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Integrative pan cancer analysis reveals epigenomic
variation in cancer type and cell specific chromatin
domains
Lijin K. Gopi1,2 & Benjamin L. Kidder 1,2✉

Epigenetic mechanisms contribute to the initiation and development of cancer, and epigenetic

variation promotes dynamic gene expression patterns that facilitate tumor evolution and

adaptation. While the NCI-60 panel represents a diverse set of human cancer cell lines that

has been used to screen chemical compounds, a comprehensive epigenomic atlas of these

cells has been lacking. Here, we report an integrative analysis of 60 human cancer epigen-

omes, representing a catalog of activating and repressive histone modifications. We identify

genome-wide maps of canonical sharp and broad H3K4me3 domains at promoter regions of

tumor suppressors, H3K27ac-marked conventional enhancers and super enhancers, and

widespread inter-cancer and intra-cancer specific variability in H3K9me3 and H4K20me3-

marked heterochromatin domains. Furthermore, we identify features of chromatin states,

including chromatin state switching along chromosomes, correlation of histone modification

density with genetic mutations, DNA methylation, enrichment of DNA binding motifs in

regulatory regions, and gene activity and inactivity. These findings underscore the importance

of integrating epigenomic maps with gene expression and genetic variation data to under-

stand the molecular basis of human cancer. Our findings provide a resource for mining

epigenomic maps of human cancer cells and for identifying epigenetic therapeutic targets.
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E
pigenetic dysregulation contributes to tumor initiation and
progression, and epigenetic variation promotes dynamic
gene expression patterns that facilitate tumor evolution and

adaptation to therapies1–4. Understanding cancer type and cell
type-specific epigenomes may aid in the development of new
cancer diagnostic methods and personalized epigenetic therapies
that target patient-specific epigenetic and transcriptional networks.
The National Cancer Institute-60 (NCI-60) human pan-cancer cell
line panel represents a diverse set of human cancer cell lines, which
was initially developed to perform pharmacologic screens5. The
panel consists of human cancer cell lines representing nine cell and
tissue types of origin including blood, breast, colon, central nervous
system, kidney, lung, ovary, prostate, and skin6. The widely used
panel represents a resource for application of high-throughput
approaches for interrogating cancer cells, and has been described at
the global level by RNA-Seq transcriptome analysis7, whole exome
sequencing8,9, karyotyping10, copy number alteration (CNA)11,
DNA methylation12, proteomic profiling13, and metabolomics
approaches14. However, epigenome profiling of histone modifica-
tions has not yet been applied comprehensively to cell lines
represented in the NCI-60 panel.

By integrating datasets from orthogonal studies utilizing various
methodologies such as next-generation sequencing technologies
applied across the NCI-60 panel, they can be related to one
another15. This type of cumulative modular analytics approach can
be used to predict chemosensitivity of human cancer cells by
transcriptional profiling16,17. Because cancer cells exhibit alterations
in chromatin structure and distributions of covalent histone mod-
ifications across the genome relative to normal cells18–20, con-
structing global maps of histone modifications for the NCI-60 panel
by systematic high-throughput profiling will be instrumental in
annotating cis-regulatory elements, demarcating cancer genomes
into euchromatin and heterochromatin domains, and evaluating
correlations between histone modifications and gene activity, or
orthogonal genetic or epigenetic features such as DNA mutation or
DNA methylation, respectively.

Despite advancements in high-throughput profiling techniques,
it is unclear how alterations in the epigenetic landscape con-
tributes to cellular heterogeneity, stemness, and chemoresistance
in human cancers. To understand how epigenetic patterning
contributes to the biology of cancer formation and tumor pro-
gression, we systematically profiled histone modifications of 60
cancer cells from the NCI-60 panel. We integrated ChIP-Seq data
generated in this study with a diversity of next-generation
sequencing assays such as RNA-Seq transcriptome analysis7,
DNA mutation analysis8,9, and whole genome bisulfite sequencing
(WGBS)/DNA methylation12,21 analyses. The compiled data
represents a compendium of human cancer epigenomes, which
serve as a resource for the broader metastatic scientific commu-
nity. Here, we report histone modification profiling (H3K4me3,
H3K27ac, H3K9me3, and H4K20me3) of 60 human cancer cells
representing nine distinct types of cancer in the NCI-60 panel.
Genomic positional enrichment of histone modifications was used
to construct an atlas of chromatin states, to functionally annotate
associated genes, to identify shared and cancer type-specific fea-
tures of cis-regulatory regions, and to identify potential upstream
regulators of these states using motif-enrichment analysis. We also
constructed maps of heterochromatin domains marked by the
repressive histone modifications, H3K9me3 and H4K20me3, as
loss of H4K20me3 was previously found to be a hallmark of
cancer22. Our findings reveal chromatin states in cancer cells,
which exhibit differences in gene activity, gene density, association
with nuclear lamina, and DNA methyation. We also observed
enrichment of genetic mutations in H3K4me3-enriched and
H3K27ac-enriched regions, whereas H3K9me3 and H4K20me3
marked regions exhibited a reduced mutation rate. These findings

provide a framework to interrogate human cancer epigenomes
using histone modification data.

Results
Pan-cancer epigenome mapping of human cancer cells. To
interrogate the global epigenetic landscapes across 9 types of
cancer represented in the NCI-60 panel (Supplementary Data 1)
we performed chromatin immunoprecipitation followed by next-
generation sequencing (ChIP-Seq)23,24 to profile activating and
repressive histone modifications including H3K4me3, H3K27ac,
H3K9me3, and H4K20me3. H3K4me3 is predominantly enriched
at promoters and transcriptional start sites (TSS) of highly
expressed genes23, where it is presumed to serve as a platform for
RNA polymerase II (RNAPII) binding and target gene activa-
tion25–27. H3K27ac is highly enriched at typical enhancer28 and
super-enhancer regions29. Moreover, the repressive histone mod-
ifications H3K9me3 and H4K20me3, are enriched at hetero-
chromatin regions, which are refractory to DNA-binding factors
and are largely transcriptionally silent30. H4K20me3 is involved in
the formation of heterochromatin and repression of gene expres-
sion31, including repetitive DNA elements32–34, and is involved in
regulating genome stability32. H3K9me3 is also important for
heterochromatin formation35,36, and is known to co-localize with
H4K20me3 at heterochromatic regions37.

Our dataset provides a global perspective of histone modifica-
tions across a wide variety of human cancer types. The
comprehensive histone profiling of the NCI-60 panel of cell lines
allows for multi-dimensional analyses of epigenomes across
multiple types of cancer cells. Overall, we observed the greatest
number of H3K27ac ChIP-enriched peaks (see the section
“Methods”), followed by H3K4me3, H3K9me3, and H4K20me3
peaks (Fig. 1a). We used ChromHMM to learn chromatin states
using a multivariate hidden Markov model (HMM)38. This
approach evaluates the combined presence or absence of histone
modifications to train chromatin state models. Our 15-state model
identified active and inactive chromatin states with combinations
of H3K4me3, H3K27ac, H3K9me3, and H4K20me3 marks
(Fig. 1b). These chromatin states consist of active regions including
active genes, bivalent active genes, enhancers, active bivalent
enhancers, genes transcribed at the 5′ end, and bivalent/weakly
transcribed. The inactive states include repressed enhancers,
inactive transcription start site (TSS), heterochromatin, repressed,
weak transcription, quiescent/low, and bivalent/poised TSS.
Weakly transcribed and quiescent regions comprised 52% of the
genome, while repressed and heterochromatin regions comprised
14% of the genome. Active enhancers were enriched at 4.4% of
each reference epigenome on average, while bivalent enhancers,
which were marked with H3K27ac and repressive H3K9me3 or
H4K20me3 marks, were found at 11% of the genome. We also
calculated the CpG island occupancy in the 15 states, and observed
enrichment of CpG islands in chromatin states that are generally
active including 2–5, 12, and 14–15 (Fig. 1c).

While ChromHMM defined chromatin states using a 200 bp
genomic bin interval to obtain nucleosome level resolution, we
further interrogated the enrichment of chromatin states across 60
cell types with lower resolution (2Mb) to evaluate higher-order
chromatin associations (Fig. 1d). Our results from these analyses
show that enhancers and active genes are enriched in a fraction of
the genome, whereas inactive regions comprise most of the
genome (Fig. 1d). The presence of active and inactive chromatin
states is consistent with previous studies reporting chromatin
structural compartments39,40. These findings also revealed further
stratification of these two compartments into regions marked by
H3K27ac and H3K4me3, which were enriched across one-third of
the genome (clusters 2, 3), inactive regions (clusters 1, 4, 5, 7, 8),
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Fig. 1 Cancer type-specific chromatin state dynamics. a Bar plot representation of the number of regions enriched with histone modifications (H3K4me3,

H3K27ac, H3K9me3, H4K20me3) in the NCI-60 panel of human cancer cell lines. b Chromatin states defined by enrichment of histone modifications using

ChromHMM101. Probabilities of histone modifications in chromatin states is depicted as a heatmap (left). Average genome coverage and annotation of

genic and non-genic elements (middle). Annotation of positional expression of active and inactive genic regions in H1 ES cells (right) (TSS transcription

start site, TES transcription end site). c Enrichment of CpG islands across n= 60 cancer cell lines for 15 chromatin states shows active clusters 2–5, 12, and

14, 15 relative to passive or inactive clusters 1, 6–11, and 13. Each boxplot shows CpG occupancy. Boxplots indicate the 1st and 3rd quartiles (25th and 75th

percentile, upper and lower bounds), 2nd quartile (center), and minima−maxima (1.5*interquartile range, whiskers). d Hierarchical clustering of 2Mb

genome intervals (rows) for normalized observed vs. random relative chromatin state frequency, which was averaged across all cancer epigenomes. The

gene density, cytogenic bands, and H1 ES cell LaminB1 enrichment for ES cells are depicted on the right. Hierarchical clustering heatmap: the x-axis shows

the 15 chromatin states (E1–E15) and the y-axis shows the chromatin state frequency (0–1). e Relative chromatin state frequency for each human cancer

cell epigenome. Source data are provided as a Source Data file.
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and H3K4me3/H3K9me3/H4K20me3 bivalent regions (cluster 6).
These broader regions can be further subdivided by their
underlying chromatin state. The presence of active and inactive
chromatin states is consistent with previous studies reporting
chromatin structural compartments39,40.

We also evaluated gene density, LaminB1 occupancy, and
cytogenetic bands for each 2Mb interval (Fig. 1d). Heterochro-
matin regions are gene poor and associated with nuclear lamina.
Heterochromatin and nuclear lamina are dysregulated in cancer,
where nuclear lamina-associated regions exhibit increased DNA
mutation frequencies relative to interlamina regions in the core of
the nucleus41. Moreover, defective nuclear lamina and hetero-
chromatin is associated with aneuploidy and genome instability
in cancer42. Defects in heterochromatin are associated with
tumorigenesis43, where de-repression of condensed chromatin
can lead to structural defects such as translocations and deletions.
Our findings reveal dynamic patterning of LaminB1 and
cytogenetic banding across 15 chromatin states, which is
consistent with variation in patterning of heterochromatin marks
H3K9me3 and H4K20me3 in multiple cancer cells (Fig. 1b). In
addition, we evaluated the coverage of each chromatin state
across 60 epigenomes (Fig. 1e, Supplementary Fig. 1), and for
each cancer type (Supplementary Fig. 2). These results reveal
distinct patterns of genome coverage for 15 chromatin states
across 60 cancer cell lines representing 9 types of cancer, and
further reveal intra-cancer and inter-cancer heterogeneity in
genome coverage (Supplementary Fig. 1). Melanoma and renal
cancers were enriched with regions of no TSS expression,
leukemia cells were enriched with bivalently active regions with
H3K4me3/H4K20me3 and transcription at 5′ end of genes.
Breast, CNS, colon, lung, and leukemia cancers were enriched
with active genes more than melanoma, ovarian, prostate or renal
cancers. Lung cancer and leukemia were enriched with active
bivalent enhancers marked with H3K27ac/H3K4me3/H3K9me3.
Breast cancer cells were enriched with enhancers, bivalent
enhancers marked with H3K27ac/H3K9me3 and heterochroma-
tin regions. Ovarian cancer was enriched with repressed
chromatin regions. Melanoma cancer cells were enriched with
bivalently marked H3K9me3/H3K4me3 and weak transcription
regions. Breast cancer and ovarian cancer cells were enriched
with weak transcription regions without H3K4me3, H3K27ac,
H3K9me3, or H4K20me3 (Supplementary Figs. 1 and 2). Overall,
these findings reveal the variation in combinatorial patterning of
chromatin states across 60 cancer cell lines, including the overall
active and inactive chromatin landscapes of 60 cancer cells, and
further subdivisions into enhancer, quiescent, bivalent, weakly
transcribed regions, etc. These results may help to understand
cancer-specific and cell type-specific sensitivity to epigenetic
drugs, where cancer cells with an aberrantly repressive or
heterochromatinized chromatin landscape unable to activate
tumor suppressor genes, or an overly permission chromatin
landscape which may be capable of sampling various transcrip-
tional programs, some of which may allow cancer cells to adapt to
various environments or evade anti-proliferative therapies.

Next, we surveyed transcription factor-binding site (TFBS)
enrichment in 15 chromatin states using data generated in
human H1-ES cells and K-562 cells44. Coverage for TFBS was
predominantly enriched in several chromatin states including 3
(transcription at 5′), 4 (active genes), 5 (active bivalent), 12
(bivalent/weak transcription), and 14 (H3K4me3 only), and to a
lesser extent 2 (bivalent active; Supplementary Fig. 3a). TFBS
enrichment around TSS sites was predominantly observed for
chromatin states 3 and 5 (transcription at 5′, active bivalent
enhancers), whereas TFBS enrichment around transcription end
sites (TES) was observed for multiple states: highest TFBS
enrichment was observed for chromatin states 3 and 5, followed

by 2, 12, and 14 (Supplementary Fig. 3b). We also evaluated
enrichment of repetitive DNA elements in the 15 chromatin
states. Long interspersed elements (LINE) and long-terminal
repeat (LTR) elements were enriched in chromatin states 1, 6,
8–9, 11–12, while states 2–5, 13–15 displayed decreased
enrichment (Supplementary Fig. 3c). Repeat family members
such as ERVK were enriched in states 1, 6, 9, 11–12
(Supplementary Fig. 3d), low complexity repeats were enriched
in states 1 and 14, while RC/Helitron transposable elements (TE)
were enriched in states 1–2, and 6. RNA repeats were enriched in
states 2, 5 and 12, while SINE repeats were enriched in states 1,
6–8. Moreover, satellite repeats were mainly enriched in state 10,
12, and 15. In addition, an investigation of repeat subfamily
members revealed dynamic organization of repeat elements in the
15 chromatin states (Supplementary Fig. 3e). Inspection of a
UCSC browser view of a ChromHMM genome annotation across
60 cell lines representing 9 cancer types showed enrichment of
chromatin states at a representative locus (Supplementary Fig. 3f).

To investigate enrichment of cancer genes in the 15 chromatin
states, we evaluated the density of tumor suppressor genes,
oncogenes, and housekeeping genes45,46 in 60 cancer cell lines,
and across cancer types. These findings revealed heterogenous
enrichment of tumor suppressor and oncogenes in several
chromatin states (2–4, 12, and 14) (Supplementary Fig. 4a), and
enrichment of tumor suppressors and oncogenes in chromatin
states (2–5, 14) in 60 cancer cells (Supplementary Fig. 4b).
Chromatin states associated with tumor suppressor and oncogenes
are enriched with H3K4me3 domains (Fig. 1b).

To investigate enrichment of mutations in 15 chromatin states in
60 cancer cells and 9 cancer types, we calculated mutation density
using public whole exome-sequencing data47. An evaluation of
mutation density and subtype revealed that colon and leukemia
cancer cells exhibited the greatest mutation burden (Supplementary
Figs. 5a–c and 6). Variable enrichment of mutations was observed
between cancer types across several chromatin states, where
chromatin state 15 exhibited the highest mutation density in colon
cancer cells (Supplementary Figs. 5a and 6). These findings link
chromatin state domains and histone modification profiles with
mutation profiles in a cancer type-specific manner, thus providing
insight into the relationship between epigenetic and mutational
profiles, and tumorigenesis.

To understand the organization of chromatin states across
cancer epigenomes, we surveyed chromatin state switching
frequencies across all 60 cells, between samples of the same type
of cancer (intra-cancer switching; Fig. 2a, left), and between
samples from different types of cancer (inter-cancer switching;
Fig. 2a, right). These findings revealed enrichment of switching
between active and inactive chromatin states. We also observed
enrichment of chromatin state switching around active enhancers
and bivalently marked enhancers, which may indicate alternative
patterning of enhancers in cancer genomes. In addition, we
observed greater switching between states comprised of enhan-
cers, bivalently marked enhancers, and repressed enhancers (e.g.
states 5–9) between samples of the same cancer type, and between
samples from different types of cancer (Fig. 2a, right). These
findings reflect increased dynamic regulation of enhancer regions
relative to TSS or gene body/transcribed regions. Moreover, a
higher frequency of 2:7 (bivalent active:enhancers) and 5:7 (active
bivalent enhancer:enhancer) state transitions were enriched more
in inter-cancer relative to samples of the same type (intra-cancer).

A further analysis of chromatin switching in 9 cancer types
revealed variable switching probabilities between several states
(Supplementary Fig. 7). Notably, the frequency of 4:14 (active
genes:quiescent) state transitions was lower in breast, colon,
leukemia, and ovarian cancer relative to CNS, lung, melanoma,
prostate and renal. We also observed variability in state switching
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13:11 (weak transcription:repressed), 1:10 (no TSS expression:
heterochromatin), and 8:1 (bivalent enhancers:no TSS expres-
sion) switching between cancer types. These findings highlight
dynamic regulation of chromatin state partitioning in human
cancer epigenomes, including transitions from active to repressed
chromatin states. Alterations in chromatin state transitions
may lead to aberrant gene activation or silencing, or genome
instability, due to spreading of active or repressed chromatin
domains.

Next, an investigation of enrichment of mutations relative
to chromatin state transitions revealed cancer type-specific
variability (Supplementary Fig. 8). We observed co-enrichment
of mutations and state switching events involving repressed
chromatin states 10:11 (heterochromatin:repressed) and 11:10,
states 11:13 (repressed:weak transcription) and 13:11, states 14:13
(H3K4me3 only:weak transcription) and 13:14 in multiple types
of cancer cells, and switching events 9:10 (repressed enhancers:
heterochromatin) in lung and ovarian cancer cells (Supplemen-
tary Figs. 7 and 8). We also observed co-enrichment of mutations
and chromatin switching involving active states 4:14 (active:
H3K4me3 only) and 14:4 in CNS, colon, leukemia, melanoma,
ovarian cancer cells, states 3:4 (transcribed 5′:active) and 4:3 in
lung, melanoma, ovarian, and renal cancer cells, and states 13:14
(weak transcription:H3K4me3 only) and 14:13 in CNS and lung
cancer cells. Co-enrichment of mutations and switching events
was observed in chromatin states containing transcriptional
enhancers 4:7 (active:enhancers) and 7:4 in lung, leukemia,
melanoma, ovarian, prostate, and renal cancer cells, and states 1:8
(no TSS expr:bivalent enhancers) in breast, CNS, lung, leukemia,
ovarian, and prostate cancer. Moreover, cancer type-specific co-
enrichment of mutations and switching events was observed in

chromatin states containing bivalently marked chromatin 3:2
(transcribed 5′:bivalent active) in colon cancer cells, states 3:15
(transcribed 5′:active bivalent enhancer) in colon, leukemia,
melanoma, and renal cancer, states 12:11 (bivalent/weak:
repressed) in CNS, colon, and lung cancer, states 15:10 (bivalent
TSS:heterochromatin) in breast, colon, leukemia, and ovarian
cancer, states 2:1 (bivalent active:no TSS expr) in CNS and
melanoma cancer, and states 3:8 (transcribed 5′:bivalent enhancer)
in colon and prostate cancer (Supplementary Fig. 8). In addition,
we evaluated enrichment of mutation subtype relative to
chromatin state switching across all cancer cell lines (Supplemen-
tary Figs. 9 and 10). These results link chromatin state transitions
and histone modification profiles with mutation profiles in a
cancer type and cell type-specific manner, thus providing
insight into the relationship between mutational profiles and
organization of repressed chromatin, active chromatin, enhancers,
and bivalently marked chromatin regions in cancer.

Our model also showed increased evolutionary conservation
for several chromatin states 4 and 14 including active genes and
genes marked by H3K4me3 (Fig. 2b). However, regions of weak
transcription without histone modifications (state 13) displayed
decreased conservation (Fig. 2b). We also observed increased
conservation at several chromatin states in MDA-MB-231 (E1–3,
E8–10, E15) and SK-OV-3 cells (E2, E3, E5) (Fig. 2b). These
findings likely reflect dysregulated patterning of H4K20me3,
including depletion of these marks in heterochromatin regions
and throughout the genome, but maintenance of a subset of
H4K20me3 marks at genomic regions, such as promoters and
exons with elevated conservation scores.

Variation in conservation between cell lines may be related
to differences in combinatorial enrichment of activating and

Fig. 2 Chromatin state switching and DNA methylation in human cancer cells. a Intra-cancer type switching probabilities for 15 chromatin states

across 60 human cancer epigenomes (left) relative to inter-cancer type switching (right). State transition (x-axis to y-axis). b Conservation scores for

60 epigenomes in the 15 chromatin states. c DNA methylation levels obtained from whole-genome bisulfite sequencing (WGBS)9. The percentage of

methylated CpG dinucleotides is shown for the 15-state model (red, high CpG methylation). Cells from 9 types of cancer (60 cell lines) are shown on the

y-axis and the 15 chromatin states are shown on the x-axis. Source data are provided as a Source Data file.
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repressive histone modification patterns, where higher conserva-
tion may be observed in chromatin states of cell lines with a lower
number of H4K20me3 and H3K9me3 peaks relative to other
cancer cells (Fig. 1a). As activating histone modifications such as
H3K4me3 and H3K27ac are associated with conserved genomic
sequences while repressive histone modifications H3K9me3 and
H4K20me3 are associated with non-conserved sequences48,
depletion of H3K9me3 or H4K20me3 marks may lead to
alterations in conservation of combinatorial patterning within
regions that comprise chromatin states.

Integration of information about DNA methylation9 in our 15-
state model showed that chromatin states enriched with CpG
islands exhibited low DNA methylation. Our findings revealed
low DNA methylation for states 3–4, 14 (transcription at 5′, active
genes, and H3K4me3 only; Fig. 2c). We also found that
some leukemia and melanoma cell lines displayed decreased
DNA methylation across several additional chromatin states
(states 6, 9–13, 15). Lower DNA methylation levels may indicate
de-repression of chromatin regions. Genetic variation of DNA
methyltransferases in cell lines which exhibit DNA hypomethyla-
tion, such as HL-60 and MOLT-4, may contribute to dysregula-
tion of DNA methyltransferases. MOLT-4 exhibits pathogenic
missense (substitution) mutations in the maintenance DNA
methyltransferase, DNMT1 (c.2189G>A; c.4031T>C), frameshift
(deletion) mutations in the de novo DNA methyltransferase
DNMT3A (c.1529delG; c.2096delG), nonsense (substitution)
mutations in DNMT3B (c.970C>T; c.934C>T), and missense
(substitution) mutations in DNMT3L (c.721G>A; c.184C>T)47

(Supplementary Data 2). Moreover, HL-60 exhibits missense
(substitution) mutations in DNMT3B (c.1586G>A; c.1610G>A).
The combination of deleterious mutations may contribute to
the DNA hypomethylation observed in HL-60 and MOLT-4
cell lines.

Misexpression of maintenance and de novo DNA methyltrans-
ferases in cancer cell lines may also contribute to altered DNA
methylation. Expression of the maintenance DNA methyltransfer-
ase DNMT1 is lower in LOX IMVI melanoma cells relative to 72
percent of NCI-60 cell lines, while expression of the de novo DNA
methyltransferase DNMT3A is higher in LOX IMVI cells relative
to 80 percent of cell lines in the NCI-60 panel7 (Supplementary
Data 2). Variable expression of maintenance and de novo DNA
methyltransferases may contribute to dysregulated patterns of
DNA methylation in cancer cells where elevated expression of de
novo DNA methyltransferases may lead to aberrant DNA
methylation at novel genomic sites while decreased expression of
maintenance DNA methyltransferases may result in hypomethyla-
tion. Hypomethylation of DNA methyltransferases may lead to
genome instability and de-repression of underlying repetitive DNA
sequences, and allow cancer genomes to sample transcriptional
programs, some of which may allow cancer cell to adapt and evade
anti-proliferative therapies. In addition, we observed variability in
DNA methylation across 60 epigenomes for several bivalent states
(2, 5–6, 12). These findings reveal relationships between histone
modifications, DNA methylation, and RNA transcription.

H3K4me3 patterning distinguishes cancer epigenomes. To
further evaluate the H3K4me3 landscape across multiple types of
cancer cells, we compared H3K4me3 densities for 60 cell lines.
Principal component analysis (PCA) demonstrated that colon,
CNS, leukemia, prostate and renal cancer cells clustered relatively
close to one another, while lung and melanoma cells were more
dispersed in the 2D space, and breast and ovarian cells were more
scattered (Fig. 3a). Pairwise intersections of H3Kme3 ChIP-
enriched peaks (see the “Methods” section) using Intervene49

revealed correlations between H3K4me3 occupancy across 60 cell

lines (Fig. 3b). These findings reveal relatively similar patterning
of H3K4me3 marks in a subset of renal, lung, ovarian, and CNS
cells, and an even greater overlap in H3K4me3 occupancy
between a subset of melanoma, ovarian, breast, lung, renal, and
prostate cells. This analysis also revealed significant differences
between H3K4me3 occupancy across nine types of cancer cells.
Annotation of H3K4me3 occupancy using HOMER50 revealed
enrichment in active genome features, such as promoter
and intron regions, followed by intergenic regions (Fig. 3c). An
evaluation of overrepresented gene ontology (GO) functional
annotation terms (biological process) was performed using
NCBI DAVID, and further evaluated by semantic analysis of
gene ontology and GoSemSim software51. While we observed a
high correlation between GO terms enriched in all H3K4me3-
occupied regions across 60 cell lines in nine types of cancer,
annotation of cancer type-specific H3K4me3 peaks revealed co-
enrichment of GO terms in a subset of cancer types (Fig. 3d,
top, Supplementary Fig. 11; Supplementary Data 3; DAVID was
used to calculate p-values). For example, breast and melanoma
cancer-specific H3K4me3 peaks exhibited similar GO term
enrichment. Moreover, enrichment of specific GO terms such
as development are enriched more in cancer type-specific
H3K4me3 peaks relative to all peaks (Fig. 3d, bottom). Dysre-
gulation of developmental programs may suggest blockage of
differentiation or reprogramming towards a more primitive
cellular state52,53. As chromatin functions in part to stabilize
cell fates during development, dysregulation of chromatin
networks contributes to tumorigenesis. Custom views of
H3K4me3 across 60 cell lines revealed alternative patterning at
a representative locus, including enrichment in promoter
regions and broad domains in gene body regions in breast, lung,
leukemia, and renal cancer cells (Fig. 3e).

Next, we investigated whether coding variants, or mutations, in
the NCI-60 panel are enriched in regions marked by H3K4me3.
To this end, we calculated enrichment of genomic variants in
H3K4me3 regions across 60 cell lines using public whole exome
sequencing data47. We then clustered mutations that co-localize
with H3K4me3 regions, and observed enrichment of mutations in
a subset of cancer cells (Fig. 3f). An evaluation of the diversity
and number of mutations showed that HCC2998, HCT15, and
MOLT4 exhibited the greatest tumor mutation burden, while
KM12, DU-145, HCT-116, IGROV1, M14, and CCRF-CEM also
exhibited a high number of mutations (Fig. 3g). Missense
substitution mutations were the most prevalent across 60 cancer
cell lines. Deleterious in-frame deletion mutations were also
observed in cancer cells. Next, we investigated whether mutations
were enriched in H3K4me3 occupied regions or regions without
H3K4me3. Our analyses demonstrated that H3K4me3-marked
regions exhibit higher mutation density relative to random
genomic regions of similar size and frequency, and regions
without H3K4me3 (Fig. 3h). These results highlight differences in
mutation densities between chromatin regions containing
H3K4me3 marks, which are predominantly transcriptionally
active, and chromatin regions without H3K4me3, which generally
exhibit low transcriptional activity.

While a strong negative correlation is known to exist between
DNA methylation and H3K4me3 enrichment at CpG islands and
promoter regions54, and loss of H3K4me3 at promoter regions
due to DNA hypermethylation, or gain of H3K4me3 due to
hypomethylation occurs during malignant transformation55, it is
unclear how dynamic regulation of H3K4me3 occurs at promoter
regions without CpG islands, or at intergenic H3K4me3 regions
across a diverse set of cancer cell lines. Therefore, we investigated
whether there is a correlation between DNA methylation level
and occurrence of H3K4me3 at tumor suppressors and oncogenes
in nine types of cancers. Using a curated database of annotated
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tumor suppressors and oncogenes for different types of cancers47,
overall we found that regions containing H3K4me3 exhibited
lower DNA methylation levels (Fig. 3i) relative to regions without
H3K4me3. In addition, we observed variability in the number of
regions with high DNA methylation and without H3K4me3,
and regions with low DNA methylation but with H3K4me3
occupancy in several types of cancer cells. Colon, lung, leukemia,

and renal cancers exhibited relatively symmetrical counts of
regions with high DNA methylation and without H3K4me3 at
tumor suppressor genes, and asymmetrical counts in breast, CNS,
melanoma, ovarian, and prostate cancers (Fig. 3i). However, at
oncogenes, CNS and colon cancer cells exhibited relatively
symmetrical counts of regions with high DNA methylation and
without H3K4me3, whereas breast, lung, leukemia, melanoma,
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ovarian, prostate, and renal cancer cells exhibited asymmetrical
counts. These findings highlight the relationship between active
histone modification marking by H3K4me3 and repressive DNA
methylation at tumor suppressor and oncogenes in a diverse set
of cancer cells, and suggest dynamic regulation of methylation at
tumor suppressors and oncogenes may lead to distinct chromatin
signatures in different types of cancers, where aberrant DNA
methylation of tumor suppressor or hypomethylation of onco-
genes may facilitate tumor potentiation and progression. Our
integrative analysis of DNA methylation and H3K4me3 profiles
provide additional insight into disparate usage of H3K4me3
and DNA methylation patterning at cancer-specific genes in
malignant cells.

Broad H3K4me3 domains are associated with tumor sup-
pressor genes in cancer cells. Broad H3K4me3 domains mark
genes involved in cell identity56 and are located at tumor sup-
pressor genes in normal cells57. Moreover, alterations in the
length of broad domains at tumor suppressor genes (TSG) is
associated with dysregulated transcription, where shortening of
broad domains is associated with transcriptional repression. To
interrogate the H3K4me3 breadth repertoire across multiple types
of cancers, and to compare enrichment of broad H3K4me3 at
TSGs, we performed a systematic analysis of H3K4me3 height
and width at promoter regions in NCI60 cancer cells. We
observed variable numbers of broad H3K4me3 peaks (>4 kb) and
percentage of total H3K4me3 peaks for multiple types of cancer
cells (Fig. 4a). Pairwise intersection analysis using Intervene
software revealed a subset of broad H3K4me3 domains are shared
between cancer types (Supplementary Fig. 12a, b). GO annotation
of genes associated with broad H3K4me3 peaks using DAVID
and GoSemSim revealed variable enrichment of multiple GO
terms including development and morphogenesis in a cancer
type-specific manner (Fig. 4b; Supplementary Data 3; DAVID
was used to calculate p-values). GoSemSim analysis showed a
high correlation between DAVID GO terms enriched in all broad
H3K4me3-occupied regions across cells in nine types of cancer,
while annotation of cancer type-specific broad H3K4me3 peaks
revealed co-enrichment of GO terms in a subset of cancer types
(Supplementary Fig. 12c).

We further investigated enrichment of cancer type-specific GO
terms by performing hierarchical clustering of GO term p-values
(−log10) of genes associated with all broad H3K4me3 peaks
(Supplementary Fig. 13a) and genes associated with cancer type-
specific broad H3K4me3 peaks (Supplementary Fig. 13b, Supple-
mentary Data 3; DAVID was used to calculate p-values). These
analyses reveal enrichment of GO terms in breast cancer cells (e.g.
cell migration, regulation of membrane depolarization, chemo-
taxis, mammary gland development, neuron development, and
neuron differentiation), CNS cells (e.g. neurogenesis, striated and
cardiac muscle cell differentiation, synapse organization, axon

and telencephalon development, cell motility and migration,
blood vessel development and morphogenesis, glial differentia-
tion, forebrain and cerebral cortex development), colon cancer
cells (e.g. cellular biosynthetic process, sex differentiation, gonad
development, protein glycosylation, glycoprotein biosynthetic
process, stem cell proliferation, cardiovascular development),
lung cancer cells (e.g. tube morphogenesis, CNS development,
neuron projection development, ameboidal-type cell migration,
regulation of epithelial cell migration, response to acid chemical,
response to fluid shear stress), leukemia cells (e.g. hemopoiesis,
immune system development, lymphocyte activation, T cell
differentiation, leukocyte aggregation, lymphocyte proliferation,
defense response), melanoma cells (e.g. actin cytoskeleton
organization, establishment of vesicle localization¸ developmental
pigmentation, neuron recognition), ovarian cancer cells (e.g.
formation of primary germ layer, mesoderm formation, O-glycan
processing, regulation of RNA biosynthetic process), prostate cancer
cells (response to steroid hormone, hormone-mediated signaling
pathway¸ cellular response to steroid hormone stimulus), and renal
cancer cells (e.g. angiogenesis, response to wounding¸ regulation of
cell communication¸ cilium organization) (Supplementary Data 3).
While these findings provide insight into the cancer phenotype,
such as melanoma cells exhibiting enrichment of pigmentation GO
terms, or leukemia cells exhibiting enrichment of lymphocyte
proliferation GO terms, these results also highlight distinct cellular
pathways activated in various types of cancer cells.

A comparison of public ChIP-Seq data from normal cells using
Intervene pairwise intersection analysis showed that broad
H3K4me3 cancer type-specific patterns are mostly distinct from
broad H3K4me3 patterns in normal cells (Supplementary Fig. 14).
With the exception of normal blood cells and leukemia cells,
variability between cancer cells and normal cells was greater than
intra-cancer or intra-normal cell heterogeneity. Because broad
H3K4me3 patterns are mostly distinct between cancer cells and
normal cells, and heterogeneous in cancer cells, our results may
suggest that cancer type-specific heterogeneity in broad
H3K4me3 domain genome-wide distributions may be acquired
during carcinogenesis.

We found a subset of low density H3K4me3 peaks that were
wide and another subset of high density H3K4me3 peaks that were
narrow (Fig. 4c; Supplementary Fig. 15). To investigate a correlation
between broad H3K4me3 domains and cancer, we utilized the top
500 tumor suppressors and oncogenes, as defined by somatic
mutation profiles from >8000 paired tumor-normal samples45.
Housekeeping genes (500 random) were also used as a control46.
Using genes associated with broad H3K4me3 peaks for each cancer
cell line, we evaluated enrichment of the top 500 tumor suppressors,
oncogenes, and 500 random housekeeping genes (Fig. 4d, left,
Fig. 4e, Supplementary Fig. 16a, Supplementary Data 4), or all
tumor suppressors, oncogenes, and housekeeping genes (Fig. 4d,
right, Supplementary Fig. 16b, Supplementary Data 4). We observed

Fig. 3 H3K4me3 dynamics and mutation analysis across 60 human cancer cell lines. a Principal component analysis (PCA) of H3K4me3 density levels

(norm. tag density) in 60 cell lines. Nine cancer types are color coded (BR breast, CNS central nervous system, CO colon, LC lung cancer, LE leukemia, ME

melanoma, OV ovary, PR prostate, RE renal). b Pairwise intersection of SICER100-defined (FDR < 0.0001) H3K4me3-enriched regions. Heat map of

pairwise intersection of H3K4me3 regions was generated using Intervene49. c Genomic annotation of H3K4me3 regions in 60 cancer cell lines using

HOMER50. d H3K4me3 peaks nearby TSS of genes were annotated using gene ontology (GO) functional annotation terms enriched by DAVID102 analysis

and clustered using GoSemSim semantic similarity analysis51. NCBI DAVID was used to calculate p-values. Heatmap of semantic similarity matrix (top)

and bubble plot showing enrichment of top biological process GO terms in 9 cancer types, and specific to each cancer type (u unique, bottom). e UCSC

browser view of H3K4me3 distributions at a representative gene across 60 cancer cells. f Cosmic47 mutation analysis of H3K4me3 regions across 60

cancer cell lines. Hierarchical clustering heat map density of cosmic mutations in H3K4me3 regions. g Stacked bar plot showing number and type of

mutation in 60 cell lines. h Mutation density (mutation/bp) in H3K4me3-marked regions relative to random regions of similar size and frequency, and

regions without H3K4me3. p-value was determined using a two-sided Fisher’s exact test. i DNA methylation level at regions with or without H3K4me3 at

tumor suppressors (top) and oncogenes (bottom). Source data are provided as a Source Data file.
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greater enrichment of tumor suppressors relative to oncogenes and
housekeeping genes across cell lines from distinct cancer types
(Fig. 4e, Supplementary Fig. 16b). We also performed an analysis
using cancer type-specific tumor suppressors and oncogenes
(Supplementary Data 4), and similarly observed greater enrichment
of tumor suppressors relative to oncogenes and housekeeping genes
across distinct cancer types (Supplementary Fig. 17a) and for most
cancer cell lines (Supplementary Fig. 17b).

Also, genes associated with broad H3K4me3 peaks (>4 kb)
were expressed at a higher level relative to genes associated with
sharp (<4 kb) peaks (Fig. 4f–h, Supplementary Fig. 18–20). While
broad H3K4me3 domains were enriched at tumor suppressor
genes, we also observed broad H3K4me3 domains at a subset of
oncogenes such as MYC (Fig. 4i). While broad H3K4me3

domains were found at the MYC gene for all NCI-60 cell lines,
H3K4me3 levels were variable across the NCI-60 panel (Fig. 4i).
We also observed variable levels and distributions of H3K27ac
nearby MYC broad H3K4me3 domains, including dynamic
cancer type-specific patterning of intergenic H3K27ac marked
enhancers (Supplementary Fig. 21), where broad H3K4me3 levels
were more highly correlated with H3K27ac levels at promoter
regions relative to intergenic H3K27ac levels. Broad H3K4me3
peaks at oncogenes may promote sustained expression to drive
tumor potentiation or tumor progression.

As genes with conserved broad H3K4me3 peaks represent pan-
cancer tumor suppressors57, to investigate a relationship between
alterations in length of broad H3K4me3 domains and level
of gene expression, we performed a systematic comparison
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of relative shortening or lengthening of conserved H3K4me3
domains across multiple types of cancer cells. Conserved
H3K4me3 peaks that intersect TSS regions were defined as
those found in more than 50% of cancer cell lines (>30 cell lines).
Using a subtraction cutoff of 500 bp, we defined lengthening of
H3K4me3 peaks as an increase in breadth >500 bp relative to the
average breadth across 60 cancer cell lines, and shortening as a
decrease in breadth less than 500 bp. Next, we evaluated the
expression of tumor suppressors, oncogenes, and housekeeping
genes associated with conserved H3K4me3 peaks that lengthen
or shorten relative to the average. Using this approach, we
found that shortening of conserved H3K4me3 domains was
mostly associated with lower expression of tumor suppressors
(Supplementary Fig. 22) and oncogenes (Supplementary Fig. 23),
while lengthening was associated with higher or lower expression.
In contract, shortening of conserved H3K4me3 domains resulted
in nominal changes in expression of housekeeping genes for most
cancer cells (Supplementary Fig. 24). These findings suggest that
variation in length of conserved broad H3K4me3 is associated
with disparate expression patterns of tumor suppressors and
oncogenes across multiple types of cancer cells.

H3K27ac enhancer profiling in a compendium of cancer cells.
Enhancers are a non-coding DNA regulatory element typically
bound by multiple transcription factors (TFs)58,59, which control
cell type-specific gene regulatory profiles, and activity of enhancers
is largely cell type-specific60,61. Enhancers play a critical role in
cancer formation62, where enhancer activity is increased in cancer
cells relative to normal tissue. While dynamic transcriptional net-
works and enhancer landscapes are often dysregulated in cancer
cells63, it is unclear whether cancer type-specific enhancers or
universal enhancers are activated in cancer cells. To interrogate
dynamic enhancer activity at cis-regulatory elements across a panel
of human cancer cells, we analyzed H3K27ac ChIP-Seq data gen-
erated in this study. Pairwise intersection analysis using Intervene
revealed a high correlation of H3K27ac occupancy in multiple
melanoma cell lines and renal cancer cells, and a correlation
between CNS and colon cancer cells (Fig. 5a). This analysis
also showed shared H3K27ac occupancy for several cancer types
including renal, lung, and CNS cancers. We also observed
overall differences in H3K27ac profiles between cells of different
cancer types (inter-cancer), and cells within the same cancer type
(intra-cancer), suggesting widespread heterogeneity of enhancer
marking across multiple types of cancer. An evaluation of
H3K27ac densities at ChIP-enriched peaks using PCA confirmed
that melanoma, renal, colon, and CNS cancer cells clustered close

to one another in the 2D space (Fig. 5b), while breast, lung, leu-
kemia, ovarian, and prostate cancer cells clustered further away
from one another, further suggesting greater heterogeneity in
enhancer marking in those cancer cells. Functional annotation of
regions enriched with H3K27ac using HOMER showed enrich-
ment in predominantly intergenic and intron regions (Fig. 5c). An
analysis of genome coverage revealed higher occupancy for several
breast (HS-578T, MDA-MB-468), melanoma (LOX IMVI, SK-
MEL-2, SK-MEL-28), and ovarian (NCI/ADR-RES, OVCAR-5,
OVCAR-8, SK-OV-3) cancer cells, and lower occupancy for several
breast (MDA-MB-231), colon (HCT-15, KM12), lung (NCI-H23),
and leukemia (CCRF-CEM, MOLT-4) cells (Fig. 5d). The number
of H3K27ac ChIP-enriched peaks is not always correlated with
genome coverage, suggesting variability in the width of H3K27ac
peaks. A comparison of H3K27ac peaks with cytogenetic banding
patterns revealed that the majority of H3K27ac regions are located
in relatively decondensed chromatin regions (Fig. 5e).

We further investigated enrichment of genomic mutations in
regions with distinct cytogenetic banding patterns overlapping
H3K27ac peaks. These findings reveal that substitution missense
and coding silent mutations are enriched in chromatin regions
containing G-negative light bands and G-positive bands inter-
secting H3K27ac peaks, while substitution nonsense mutations are
enriched more in chromatin regions containing G-positive bands
in several cancer cell lines (Supplementary Fig. 25). In addition,
deletion frameshift mutations were enriched in chromatin regions
containing G-positive bands. In contrast, insertion inframe,
deletion inframe, and insertion frameshift mutations are enriched
in chromatin regions containing G-negative and G-positive light
bands. Moreover, we observed enrichment of complex insertion
inframe mutations in G-positive light bands. Overall, these
findings reveal variation in genomic location of mutation subtypes
relative to cytogenetic banding patterns and H3K27ac peaks across
60 cancer cell genomes. These results also highlight heterogeneity
in enrichment of mutations and chromosomal aberrations in
H3K27ac regions with distinct cytogenetic banding patterns.

To identify cancer cell type-specific enhancer modules we
focused on intergenic H3K27ac regions. Pairwise intersection
analysis using Intervene and clustering analysis of all intergenic
H3K27ac regions revealed cancer type-specific and intra-cancer
heterogeneity of enhancer patterning (Supplementary Fig. 26a, b).
A further comparison of public ChIP-Seq data from normal cells
using Intervene pairwise intersection analysis revealed that
intergenic H3K27ac patterning is mostly distinct between NCI-60
cancer cells and normal cells (Supplementary Fig. 27), with the
exception of normal renal cells and astrocytes, which exhibited

Fig. 4 Promoter-associated broad H3K4me3 domains are associated with tumor suppressor genes. a Number of broad (>4 kb) H3K4me3 peaks across

60 cancer cells representing 9 types of cancer. Size of circle indicates the number of broad H3K4me3 peaks while the color indicates the percentage of

total H3K4me3 peaks. b DAVID GO functional annotation analysis of genes associated with promoter H3K4me3 peaks. Bubble plot showing enrichment of

top biological process GO terms in 9 cancer types, and specific to each cancer type (u: unique, bottom). NCBI DAVID was used to calculate p-values. c

Scatter plot of H3K4me3 height (y-axis) and width (x-axis). Blue and red points represent sharp and broad peaks, respectively. d Boxplot of enrichment p-

values (y-axis) of tumor suppressors (TSG), oncogenes (OG), and housekeeping genes for genes associated with promoter broad H3K4me3 peaks for each

cancer cell line. Left: the top n= 500 tumor suppressors, oncogenes, and 500 random housekeeping genes were used for this analysis. Right: all (n=

1000) TSG, OG, and housekeeping genes were used. p-values (y-axis) were determined using two-sided Fisher’s exact tests. Boxplots indicate the 1st and

3rd quartiles (25th and 75th percentile, upper and lower bounds), 2nd quartile (center), and minima−maxima (1.5*interquartile range, whiskers). p-value

(x-axis) were determined using two-sided Kolmogorov–Smirnov tests. e Bubble plots indicating enrichment p-values of TSG, OG, and housekeeping genes

for genes associated with broad H3K4me3 for 60 cancer cell lines. p-value (−log10) represented by bubble size and color. p-values were determined using

two-sided Fisher’s exact tests. Scatter plots of H3K4me3 (f) widths (y-axis) or (g) heights (x-axis) and gene expression (x-axis) for a representative cancer

cell line. Red and blue points indicate broad and sharp peaks, respectively. h Boxplot showing expression level of genes associated with top n= 500 broad

or sharp H3K4me3 peaks in a representative cancer cell line. P < 1 × 10−20 (ks-test). Boxplots indicate the 1st and 3rd quartiles (25th and 75th percentile,

upper and lower bounds), 2nd quartile (center), and minima−maxima (1.5*interquartile range, whiskers). p-value was determined using a two-sided

Kolmogorov–Smirnov test. i UCSC browser view of broad H3K4me3 distributions at a representative locus in 60 cancer cells (scale: 0–0.15 norm. tag

density). Source data are provided as a Source Data file.
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decreased overlap with other normal cells or cancer cells. Moreover,
k-means clustering analysis of H3K27ac intergenic enhancers
further revealed cancer type-specific and normal H3K27ac
intergenic patterns (Supplementary Fig. 28a, b). Clusters which
exhibit heterogeneity in H3K27ac patterning in cancer cells
(clusters 3, 5, 6, 8, 10, 11, 13) exhibit decreased H3K27ac
enrichment in normal cells (Supplementary Fig. 28b, c), while

clusters with heterogeneous occupancy of intergenic H3K27ac in
normal cells (clusters 2, 4, 7, 9, 12, 17) exhibit decreased occupancy
in cancer cells. We also observed heterogeneous intergenic
H3K27ac patterning across cancer and normal cells at a smaller
number of enhancers (clusters 18–21). These findings also reveal
that activity of a subset of enhancers is similar between normal cells
and cancer cells. Enhancers in cluster 5 were activated in renal
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cancer cells and normal cells, and cluster 16 enhancers exhibited
decreased activity in leukemia cells and normal blood cells.

Combined, these findings suggest that a subset of H3K27ac
marked enhancers are distinct between cancer cells and normal
cells, while a subset of enhancers are active in a cell type-specific
manner in both cancer and normal cells. These results suggest
that cancer type-specific heterogeneity in intergenic H3K27ac
patterning may be due in part to a combination of differential
enhancer patterning in the cell of origin and acquisition of
differential enhancer patterns during cancer formation.

Next, we subsequently clustered, in ascending order, cancer
type-specific regions that were found in at least 50% of cell lines
for a cancer type (Fig. 5f). This strategy enabled us to distinguish
intergenic enhancer modules specific to each cancer type, and to
identify shared enhancer modules across cell lines from the same
cancer type (intra-cancer). We next sought to identify patterns of
functional annotation GO terms enriched within cancer type-
specific modules. Following identification of enriched GO terms
using NCBI DAVID, we performed semantic analysis using
GoSemSim. These findings highlight overall similar enrichment
of GO terms for all annotated intergenic H3K27ac peaks, but
reveal distinct cancer type-specific enrichment of GO terms
(Fig. 5g). Developmental and differentiation GO terms were
overrepresented in breast and lung cancer, followed by CNS,
colon, melanoma, and renal cancer cells (Fig. 5h). Ovarian,
prostate, and leukemia cells exhibited lower enrichment of
developmental and differentiation terms.

We also investigated whether genomic mutations are enriched
in H3K27ac occupied regions or regions with H3K27ac. Our
results demonstrate that H3K27ac occupied regions exhibit a
higher density of mutations relative to random genomic regions
and regions without H3K27ac (Fig. 5i). These finding are
consistent to our results described for H3K4me3, and suggest
that chromatin regions with active histone modifications have
increased mutation rates relative to regions without active
chromatin marks.

In addition, we performed a systematic search for composite
regulatory motifs using ENCODE motifs64, and observed enrich-
ment of several DNA sequence motifs for transcription factor
binding within intergenic H3K27ac enhancer modules, including
FOXL1, NFE2, SETDB1, EGR1, NRF1, CTCF, and the CTCF
subunits RAD21, and SMC3 (Fig. 5j). While CTCF is a genomic
insulator, which can block enhancer activity and prevent crosstalk
between active and inactive chromatin regions65, CTCF has also
been shown to mediate enhancer–promoter interactions66.
These findings suggest that a subset of enhancer modules may
be co-regulated across multiple types of cancers, which may be
controlled by common upstream regulators. In addition, we
investigated whether DNA sequence motifs for TF binding
contain genetic mutations. While we observed mutations in

DNA sequence motifs for binding of FOXL1, NFE2, SETDB1,
EGR1, NRF1, CTCF, RAD21, and SMC3 on a genome-wide scale
(Supplementary Fig. 29), we did not observe mutations in
H3K27ac intergenic regions. We also found that the binding
motif of CTCF exhibited an increased mutation frequency in the
first two nucleotides (Supplementary Fig. 29). Genetic alteration of
DNA-binding motifs may negatively impact TF binding and affect
expression of associated genes.

Super-enhancer (SE) activity is correlated with cancer type-
specific genes. SEs are clusters of enhancers in close proximity
that promote transcription of genes that define cell states29,67. In
cancer, SEs are generated at oncogenes and at cancer promoting
genes67, where cancer cells are addicted to aberrant enhancer
activity68. To understand the relationship between SEs and cel-
lular states that define cancer, we interrogated the super-enhancer
repertoire across multiple types of cancer cells. Using ChIP-Seq
data and HOMER50, we distinguished SE from typical enhancers
(TE) based on H3K27ac signal, using a strategy based on Whyte
et al. 29. H3K27ac peaks identified within a 12.5 kb region were
stitched together and putative enhancers with the highest score
were defined as SEs (see the “Methods” section)50. A subset of
enhancers exhibit a high level of H3K27ac occupancy (Fig. 6a). In
contrast to TE (Supplementary Fig. 26b, Fig. 5f), the majority of
SEs are cell type-specific (Fig. 6b, c). We observed decreased
overlap in H3K27ac occupancy across cell types for SEs relative to
normal enhancers (Fig. 5a). In addition, we compared activity of
SEs identified from normal cells to cancer-cell specific SEs
identified in this study. A comprehensive list of SEs from nine
normal tissues was extracted from the human super-enhancer
database (SEdb)69. Results from this analysis demonstrate that
breast, colon, lung, leukemia, melanoma, ovarian, and prostate
cancer SEs exhibit increased activity relative to normal tissue SEs
(Fig. 6d), while CNS and renal exhibited a slight decrease in
activity. We also observed a greater number of cancer SEs relative
to normal tissue SEs (Fig. 6e). Functional characterization of
genes associated with SEs using GREAT70 gene ontology analysis
revealed that genes are linked to biological processes related to
their respective cancer type (Fig. 6f; Supplementary Data 5;
p-values were calculated using GREAT70). A representative view
of a super-enhancer cluster, identified in a subset of NCI-60 cell
lines (~80% of cell lines), shows dynamic H3K27ac patterning
(Fig. 6g). Using a list of super enhancer regions obtained from
SEdb69, we found that most normal cells do not exhibit super
enhancer patterning in this genomic region. A further compar-
ison of public ChIP-Seq from normal cells revealed decreased
H3K27ac levels at this representative genomic region relative to
cancer cells (Supplementary Fig. 30a, b). Combined, these find-
ings demonstrate that super enhancers are cell type-specific in
cancer cells, and distinct between normal and cancer cells.

Fig. 5 Typical H3K27ac enhancer profiling across multiple types of cancer. a Pairwise intersection of SICER-defined H3K27ac peaks (FDR < 0.0001) in

60 cancer cell lines. Heat map of pairwise intersection of H3K27ac regions was generated using Intervene. b PCA showing H3K27ac density (norm. tag

density) across 60 cancer cell lines. c Annotation of genomic regions enriched with H3K27ac peaks in 60 cancer cell lines using HOMER. d Bubble plots

showing H3K27ac genomic coverage for 60 cancer cells representing 9 types of cancers. Each row represents a cancer type. The size of the circle indicates

the number of H3K27ac peaks and the color indicates the percentage of genome coverage. e Stacked barplot showing cytogenetic banding pattern of

H3K27ac peaks. Cytobands were obtained from the UCSC genome browser. f Cancer type-specific H3K27ac-marked enhancer modules across 60 cell

lines. H3K27ac-marked intergenic enhancers were diagonally sorted. g H3K27ac peaks nearby TSS of genes were functionally annotated using DAVID, and

clustered using GoSemSim semantic similarity analysis. Biological process GO terms identified using DAVID. All H3K27ac peaks for 60 cell lines and

cancer type-specific peaks were annotated. h Bubble plot showing enrichment of top biological process GO terms identified from all peaks and cancer type-

specific peaks from 9 cancer types comprising 60 cell lines (u unique). i Mutation density (mutation/bp) in H3K27ac relative to random regions of similar

size and frequency, and regions without H3K27ac. p-value was determined using a two-sided Fisher’s exact test. j Evaluation of enhancer regulatory motifs

enriched in intergenic regions across 60 cancer cells. Encode motifs64 was used to perform motif analysis for intergenic H3K27ac ChIP-Seq datasets for

60 cells.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21707-1

12 NATURE COMMUNICATIONS |         (2021) 12:1419 | https://doi.org/10.1038/s41467-021-21707-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


To investigate transcription factor-binding site enrichment
across multiple types of cancers, we analyzed frequencies of
cognate consensus DNA-binding motifs at super-enhancer
regions using HOMER motif analysis50. Next, we evaluated the
average expression of TFs whose recognition motifs were
statistically significant (consensus binding motifs) for each cancer
type, and subsequently focused on the highest expressing TFs
(top 10%) for each cancer type (Fig. 6h). Using this approach, we
identified 103 transcription factor recognition motifs for nine
types of cancer cells (Fig. 6i). Known oncogenes such as MYC

were expressed at a high level across nine types of cancer cells.
We also identified TFs that were expressed at a high level in a
cancer type specific manner, and whose motifs were statistically
enriched. We identified breast cancer enriched TFs including
GATA3, PITX2, NR1H2, BCL6, and GSR, CNS-enriched TFs
RUNX2, SOX2, and GLIS3, colon cancer-enriched TFs TCF7L2,
EHF, HOXA9, and KLF3, leukemia-enriched TFs ZNF692,
STAT5B, CELF2, BCL11A, and NFE2, melanoma-enriched TFs
including MITF, SNAI2, MAFF, NR4A1, NPAS2, MNT, ETS1,
and SCLY, the prostate cancer-enriched TF, FOXA1, and the
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renal cancer-enriched TF, ATF7 (Fig. 6i). Overall, these findings
reveal key insight into cancer type-specific regulation of SEs, and
further suggest that common upstream TFs may regulate distinct
target genes across various cancer types.

The heterochromatin landscape of cancer cells. The chromatin
landscape is demarcated into two classes: euchromatin, which is
open and transcriptionally active, and heterochromatin, which
is compact and generally transcriptionally silent30. Hetero-
chromatin exists as two states: constitutive heterochromatin,
which is stably heterochromatinized in a condensed state and
facultative heterochromatin, which is dynamically repressed
during development. Cancer formation involves the dysregulation
of constitutive and facultative heterochromatin states. H3K9me3
and H4K20me3 co-localize at constitutive and facultative het-
erochromatin enriched with repetitive DNA elements71–74, and
these histone modifications serve as proxies for repressed chro-
matin regions. H3K9me3 domains mark constitutive and tissue-
specific regions, which are refractory to binding by transcriptional
regulators75.

H3K9me3 and H4K20me3 may function as redundant histone
modifications that promote heterochromatin formation76, as the
H3K9 histone methyltransferases (HMTases) SUV39H1 and
SUV39H2 have been shown to act upstream of the H4K20
HMTases SUV420H1 and SUV420H233,77. Dysregulated expression
or mutation of H3K9me3/H4K20me3 histone methyltransferases
(HMTases) in cancer cells may lead to perturbed sequential
deposition of H3K9me3 and H4K20me3, or altered patterns of
H3K9me3 and H4K20me3 deposition, thus leading to heterochro-
matin dysregulation and genome instability.

To understand dynamic regulation of repressed chromatin in
cancer cells, we interrogated the heterochromatin landscape by
surveying H3K9me3 and H4K20me3 occupancy across a
spectrum of cancer types. An evaluation of pairwise intersections
between H3K9me3-enriched regions revealed largely distinct
repressive chromatin landscapes between 60 cancer cells,
suggesting heterogeneous marking of heterochromatin regions
(Fig. 7a). In addition, we observed a decreased overlap of
H4K20me3 peaks (Fig. 7b) relative to H3K9me3, H3K27ac, or
H3K4me3 peaks, suggesting loss of H4K20me3 across multiple
types of cancers. We also compared H3K9me3 and H4K20me3
densities across 60 cancer cells, and observed co-enrichment
across the heterochromatin landscape (Fig. 7c). Dual marking
of H3K9me3 and H4K20me3 may reflect a central heterochro-
matin feature. By interrogating H3K9me3 and H4K20me3
densities using PCA, we observed heterogeneous repressive
landscapes between cells from different types of cancers (Fig. 7d).

Annotation of genomic regions occupied by H3K9me3 or
H4K20me3 revealed enrichment in intergenic and intronic
regions (Fig. 7e). Moreover, we observed a greater percentage of
MDA-MB-231 H4K20me3 peaks located in exon regions relative
to other NCI-60 cells, and a greater percentage of SK-OV-3
H4K20me3 peaks located in promoter regions relative to most
NCI-60 cell lines. Next, we performed functional annotation of
genes nearby H3K9me3 or H4K20me3 domains using NCBI
DAVID. Using this approach, we found heterogeneous develop-
mental GO term enrichment of H3K9me3-associated genes
(Supplementary Fig. 31a, c), and even greater diversity of
enrichment of developmental GO terms for genes associated
with H4K20me3 (Supplementary Fig. 31b, d). These results
suggest that developmental gene expression programs may
exhibit aberrant marking or loss of H3K9me3 or H4K20me3 in
cancer cells. Genome coverage analyses showed several cell lines
with higher coverage of H3K9me3 domains across the genome
(ovarian: SK-OV-3; leukemia: SR; breast: MCF7, MDA-MB-468)
(Fig. 7f). Moreover, MCF7 breast cancer cells exhibited the
greatest coverage of H4K20me3 across 60 cancer cells. While
cytogenetic banding patterns of genomic regions occupied by
H3K9me3 or H4K20me3 revealed enrichment in condensed
chromatin regions (Fig. 7g), a subset of regions were enriched in
open chromatin regions.

We also investigated a correlation between regions enriched
with H3K9me3 or H4K20me3 and the presence of genomic
variations. These findings show that H3K9me3 and H4K20me3
marked regions have a lower density of mutations relative to
random genomic fragments or regions without H3K9me3 or
H4K20me3 (Fig. 7h). However, these mutations do not include
structural translocation events, which may occur as a result of loss
of H4K20me3. These findings suggest that compact heterochro-
matinized genomic regions are more refractory to genomic
mutations relative to open euchromatin regions (Fig. 3h). Overall,
these results describe dynamic regulation of heterochromatin
regions across multiple types of cancer cells.

Discussion
Here, we interrogated the epigenetic landscape of multiple types
of cancer cells from the NCI-60 panel. We describe results from
an integrative analysis of histone modification profiling and
epigenetic and genomic features to gain insight into dynamic
regulation of active and inactivate chromatin states across a
diverse set of 60 cancer cell lines. We observed high variability in
histone modifications associated with enhancer (H3K27ac) or
heterochromatin (H3K9me3, H4K20me3) regions relative to
promoter regions (H3K4me3). Activity of regulatory regions is

Fig. 6 Identification of super enhancers (SE) in cancer epigenomes. a Super slope saturation curves of H3K27ac densities across 60 human cancer cell

line datasets. The number of ranked typical and super enhancers (SE) marked by H3K27ac are plotted. H3K27ac normalized ChIP-Seq signal across a

subset of all H3K27ac marked enhancers. SE were identified using HOMER (see the “Methods” section). SE are identified as regions that are located

beyond where the slope is 1. b Intervene pairwise intersection of H3K27ac-defined SE. c Heat map showing diagonally sorted SE identified in 60 cancer

cells. d Boxplot depicting SE activity at typical or normal enhancers (yellow) and SE (green) in cancer. H3K27ac densities (log2 norm. tag density) are

shown. Boxplots indicate the 1st and 3rd quartiles (25th and 75th percentile, upper and lower bounds), 2nd quartile (center), and minima−maxima

(1.5*interquartile range, whiskers). p-values were calculated using two-sided K–S tests. e Number of SE in cancer (black) and normal cells (gray). f p-values

were calculated using GREAT70 GO functional annotation of cancer type-specific SE regions (−log10 p-value). g UCSC browser view of a SE cluster. Red ‘x’

indicates absence of a super enhancer. h Boxplot of RNA-Seq expression (log2 RPKM) of the top 10% expressed transcript encoding and all transcripts

across 9 types of cancer in 60 cells. p-value for all <2.2e−16 (K–S test). Boxplots indicate the 1st and 3rd quartiles (25th and 75th percentile, upper and

lower bounds), 2nd quartile (center), and minima−maxima (1.5*interquartile range, whiskers). i Heat map showing enrichment of transcription factor-

binding sites (TFBS) in H3K27ac-defined SE regions across 9 cancer types. TFs expressed in the top 10% of all transcripts in at least one cancer type, and

whose recognition motif was significantly enriched in SE regions (p < 0.05). The size of the circle is proportional to the p-value of the motif enrichment

(−log10 (p-value), and the color of the circle is representative of the expression level of the TF in a given cancer type (red, high expression; green, low

expression). Representative sequence logos of enriched motifs are shown. HOMER motif analysis50 was used to calculate p-values. Blue boxes show

cancer-specific enrichment of TF-binding sites. Source data are provided as a Source Data file.
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Fig. 7 Heterochromatin dynamics in cancer epigenomes. a and b Pairwise intersection of SICER-defined (FDR < 0.0001) a H3K9me3 and b H4K20me3

enriched regions in 60 cancer cells. Heat map of pairwise intersection was generated using Intervene. c Scatter plots of H3K9me3 and H4K20me3

densities (log2 norm. tag density) across 60 cancer cell lines representing 9 cancer subtypes. d PCA analysis of H3K4me9 (left) and H4K20me3 (right)

densities (norm. tag density) in 60 cell lines. Cancer types are color coded. e Genomic positional annotation of regions enriched with H3K9me3 (top) and

H4K20me3 (bottom) in 60 cancer cell lines using HOMER. f Bubble plots showing H3K9me3 (left) and H4K20me3 (right) genomic coverage for 60

cancer cells representing 9 types of cancers. Each row represents a cancer type. The size of the circle indicates the number of H3K9me3 or H4K20me3

peaks and the color indicates the percentage of genome coverage. g Stacked barplot showing cytogenetic banding pattern of H3K9me3 (left) and

H4K20me3 (right) peaks. h Mutation density (mutation/bp) in H3K9me3 (left) and H4K20me3 (right) regions relative to random regions of similar size

and frequency, and regions without H3K9me3 or H4K20me3. p-value was determined using a two-sided Fisher’s exact test. i UCSC browser view of

H3K9me3-marked domains in 60 cells. Source data are provided as a Source Data file.
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related to their chromatin context. Variability in H3K27ac dis-
tributions between cancer cells may reflect dysregulation of
enhancer landscapes through re-purposing of enhancers to drive
oncogene expression67,78. The ability of cancer cells to exhibit
distorted enhancer regulatory profiles of driver oncogenes may
allow cancer cells to adapt to a new environment or evade anti-
proliferative therapies.

Findings described in this study also provide a resource to
interrogate associations between histone modification patterning
and gene activity at the genic or genome-wide level. An investi-
gation of associations between H3K4me3, H3K27ac, H3K9me3,
and H4K20me3 densities and gene activity demonstrated that
while H3K4me3 and H3K27ac marks are both positively corre-
lated with gene activity, H3K4me3 densities are more strongly
correlated with the level of gene expression relative to intergenic
H3K27ac (Supplementary Figs. 32 and 33). In contrast, H3K9me3
and H4K20me3 densities are negatively correlated with gene
expression level (Supplementary Figs. 34 and 35).

Our analyses also provide insight into relationships between
cancer type-specific chromatin states. We observed combinations
of histone modifications that reflect various bivalent chromatin
states, including bivalent enhancers and promoters, marked by
activating histone modifications H3K4me3 or H3K27ac, and
repressive histone modifications H3K9me3 or H4K20me3. While
previous work has revealed the co-occurrence of H3K4me3 and
H3K27me379, and H3K4me3 and H4K20me374, it is unclear
whether cancer cells exhibit altered patterning of bivalently
marked chromatin, or whether cancer cells establish de novo
bivalently marked chromatin regions. The presence of bivalently
marked chromatin regions may serve to poise chromatin regions
for activation upon differentiation, or repression during differ-
entiation, which was suggested previously74. Several studies have
suggested the existence of H3K4me3/H3K27me3 bivalent
domains in cancer cells80, although H3K4me3/H4K20me3 have
not been previously described for cancer cells. Moreover,
H3K27ac/H3K9me3 bivalent enhancers have not been previously
described. Aberrant dual marking of chromatin regions may lead
to altered gene activity of oncogenes and tumor suppressors.

We also uncovered coordinated activity of enhancer modules
across several types of cancers, while SEs were largely cell type-
specific. Genes associated with SEs were also expressed in a
cancer-cell-specific manner, and linked to biological processes
distinct to cancer types. We identified potential upstream reg-
ulators of highly expressed TFs whose binding sites are enriched
across multiple types of cancers, and cancer type-specific reg-
ulatory modules (Fig. 6i). These results highlight known onco-
genic TFs such as MYC, and associated protein MAX81, whose
expression is correlated with decreased survival, and additional
TFs which may represent novel cancer disposition genes: we
identified other TFs whose expression and recognition motifs
were enriched in super-enhancer regions, and whose expression is
correlated with decreased survival. These results provide a
resource to further interrogate cancer cell identity and therapeutic
targeting of cancer type and cell type-specific genes and pathways.
Along this line, targeting of SEs has been shown to be a ther-
apeutic strategy to mitigate expression of oncogenes and related
downstream pathways82.

Our results also reveal that DNA sequence variation in cancer
cells is associated with active chromatin regions, which is con-
sistent with previous findings, which showed that genomic
variation is enriched in transcriptional regulatory regions with
accessible chromatin83. While previous findings observed
enrichment of SNPs in regulatory DNA, our findings demon-
strate that diverse types of mutations (deletions, insertions,
substitution, complex) are enriched in active chromatin regions
relative to H3K9me3 and H4K20me3 marked regions. We found

that mutations were overrepresented in H3K4me3 occupied
regions, which are proxies for active promoter regions, and
H3K27ac marked regions, which are proxies for typical and
super-enhancer regions. Because promoters and enhancers
regulate expression of genes that define cell identity, mutations
in regulatory regions which results in dysregulated expression
may contribute to cancer formation and tumor progression.
These findings suggest that an evaluation of the mutational
profile of non-coding transcriptional regulatory regions may
provide additional insight into aberrant gene expression pro-
grams in cancer cells, which may not be detectable using exome-
sequencing.

While cancer cells can be distinguished by their overall
promoter and enhancer profiling, our results suggest that het-
erochromatin patterning is more dynamic between cancer cells,
suggesting aberrant patterning of heterochromatin is largely
cell-specific, rather than cancer type-specific. Intriguingly, we
observed heterogeneous enrichment of developmental and
differentiation biological process GO terms across cells from
nine types of cancers. Dysregulated heterochromatin formation
or instability may lead to cancer susceptibility or tumor pro-
gression by aberrant repression of tumor suppressor genes84,
where stochastic repression of tumor suppressors may facilitate
cancer formation. Aberrant repression of genes may occur
following DNA damage repair, where repressive histone mod-
ifications are deposited at the break site, and if they are not
removed may lead to sustained silencing85.

Aberrant DNA methylation as an epigenetic mechanism for
gene silencing has been extensively studied in the context of
cancer86, and evidence suggests that the repressive histone
modifications H3K9me387 and H4K20me388 can also be dysre-
gulated in cancer cells. Targeting the heterochromatin landscape
may represent a therapeutic strategy to reactivate repressed genes,
as the general methylation inhibitor DZNep was capable of
removing H3K27me389. Moreover, depletion of SUV39H1
resulted in reactivation of silenced genes87.

Alterations in patterning of repressive histone modifications
such as H3K9me3 or H4K20me3 may lead to instability of the
underlying repetitive DNA sequences. Decreased enrichment of
H3K9me3 or H4K20me3 in cancer cells may result in a more
relaxed chromatin state with altered local chromatin topologies,
including changes in chromatin loop dynamics90, which may affect
translocations between neighboring chromosomes91. Dysregulation
of chromatin loop configurations may result in proximal double-
strand breaks, illegitimate joining, and translocations. DNA poly-
merase slippage may also occur during replication of repetitive
DNA regions due to chromatin decondensation in cancers cells
with altered H3K9me3 and H4K20me3 levels and distributions.
Alternatively, polymerase slippage during DNA replication
may lead to an expansion of repetitive DNA regions and sub-
sequent translocation events or chromosomal aberrations during
differentiation.

Our results reveal enrichment of repetitive DNA elements in
chromatin states with depleted levels of H4K20me3 at hetero-
chromatin regions marked by H3K9me3 (E11) or depleted levels
of H3K9me3 at regions marked by H4K20me3 (E1). LINE and
LTR repeats are enriched in chromatin states E1 and E11, while
RNA, satellite, rRNA, and tRNA repeats are enriched in chro-
matin state E12 (H3K9me3/H3K4me3), and several repeats such
as DNA, SINE, and to a lesser extent LINE and LTR repeats are
enriched in chromatin state E8 (H4K20me3/H3K27ac). In addi-
tion, we observed cancer type-specific variability in enrichment of
mutations in chromatin states marked by H4K20me3 (E1) or
H3K9me3 (E11) (Supplementary Fig. 5C, Fig. 1B). H3K9me3-
marked regions (E11) exhibit increased enrichment of mutations
relative to H4K20me3 regions (E1) in melanoma and CNS tumor
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cells, while H4K20me3 regions (E1) exhibit increased enrichment
of mutations relative to H3K9me3 regions (E11) in colon,
leukemia, lung, ovarian, prostate, and kidney cancer cells.
Moreover, we also observed variable enrichment of mutations
between H3K9me3/H3K4me3 (E12) and H4K20me3/H3K27ac
(E8) regions, where H3K9me3/H3K4me3 (E12) regions exhibited
increased enrichment of mutations relative to H4K20me3/
H3K27ac (E8) regions. These results link histone modification
profiles with DNA repeats and genetic mutations in a cancer
type-specific manner, which provide insight into the relationship
between alterations in H3K9me3 and H4K20me3 hetero-
chromatin patterning and the dysregulated cancer epigenome.
Moreover, stochastic chromosomal aberrations resulting from
changes in heterochromatin patterning may drive tumorigenesis
or tumor progression.

Genetic variation of genes encoding H3K9 or H4K20 methyl-
transferases may lead to dysregulated patterns of H3K9me3 and
H4K20me3 deposition, which may contribute to variability in
enrichment of mutations in chromatin states marked by H4K20me3
or H3K9me3, and in chromatin regions enriched with repetitive
DNA elements. Pathogenic missense mutations (substitution) in
EHMT1, which deposits H3K9me1/2, were observed in DU-145
(c.3744G>T), HCT-15 (c.1919C>T), NCI-H23 (c.3595C>T), and
SF539 (c.1A>G) cells, while pathogenic missense mutations (sub-
stitution) in EHMT2, which deposits H3K9me2, were found in LOX
IMVI (c.124G>A), M14 (c.2980 T >G), and MOLT-4 (c.2995G>A¸
c.1679C>A, c.2056C>T¸ c.1067 C >T) cells (Supplementary Data 2).
SETDB1, which methylates H3K9 up to trimethylation (H3K9me3),
is mutated in COLO-205 (substitution missense; c.796G >A),
IGROV1 (substitution missense; c.3709G >A), and OVCAR-5
(substitution missense; c.2963A >G) cells, while SETDB2, which
also deposits H3K9me3, is mutated in KM12 cells (substitution
missense; c.1621A >G). SUV39H2, which deposits H3K9me3, is
mutated in DU-145 (substitution missense; c.953G >T¸ c.1133
G >T), HCC2998 (substitution missense; c.2 T >G¸ c.182 T >G),
and MOLT-4 cells (substitution missense; c.43 C > T). SUV420H2,
which deposits H4K20me3, is mutated in HCT-15 (substitution
missense; c.56 C >A) cells. SETD8, which deposits H4K20me1, is
mutated in MOLT-4 cells (substitution missense; c.524 C > T), and
mutations in SUV420H1, which deposits H4K20me1/2 were found
in HCC2998 (substitution missense; c.1450 C >A), KM12 (substitu-
tion nonsense; c.2095 C > T), and SK-MEL-2 (deletion frameshift;
c.843delT) cells. In addition, HCC2998 cells exhibit a substitution
nonsense mutation in HP1 (c.463G >T), which is critical for het-
erochromatin formation.

We also observed variable RNA-Seq expression7 of repetitive
DNA elements across 60 cancer cell lines. While expression of
rRNA or RNA repeats was higher than other DNA repeat class
members across 60 cancer cells (Supplementary Fig. 36a), several
cancer cell lines with a lower number of H4K20me3 and H3K9me3
peaks (MDA-MB-231, SW-620, NCI-H226, NCI-H522, HL-60,
OVCAR-5) (Fig. 1a) exhibited relatively higher expression of several
repetitive DNA class members (Supplementary Fig. 36a). In addi-
tion, we observed variable cancer type-specific expression of repe-
titive DNA elements in chromatin states with depleted H4K20me3
(E11) or H3K9me3 (E1), or bivalently marked chromatin
states E12 (H3K9me3/H3K4me3) or E8 (H4K20me3/H3K27ac)
(Supplementary Fig. 36b).

Cancer cell heterogeneity can occur between tumors originating
from the same cell type or tissue type (inter-tumor heterogeneity)
or within individual tumors (intra-tumor heterogeneity)92.
Understanding whether cell-of-origin heterogeneity or acquired
heterogeneity during carcinogenesis explains cell type or cancer
type-specific differences in epigenomic patterning is a funda-
mental question in cancer biology. Cancer type and cell type-
specific heterogeneity may also be explained in part through

cancer cell plasticity93, where cancer cells dedifferentiate or
undergo reprogramming94 towards an alternate cellular fate.
Heterogeneity may also arise due to epigenetic plasticity95, where
cancer cells sample distinct chromatin states, some of which allow
cancer cells to adapt to environments and evade therapies. In
addition, the cancer stem cell (CSC) model, which posits that
cancer cells are organized in a hierarchy of CSCs, differentiated
cancer cells, and non-tumorigenic progeny, also provides a
possible explanation for cancer cell heterogeneity. Reversible or
irreversible alterations in cancer cell phenotypes and epigenomic
profiles may occur in a cancer type or cell type-specific manner.

Overall, results from this study provide a catalog of the
dynamic patterning of activating (H3K4me3 and H3K27ac) and
repressive histone modifications (H3K9me3 and H4K20me3)
across 60 cancer cells. These findings also serve as a resource for
modeling active and inactive chromatin domains in the NCI-60
panel of cancer cells.

Methods
NCI-60 cell culture. The NCI-60 cell lines were obtained from the NCI DTP
Tumor Repository. The NCI DTP Tumor Repository performed Applied Biosys-
tems AmpFLSTR Identifiler testing with PCR amplification to confirm consistency
with the published Identifiler STR profile for each of the NCI-60 cell lines (Sup-
plementary Data 6). Cells were cultured in RPMI 1640/5% FBS media containing
glutamine and pen/strep at 37 °C with 5% CO2.

ChIP-Seq analysis. ChIP-Seq experiments were performed as previously described
with minor modifications96,97. The rabbit monoclonal antibody H3K4me3 (17-
614) antibody was obtained from Millipore, and the rabbit polyclonal H3K27ac
(ab4729), rabbit polyclonal H3K9me3 (ab8898), and rabbit polyclonal H4K20me3
(ab9053) antibodies were obtained from Abcam. In brief, 15 million human cancer
cells were harvested by trypsinizing into a single-cell suspension and crosslinked
with formaldehyde (1%) for 10 min. at 37 °C. Fixed cell pellets were subsequently
flash frozen and stored at −80 °C. Next, cell pellets were thawed and subsequently
sonicated, and cell extracts equivalent to 5 million cells were used for ChIP assays
using 4 µL antibody. ChIP-enriched DNA was end-repaired using the End-It DNA
End-Repair kit (Epicentre), followed by addition of a single A nucleotide, and
ligation of Illumina adapters. PCR was performed using Phusion 2× high fidelity
PCR master mix. ChIP libraries were sequenced on an Illumina HiSeq platforms
according to the manufacture’s protocol. Sequence reads were mapped to the
human genome (hg19) using bowtie298 with default settings. C++ programs to
convert a SAM formatted file to a BED6 format from bowtie2 (Sam2Bed6_Bow-
tie2), to remove redundant reads from a BED6 file (RemoveRedundantReads), and
to convert a BED6 file to a BEDGraph file (GenerateRPBMBasedSummary) were
described previously99.

ChIP-Seq read-enriched regions (peaks) were identified relative to control Input
DNA using “Spatial Clustering for Identification of ChIP-Enriched Regions”
(SICER) software100 with a window size setting of 200 bps, a gap setting of 400 bps,
a FDR setting of 0.001. The SICER-compare function was used to compare
multiple samples (FDR < 0.001, fold-change > 1.5). ChIP-Seq libraries were
normalized by library size: the RPBM measure (read per base per million reads)
was used to quantify densities at genomic regions from ChIP-Seq datasets. Two
biological replicates were performed for the ChIP-Seq analyses. The
Kolmogorov–Smirnov test was used to obtain p-value statistics for comparing
density of ChIP-enrichment at genomic regions. The UCSC genome browser was
used to visualize normalized ChIP data.

Broad H3K4me3 domains. We included a stringent definition of a broad
H3K4me3 peak. H3K4me3 peaks that intersected TSS regions of hg19 refseq genes,
and whose length exceeds 4 kb in length (≥ 4 kb) were considered broad H3K4me3
domains, while H3K4me3 peaks whose length was less than 4 kb (<4 kb) were
considered sharp peaks.

RNA-Seq analysis. Normalized hg19 RNA-Seq data for NCI60 cells was down-
loaded from Cellminer7. The FPKM measure (fragments per kilobases of exon
model per million reads) was used to quantify the mRNA expression level of a gene
from RNA-Seq data.

Chromatin state learning. We identified chromatin states across 60 NCI-60
epigenomes using ChromHMM v1.2101 software, which utilizes a multivariate
HMM. The ChromHMM model was learned by concatenating histone modifica-
tion data (ChIP-enriched peaks, see ChIP-Seq methods above) for H3K4me3,
H3K27ac, H3K9me3, and H4K20me3. For each ChIP-Seq dataset, peaks were
evaluated in 200 bp bin intervals across the genome. Bins were binarized to two
states, 1 indicating peak enrichment and 0 indicating no enrichment. The 15-state
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model was used because it identified major combinatorial patterns of histone
modifications across the genome.

Chromatin state annotations. The 15 chromatin states were annotated using
CpG islands downloaded from the UCSC genome browser website. Genic features
such as TSSs, TES, genes, exons, introns, were integrated into ChromHMM using
data from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeGencodeV10/, as described previously44. Genes were categorized into
either expressed or non-expressed transcripts by their RNA-Seq expression level
in H1 human pluripotent stem cells (hPS) cells. Zinc finger genes were obtained
from ENSEMBL annotation by filtering genes whose name start with ZNF.
Transcription factor-binding site (TFBS) data was obtained from analyzed
ENCODE ChIP-Seq data (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeAwgTfbsUniform/). Genomic evolutionary rate profiling
(GERP) elements from 34 way placental alignment were obtained from: http://
mendel.stanford.edu/SidowLab/downloads/gerp/. Genome coverage was eval-
uated using bedtools coverage.

Variation in DNA methylation across chromatin states. DNA methylation
(percentage of CpG methlation from whole genome bisulfite sequencing—WGBS
data)9 was evaluated for regions associated with 15 chromatin states (Fig. 2c). The
average methylation level (0–100%) of CpGs was computed for each region across
all epigenomes. The average percent CpG methylation was plotted using the R
package ggplot2.

Relationship between histone modifications and DNA methylation. We eval-
uated DNA methylation level at tumor suppressors and oncogenes at regions
occupied with or without H3K4me3 peaks. WGBS data9 was used to evaluate
methylation level (0–1.0) of CpGs for each region across all epigenomes. The R
package ggplot2 was used to plot a heatmap of DNA methylation for 9 subtypes of
cancer.

Lamina-associated domains. Lamina-associated domains (Fig. 1b) obtained from
human lamin B1 in SHEF-2 ES cells (GEO: GSE22428) were downloaded from the
ChromHMM (https://github.com/jernst98/ChromHMM/blob/master/COORDS/
hg19/laminB1lads.hg19.bed.gz).

Chromatin state switching. We calculated chromatin switching using data from
the 15 chromatin states for any two states across 60 NCI60 epigenomes (Fig. 2a) in
a similar manner as previously described44. For example, for a pair of states 1 and
2, we computed the number of genomic bins that contained (1,2) or (2,1) chro-
matin states in all pairs. Chromatin state switching frequencies were converted to
switching probabilities by normalizing. Use of switching probabilities avoids the
dominance of states with high frequencies by limiting the dependence on the
number of epigenomes.

To investigate dynamic state switching in cell lines from the same cancer type
(intra-cancer), we computed chromatin state frequencies for cell lines from the
same cancer type. The frequencies were then averaged across all cancer sub-types
and subsequently row normalized to generate switching probabilities. Figure 2a
(left) shows intra-cancer type chromatin switching probabilities. We performed an
analogous analysis to evaluate differences in chromatin switching between cancer
sub-types (inter-cancer), by calculating inter-cancer switching frequencies and
switching probabilities. Results of inter-cancer switching probabilities are shown in
Fig. 2a (right).

Conservation score calculation. The R libraries GenomicScores, regioneR,
phastCons100way.UCSC.hg19, and GenomicRanges were used to calculate con-
servation scores. PhastCons conservation scores (phastCons100way.UCSC.hg19)
were obtained from the UCSC Genome Browser, which were calculated from
multiple genome alignments (human genome hg19–99 vertebrate species).

Global chromatin structure. To evaluate chromatin structure on a global scale we
computed frequencies of 15 states identified in 200 bp bins from ChromHMM
across 60 NCI60 epigenomes. Next, we averaged frequencies in 2Mb genomic bins
across the genome, divided the observed frequency by the random frequency and
calculated the normalized averaged frequency, and subsequently performed hier-
archical clustering. Results shown in Fig. 1d reveal clusters of regions enriched with
various chromatin states. These clusters are differentially enriched with gene
density and lamin-B1, as shown in Fig. 1d. Figure 1d also shows cytogenetic
banding patterns across the 2 Mb bins, which were downloaded from the UCSC
genome browser.

Mutation analysis. Whole-exome sequencing data for NCI-60 cancer cells8 was
downloaded from Cosmic47. An evaluation of mutations in regions enriched with
histone modifications was performed using bedtools intersect. To compare
enrichment of mutations across 60 cancer genomes, hierarchical clustering was
performed as shown in Fig. 3f. Annotation of mutations (e.g. deleterious or silent)

and their frequencies across 60 cancer genomes is shown in Fig. 3g. Mutation
density was calculated in SICER-defined regions enriched with histone modifica-
tions (H3K4me3, H3K27ac, H3K9me3, and H4K20me3), and control regions
(random genomic fragments of equivalent size and frequency as histone mod-
ification peaks, regions without histone modification peak, and random regions
without histone modification peak). Results from these analyses are shown in
Figs. 3h, 5i, 7h.

Cancer type-specific regulators. To identify cancer type and cell type-specific
transcriptional regulators in 60 cancer cell lines, we first filtered intergenic
H3K27ac ChIP-enriched peaks for each cell line that were enriched in the majority
of cell lines for a given cancer sub-type (peak present in at least 50% of cell lines for
a sub-type of cancer). Next, k-means clustering of cancer type-specific enhancer
modules were plotted in a heatmap in ascending order as shown in Fig. 5f. To
identify transcriptional regulators across 60 NCI60 epigenomes, we performed
motif discovery using ENCODE motifs64 and known motifs. Results from this
analysis are shown in Fig. 5j.

Super enhancer analysis. H3K27ac super enhancers were identified using
HOMER50. In brief, all enhancers were ranked using the findPeaks function of
HOMER, and all enhancers were plotted by exporting addition of the “-superSlope
-1000” option. H3K27ac peaks that were found within 12.5 kb of one another were
stitched together. The signal of each super enhancer region is calculated by the
number of normalized reads minus the number of normalized input reads. Regions
are then sorted, normalized the highest score, and the number of typical enhancer
regions. Super enhancers are defined as regions past the point where the slope is 1
(slope > 1). Results from this analysis are shown in Fig. 6a.

We then identified cancer-subtype and cell type-specific super enhancers, and
plotted enhancer modules in ascending order as shown in Fig. 6c. Next, we
annotated nearby genes and evaluated their expression using RNA-Seq data7, and
filtered the top 10% expressed TFs for each cancer type. We then performed motif
discovery using HOMER motif analysis50. Transcription factor genes whose
expression is in the top 10%, and whose consensus binding motif is enriched in
super enhancer regions in a cancer type-specific manner (p < 0.05), were plotted
using ggplot2 in Fig. 6i.

Gene ontology functional annotation. DAVID102 was used to functionally
annotate genes, and subsequently evaluated by semantic analysis using GoSemSim
software51 (p < 0.05 was considered significant). Enrichment of tumor suppressors,
oncogenes, and housekeeping genes was evaluated using Fisher’s exact tests.

Statistics and reproducibility. We generated biological duplicate H3K4me3,
H3K27ac, H3K9me3, and H4K20me3 ChIP-Seq datasets for the NCI-60 panel.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The sequencing data from this study have been submitted to the NCBI Gene Expression

Omnibus (GEO) under accession no. GSE143653 [https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE143653]. A description of the ChIP-Seq samples can be found in

Supplementary Data 7. Publicly available H3K27ac ChIP-Seq datasets analyzed in this

study: GSM1003459, GSM1027287, GSM1003559, GSM1102782, GSM2152595,

GSM772859, GSM999004, GSM1102781, GSM1847878, GSM999000, GSM999001,

GSM2741449, GSM773004, GSM1027288, GSM2527658, GSM1633870, GSM733763,

GSM2698422, GSM2293347, GSM906395, GSM1013123, GSM956009, GSM4250668,

GSM2699699, GSM910559, GSM1666386, GSM1662338, GSM2698631 (Supplementary

Fig. 27). Publicly available H3K4me3 ChIP-Seq datasets analyzed in this study:

GSM1427065, GSM1647618, GSM1666384, GSM1782766, GSM1874929, GSM2035818,

GSM2067930, GSM2736544, GSM3011841, GSM3011844, GSM3011847, GSM3011850,

GSM4315283, GSM529959, GSM529964, GSM529966, GSM529967, GSM621457,

GSM621665, GSM733720, GSM733747, GSM773041, GSM883691, GSM883692,

GSM945276, GSM947523, GSM971341, SRR11600891, SRR11600898 (Supplementary

Fig. 14). All data are available from the authors upon reasonable request. Source data are

provided with this paper.
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