highly accurate for determination of an
infection (area under the curve [AUC],
0.9519, 0.9143, 0.8987, respectively) (Table 1).
We then derived a four-metabolite logistic
regression model using 1-stearoyl-GPC,
kynurenine, isovalerylcarnitine, and
taurolithocholate-3-sulfate to identify
infection versus noninfection. These
metabolites were selected based on the
relationship to the pathophysiology of the
disease and their high individual sensitivity.
Although taurolithocholate-3-sulfate did not
perform as well in diagnosis (AUC, 0.7695)
it was included in the panel because of the
reported relationship with liver cholestasis
and patient outcome (30). The four-
metabolite model performed similarly to 1-
stearoyl-GPC alone (AUC, 0.9675 vs. 0.9519)
(Table 1). Within the training set, incorrect
model classifications were noted primarily

Figure 4. (Continued). challenge versus nonsurvivor, and high-dose challenge versus nonsurvivor; 82 genes were significantly different in control versus

the other groups (high dose, low dose, or nonsurvivor) that were not significantly different in the other comparisons. (C) Heatmap of significant gene

transcript abundance differences for control (CON; n = 2), sepsis low-dose challenge (n = 8), sepsis high-dose challenge (n = 4), and sepsis death (n = 4).

(D) DAVID analysis. Official gene symbols for significant genes, minus duplicates and unknown Ensembl-reported genes, were uploaded into DAVID v6.7.

The Homo sapiens gene list was used for functional annotation analysis. The analysis found 109 gene pathways significantly enriched (P < 0.006; false

discovery rate < 10) (see Table E4). Fifteen metabolomic, inflammatory, and transcription factor enriched pathways are presented.
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during convalescence. We next tested the
four-metabolite training model on the RoCI
and CAPSOD clinical cohorts, which had
similar metabolomic measurements (8, 15).
Noninfected SIRS and sepsis differentiation
of the CAPSOD and RoCI cohorts has been
described in detail (8, 11–13, 15). Sepsis
included all patients regardless of final
outcome (sepsis, severe sepsis, septic
shock, and sepsis nonsurvivors). The four-
metabolite NHP model tested well in two of
three human metabolomic datasets (RoCI
AUC, 0.7858; CAPSOD enrollment at
hospital presentation AUC, 0.6672; CAPSOD
24-h postenrollment AUC, 0.8213). The
results suggest these metabolites can
differentiate SIRS from sepsis with reasonable
confidence and there are conserved
mechanisms in sepsis pathophysiology
between NHP and humans.

Discussion

In this study, we used an integrative approach
to identify diagnostic metabolites in sepsis
pathogenesis in an experimental NHP model.
Our results suggest mitochondrial dysfunction
leads to severe infection and poor outcomes
as demonstrated by changes to TCA cycle
intermediates, decreased b-oxidation, and
decreased lipid peroxisome activation. The
metabolomic signatures were used to construct
a four-metabolite panel that classifies sepsis
diagnosis in two human clinical cohorts.

The infection model was based on the
E. coli infection model developed by Welty-
Wolf and coworkers (16). This model was
selected over a single-infusion model
because it leads to lung injury with less
lethality (17, 18). We noted bacterial
growth in plasma, lungs, spleen, and kidney
in some low-dose and all high-dose
challenges and dose-dependent lung injury
and mortality. The metabolomic analysis
demonstrated strong similarity to human
sepsis, noting metabolomic increases in
acyl-carnitines, kynurenine, bile acids,
steroids, and TCA intermediates, and
decreased acyl-GPCs. Many of these
pathways have been highlighted in other
sepsis studies (8, 27–30). Perhaps most
impressive was the dynamic changes to
these metabolites during peak infection,
convalescence, and death in both low-
and high-dose challenges.

To better elucidate what enzymatic
or signaling pathways influenced the
concentration of these metabolomic
markers we performed a transcriptomic

analysis of lung RNA. The lung was
chosen because pulmonary disease often
accompanies sepsis either in the form of

primary pneumonia or secondary acute
respiratory distress syndrome (2, 41).
Furthermore, the experimental model
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Figure 5. Hypothetical pathway analysis depicts mitochondrial dysfunction. Gene-by-metabolite

associations highlight problems with tricarboxylic acid (TCA) cycle regulation, b-oxidation, branched-

chain amino acid (BCAA) degradation, and peroxisomal activation likely leading to increased

production of various acyl-carnitines, a strong predictive signature of poor sepsis outcomes. This

mitochondrial dysregulation is likely mediated by peroxisomal proliferator-activated receptor-g family

transcription factors and/or novel zinc finger proteins. Problems with lipid metabolism are manifest in

the strong association of kynurenine family metabolites and peroxisomal deactivation. Perhaps most

interesting is the association of succinate with inflammatory gene IL-1b, suggesting a potential link

to mitochondrial dysfunction and initiation of the inflammatory response. Nicotinamide adenine

dinucleotide (NAD1); key TCA cycle rate-limiting enzymes pyruvate dehydrogenase phosphatase 2

(PDP2) and pyruvate dehydrogenase kinase 2 (PDK2) were down-regulated in high-dose challenges

and nonsurvivors.

Table 1. Four-Metabolite Prediction Analysis

AUC RMSE Accuracy (%) PPV (%) NPV (%)

Sepsis diagnosis
Kynurenine 0.9143 0.3657 80.7 88.6 68.2
Isovalerylcarnitine 0.8987 0.3728 80.7 91.4 63.6
Taurolithocholate-3 sulfate 0.7695 0.3928 79.0 88.6 63.6
1-Stearoyl-GPC 0.9519 0.2887 89.5 91.4 86.4

Sepsis diagnosis*
NHP (training) 0.9675 0.2699 89.5 91.4 86.4
RoCI (test) 0.7858 0.5397 67.8 96.6 54.1
CAPSOD t0 (test) 0.6672 0.6593 47.6 86.2 38.3
CAPSOD t24 (test) 0.8213 0.5929 58.3 100.0 48.6

Definition of abbreviations: AUC = area under the curve; CAPSOD = Community-acquired Pneumonia
and Sepsis Outcomes Diagnostic; NHP = nonhuman primates; NPV = negative predictive value;
PPV = positive predictive value; RMSE = root mean square error; RoCI = Registry of Critical Illness.
Sepsis diagnosis, PPV = no infection (n = 35); NPV = infection (n = 22).
*Four-metabolite model (kynurenine, isovalerylcarnitine, taurolithocholate-3 sulfate, 1-stearoyl-
glycerophosphocholine). RoCI: systemic inflammatory response syndrome (n = 29), sepsis (n = 61).
CAPSOD t0: systemic inflammatory response syndrome (n = 29), sepsis (n = 120). CAPSOD t24:
systemic inflammatory response syndrome (n = 25), sepsis (n = 107).
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selected herein has a propensity to cause
acute lung injury. We used RNAseq
because of the dynamic range and high
correlations to quantitative polymerase
chain reaction (42). The analysis found
1,544 genes were significantly different.
DAVID highlighted 15 pathways that
were related to metabolomic regulation,
mitochondrial function, inflammation,
and transcriptional regulation.

To understand how these 331 genes
from the 15 pathways may relate to
the metabolome, we used global cross-
correlation to integrate the two datasets. We
hypothesized that both known and novel
enzymatic reactions would strongly
associate. We previously demonstrated that
metabolites cluster together based on their
metabolic similarity (e.g., acyl-carnitines
cluster with other acyl-carnitines, steroids
with other steroids, TCA cycle intermediates
with other TCA cycle intermediates [8]).
With this knowledge, we calculated the
absolute value correlation of family
metabolites to all 331 genes. This allowed
for the discovery of known interactions,
such as kynurenine with KYNU; suspected
interactions, such as BCAA-carnitines with
genes related to the valine, leucine, and
isoleucine degradation pathway; and
carnitine esters with b-oxidation genes. The
novel findings presented herein suggest that
mitochondrial dysfunction leads to an
increase in carnitine esterification and that
it seems to be a coordinated genomic
signaling response in affected tissues.

Interestingly, the analysis also
highlighted some unexpected interactions.
We initially suspected changes in TCA
intermediates would correlate with
TCA-associated genes. Surprisingly, other
than modification of the key rate-limiting
enzymes, pyruvate dehydrogenase phosphate
2 (PDP2) and pyruvate dehydrogenase kinase
2 (PDK2), no significant TCA metabolite to
TCA-associated gene correlations was found.
However, there was strong correlation of
the TCA intermediates to proinflammatory
genes. It was recently demonstrated that
succinate could initiate the production of
IL-1b in bone marrow–derived macrophages
by stabilization of HIF1a (33). Treating
animals with vigabatrin, a g-aminobutyric
acid transaminase inhibitor that decreases
succinate production, improved survival in
LPS-challenged mice and reduced IL-1b in
Salmonella-challenged mice. We found three
PPAR-related transcription factors along with
THRA1 and the apoptosis-inducing gene

FOXO3 correlated with many of these
significantly increased b-oxidation and
peroxidation metabolites. Although untested
here, we hypothesize PPAR agonists improve
survival in septic mice (43–46) because of
mitochondrial biogenesis leading to increased
transcription of b-oxidation and BCAA-
degradation associated genes. However, it
should be noted that PPAR antiinflammatory
effects have also been attributed to improved
survival, and therefore links to mitochondrial
function remains unclear. Future
matched metabolomic, transcriptomic,
and histopathologic analysis of individual
tissue types (e.g., liver, kidney, heart
muscle) would provide a more focused
understanding of sepsis-induced changes at
the organ level.

The highly dynamic changes in
the metabolome during infection and
convalescence in our experimental model
suggested these markers could be used for
clinical sepsis diagnosis. We selected four
markers based on their changes over time
and biologic plausibility (kynurenine and
peroxidation; taurolithocholate-3-sulfate
and liver dysfunction; acyl-carnitines and
mitochondrial dysfunction; and acyl-GPC
depletion as a potential marker for platelet
activation). The model performed
exceptionally well in the training set with
incorrect prediction primarily noted during
intermediate time points of convalescence.
We validated this model in two human
sepsis datasets, specifically the CAPSOD
and RoCI cohorts. Differentiation of sepsis
versus SIRS has been previously described
(8, 11–13). We found that the model
was good at discriminating infected from
noninfected patients enrolled in the ICU
(RoCI) and 24-hour post emergency
department enrollment (CAPSOD t24).
The model did not perform particularly
well in emergency department enrollment
(CAPSOD t0). This may reflect
a heterogenic SIRS response that is
nonspecific to infection. Earlier
measurement of metabolomic changes in
the NHP model and a measurement in
a noninfected SIRS model may better
inform the use of these diagnostic markers
to diagnose sepsis. Previous studies
have identified procalcitonin, IL-6, and
C-reactive protein as putative markers of
clinical sepsis. The current studies were not
designed to compare these markers with
those identified here. It should be noted
that the novel markers identified here
outperformed procalcitonin, IL-6, and

C-reactive protein in the CAPSOD data as
previously published by these investigators
(12). The incorporation of procalcitonin,
IL-6, and C-reactive protein may improve
the prediction of sepsis by the novel
markers reported here, and future
investigations will seek to further refine
the predictive model.

This study does have limitations. First,
it is unclear how infection classification
in NHPs relates to illness in humans: is
it indicative of a mild or severe course?
Second, it has been well documented that
experimental models and clinical results are
often incongruous. This is caused in part by
differential genomic responses and clinical
relevance of the experimental models
(47, 48), and a heterogeneous response
in humans related to site-of-infection,
etiologic agent, genetics, comorbidities, and
age-related confounders (2). However, the
metabolomic changes found in the primate
model strongly correlate to metabolomic
findings noted in human sepsis. This
suggests shared pathophysiology in the
metabolomic response to severe infections.
Future NHP studies that include clinical
management similar to what patients would
receive (e.g., antibiotic therapy and fluid
resuscitation) would improve external
validity. Third, we did not find any
significant changes in lactate other than
in the nonsurvivors. It is possible that
lactate did not change in the survivors
because they did not become hypotensive
and were able to maintain adequate organ
perfusion. This does suggest that despite
many similarities to human sepsis, the
sepsis model presented here has key
differences likely caused by its highly
controlled nature and limited duration
of infection.

Finally, because we lacked
noninfectious SIRS controls, it is unclear if
the markers are unique for sepsis. Although
the model was good at differentiating sepsis
versus noninfectious SIRS in the human
RoCI and CAPSOD cohorts, it is still
possible some or all of the metabolites in
our model are also perturbed in other forms
of SIRS, such as trauma. Better clinical
understanding of the metabolomic response
in trauma and the development of
a noninfected SIRS animal model will help
to clarify this concern. Furthermore, future
studies with denser sampling may provide
information about early septic changes when
diagnosis and interventions will have the
greatest impact. As with any association study,
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we cannot determine causality. However,
known biologic pathways and published
literature do inform likely mechanisms of
interaction. Future mechanistic studies in
other model systems are necessary. The
strength of this study is that transcriptomic
and metabolomic integration identified both
known and novel mechanistic associations
that may be targets for interventions.

These results highlight the strong
association of metabolomic changes caused
by an infectious challenge that can
lead to death. The changes correlated
with the human sepsis metabolome
suggest the NHP sepsis model is useful
for preclinical intervention studies.
Therapeutic interventions targeting
mitochondrial activation or biogenesis may

improve outcomes in severe sepsis and
septic shock. n
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