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Abstract

Identifying robust biomarkers of drug response constitutes

a key challenge in precision medicine. Patient-derived tumor

xenografts (PDX) have emerged as reliable preclinical models

that more accurately recapitulate tumor response to chemo-

and targeted therapies. However, the lack of computational

tools makes it difficult to analyze high-throughput molecular

and pharmacologic profiles of PDX. We have developed

Xenograft Visualization & Analysis (Xeva), an open-source

software package for in vivo pharmacogenomic datasets that

allows for quantification of variability in gene expression and

pathway activity across PDX passages. We found that only a

few genes and pathways exhibited passage-specific alterations

and were therefore not suitable for biomarker discovery.

Using the largest PDX pharmacogenomic dataset to date, we

identified 87 pathways that are significantly associated with

response to 51 drugs (FDR < 0.05). We found novel biomar-

kers based on gene expressions, copy number aberrations,

and mutations predictive of drug response (concordance

index > 0.60; FDR < 0.05). Our study demonstrates that

Xeva provides a flexible platform for integrative analysis

of preclinical in vivo pharmacogenomics data to identify bio-

markers predictive of drug response, representing a major

step forward in precision oncology.

Significance: A computational platform for PDX data anal-

ysis reveals consistent geneandpathway activity across passages

and confirms drug response prediction biomarkers in PDX.

See related commentary by Meehan, p. 4324

Introduction

Preclinical models are vital for investigating disease biology

and therapeutics, constituting essential tools for translational

research and drug development. In cancer research, immortalized

cell lines are themost used preclinicalmodels because of their low

cost, flexibility, and the existence of assays enabling genetic and

chemical screen in a high-throughput manner. However, the cell

line models suffer from multiple limitations. Although they are

derived from patient tumors, they have evolved to survive in

artificial culture conditions resulting in major alterations at the

genomic level (1–6). These in vitro models also lack the tumor

heterogeneity and three-dimensional structure of the origin

patient tumor (4, 7–9).

To create cancer models that better recapitulate the tumor

molecular features and drug response, the pharmaceutical indus-

try and academia massively invested in the development of

patient-derived xenografts (PDX; ref. 10), which enable engraft-

ment of human tumors in animal models (11–17). PDXs are

created by subcutaneous or orthotopic engraftment of the cancer-

ous tissues or cells from patients' tumors into immunodeficient

mice. Once established, these tumors can be passed from mouse

to mouse, leading to consecutive "passages" of the initial tumor

cells.

PDX models are being generated and distributed by several

academic groups, research institutes, and commercial organi-

zations. This makes it challenging to find PDX models with

specific characteristics such as a model with a specific mutation.

Therefore, catalogs of PDX models [e.g., PDXFinder (18),

EurOPDX (19), and PRoXe (20)] are being developed, which

contain relevant information and provide links to model

acquisition. Furthermore, as PDXs are becoming the gold-

standard model for preclinical studies, better data standardi-

zation and analysis platforms are required to ensure consis-

tency and reproducibility in PDX-based analysis. Recently, a

robust standard called PDX models minimal information

(PDX-MI) has been proposed (21) for reporting and quality

assurance for PDX models. However, management, analysis,

and visualization of the PDX-based drug screening and geno-

mic data still constitute major challenges.

Here we present Xenograft Visualization and Analysis (Xeva), a

computational package enabling storage, access, and analysis

of in vivo pharmacogenomics data. The Xeva toolbox facilitates

biomarker discovery in PDX-based pharmacogenomic data.

It implements class structure to manage and connect PDX-

based drug screening data to the genomic features of the

corresponding tumor. It provides functions for PDX data anal-

ysis, including multiple metrics to summarize drug response
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for tumor growth curves. Furthermore, Xeva provides functions

to compute the association between genomic features and

response to a drug in PDXs (gene–drug association). Different

response metrics for the PDX growth curve can be used as

outcome to identify novel gene–drug associations that can act

as drug companion tests. Using the Xeva platform, we analyzed

gene expression of PDXs across passages and demonstrated that

activity patterns of the majority of the genes and pathways are

stable across different PDX passages. We identified multiple

pathways significantly associated with anticancer drug

response, including known and new biomarkers based on gene

expression, copy number aberrations (CNA), and mutations.

Our results support the value of large-scale PDX-based drug

screening for biomarker discovery using the integrative phar-

macogenomic analysis pipelines implemented in the Xeva

computational platform.

Materials and Methods

Processing of pharmacogenomic data

Gene expression data, PDX passages, and tissue information

were obtained from the Gene Expression Omnibus and publica-

tions (Fig. 1). Molecular profiles including mutation, CNA, gene

expression, and pharmacologic profiles were obtained from the

publicationGao and colleagues (17) andGene ExpressionOmni-

bus series GSE78806. Gene expression profiles were normalized

with the RMA algorithm in the Affy package (version 1.58.0) in

Bioconductor (22). PDX passages and tissue information were

curatedmanually. Datawere processed using R statistical software

(http://www.r-project.org/). For mutation, CNA and RNAseq-

based gene expression data, processed values were directly down-

load fromGao and colleagues' publication (17). The final dataset

contains 3,470 unique PDX models tested across 57 treatments

and derived from 191 patients spanning across 5 different cancer

types.

Implementation

PDX pharmacogenomic experiments aim to investigate how

tumor volume changes in in vivomodelswith respect to time, with

andwithout drug treatment. The correspondingmetadata, such as

drug dose, number of days from tumor implantation to treatment

start, or reason for stopping the experiment (e.g., whether mice

died because of complications or were sacrificed due to maximal

allowed tumor volume reached), are crucial factors for down-

stream analysis. In the Xeva platform, we have developed the

XevaSet class to effectively store pharmacologic response (time vs.

tumor volume) of PDXs along with metadata related to the

experiments and molecular data (Supplementary Fig. S1). Fur-

thermore, to store individual PDX (mouse) model data, we have

implemented the pdxModel class, which provides slots for PDX-MI

variables, along with time versus tumor volume data. Detailed

schematics of the XevaSet and pdxModel classes are shown in

Supplementary Figs. S2 and S3, respectively. XevaSet object can

contain multi-omics data, which are linked to individual xeno-

graft models and their pharmacologic profiles. Data can be sub-

setted by metadata and experimental factors, such as tumor types

or drug names.

PDX experiment design

In vivo evaluation of drug sensitivity in cancer xenografts has

traditionally used experimental approaches incorporating multi-

ple animals (5–10) replicates for each control and treatment arm.

This experimental design allows the assessment of the variabil-

ity in the PDX drug response across individual animals (23).

However, scaling this strategy for high-throughput drug screen-

ing is costly and requires the use of a large number of exper-

imental animals. To increase the number of compounds being

tested, reduce cost, and permit the use of fewer animals to

provide essential data (24), a simpler "1 � 1 � 100 experimental

design for PDX clinical trial (PCT) has been proposed

(17, 25). In this design, each compound is tested in only 1 PDX

model from each patient (Supplementary Fig. S4). Although

the 1 � 1 � 1 experiment design allows high-throughput

screening at reduced cost, it is more prone to experimental

errors due to lack of replications. Factors such as difference

in the handling of mice or measurement errors in the tumor

volume and biological variability in tumor growth rates

between animals could significantly impact the results. We

foresee that both experimental design strategies will coexist,

where the 1 � 1 � 1 experiment design will be used for

population-level and high-throughput screening, whereas the

replicate-based experiment design will be used for more focus-

ed studies where discrimination of small differences in drug

response is a desired outcome. We therefore implemented

functions to accommodate both experimental designs for data

visualization and statistical analyses.

PDX response metrics

Given the lackof consensus regarding thebest summarymetrics

to estimate in vivo drug response (17, 26–29), we implemented

the state-of-the-art response metrics used for PDX-based drug

response experiments. These include the slope of curves, angle

between the mean control and treatment curves, tumor growth

inhibition (TGI), area between the curves, linear mixed mod-

el (28), best average response (BAR), best response (BR), and

mRECIST (17).

For each PDX model, least squares fits were obtained by

regressing tumor volume at each time point as:

V ¼ aþ bT;

whereVdenotes tumor volume, Tdenotes time. The intercept and

slope are denoted by a and b, respectively. Subsequently, the

angle was computed using inverse tangent of regression line slope

as:

Angle ¼ tan�1ðbÞ

The TGI is defined as:

TGI ¼ VC� VTð Þ= VC0 � VT0ð Þ;

where VC and VT are the median of control and treated growth

curve, respectively, at the end of the study. VC0 and VT0 indicate

the initial tumor volume for control and treated growth curve,

respectively.

The BAR metric for each PDX model is defined as follows:

At each time point t, the normalized change in tumor volume is

computed as

DVt ¼
Vt � V0ð Þ

V0

Next, for each time t, the running average of DVt from t¼ 0 to t

was calculated. BAR is defined as the minimum of this running

average (at t � 10 days). The minimum value of DV(at
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Figure 1.

Xeva facilitates analysis of the PDX-based pharmacogenomic data. A, Major publicly available PDX-based pharmacogenomic datasets. For a detailed

list and references, see Supplementary Table S1. B, Distribution of genomic, drug screening, passage-related data, and cancer types in PDXE dataset.

For 350 patients belonging to 6 different cancer types, availability of genomic data (CNA, mutation, and RNAseq) is shown in inner tracks. Number

of drugs also includes untreated/control PDXs. Availability of passage-specific gene expression data is shown in outer track. C, Computation and

visualization of response for PDX-based drug screening in PDXE breast cancer data using Xeva mRECIST function. For patient IDs highlighted in gray

color, the control and treatment (paclitaxel) growth curve of PDXs is shown in D. The patient IDs are X-2344, X-1004, X-3078, and X-5975,

respectively. Visualization was done using plotPDX function in Xeva.

Analysis of Patient-Derived Xenografts
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t � 10 days) defines as BR. Using these, the mRESIST metric for

PDX is computed as:

* complete response (CR): BR < �95% and BAR < �40%
* partial response (PR): BR < �50% and BAR < �20%
* stable disease (SD): BR < 35% and BAR < 30%
* progressive disease (PD): not otherwise categorized

Visualization of in vivo drug-screening data

Several Xeva functions enable multifaceted visualization and

exploration of the PDXdata. The plotPDX function displays tumor

growth curves, plotting time versus tumor volume data for a

patient–drug pair or matched control and treatment PDXmodels

(called batch). The waterfall function visualizes population-level

response for a given set of PDXs. Similarly, plotmRECIST displays

mRECIST-based drug response as a heatmap, with drugs along

heatmap rows and PDXs along columns. Heatmap cells are

colored according to the mRECIST value for the corresponding

PDX–drug pair.

Gene expression consistency analysis

We calculated the Pearson correlation coefficient between pairs

of samples belonging to the same lineage using all available gene

expression. For comparison, we also computed the Pearson

correlation coefficient between all possible pairs of samples that

donot belong to the same lineage. Similar analysiswas performed

using the L1000 landmark gene set (30). For genes, we computed

the intraclass correlation coefficient (ICC) using the psych pack-

age (version 1.8.4). For a particular gene, in each sample we

computed its rank by sorting the expression values. The rank of

genes along with passage information is used for ICC calculation.

ICC values of the genes were used to perform gene-set enrichment

analysis on the MSigDB hallmark gene sets and Reactome path-

way database (31), which contains gene sets associated with

specific pathways.

Pathways and gene–drug association analysis

We computed the association between amolecular feature and

response to a drug across PDXs (commonly referred to as gene–

drug association or drug response predicting biomarker). The

gene–drug association was assessed separately for all three avail-

able molecular features, that is, gene expression, CNA, and gene

mutation. The response of PDXs to a drug treatment is defined

using BAR.

The association between genomic feature and PDX response

was computed using nonparametric measure of association,

concordance index (CI). The CI represents the probability that

two variables will rank a random pair of samples the same order.

For each drug, we compiled a list of potential biomarkers using

OncoKB (32), DrugBank, and literature curation.We adjusted the

P value using FDR for drug combinations and drugswithmultiple

potential biomarkers. Univariate gene–drug associations were

calculated for three different molecular profiling modalities that

are gene expression, copy number variation, and mutation. For

drug–pathway association analysis, the Reactome pathway data-

base (31) was used. We created a subset of the pathway database

by selecting only the gene sets containing at least 1 potential drug

target and containing less than 300 genes. We also grouped the

drugs in different classes according to their genomic target. In

total, we selected 94 pathways related to 57 drugs and drugs were

classified into 11 classes. Pathway analysis was performed using

the R Piano package (version 1.20.1; ref. 33). We used the R

packageComplexHeatmap (version1.20.0) to visualize the gene–

drug associations and R package circlize (version 0.4.6) to visu-

alize the drug–pathway association (34).

Research reproducibility

The open-source Xeva package is available from GitHub

(https://github.com/bhklab/Xeva) at under GPLv3 license and

Bioconductor repository (http://bioconductor.org/packages/

Xeva/). We also provide a complete software environment

through Code Ocean containing all necessary data and code to

reproduce the analysis and figures described in this manuscript

under the doi https://doi.org/10.24433/CO.bfb2dd77-53a3-

4083-bf3a-16504fc8c786.

Results

Xeva follows PDX-MI standards to store pharmacogenomic

data

We designed XevaSet, a new object class enabling integration of

molecular and pharmacologic profiles of PDXs (Supplementary

Figs. S1–S3) following the recent minimal information for

patient-derived tumor xenograft models (PDX-MI) standard for

reporting on the generation, quality assurance, and use of PDX

models (21). The PDX-MI standard ensures that all necessary

clinical attributes of the tumor along with PDX-related essential

experimental information, such as host mouse strain and passage

information, is reported. Given that this information is crucial for

downstream analysis and research reproducibility, we have

implemented the pdxModel class (Supplementary Figs. S2–S4)

that provides slots for PDX-MI variables. In this study, we curated

the recentNovartis PDX Encyclopedia (PDXE; ref. 17) and created

the PDXE XevaSet object (Fig. 1A and B; Supplementary Table S1)

to investigate the consistency of gene expression patterns across

passages and mine the pharmacogenomic data for known and

new biomarkers predictive of drug response in vivo.

Xeva provides useful functions for analysis and visualization of

PDX-based pharmacogenomic data. For every PDX model in the

PDXEbreast cancer dataset,mRECIST-based responsemetrics was

computed using the Xeva function response (Fig. 1C). Heatmaps

representing the mRECIST data cutaneous melanoma (CM),

colorectal cancer, gastric cancer, non–small cell lung carcinoma

(NSCLC) and pancreatic ductal adenocarcinoma can be found in

Supplementary Figs. S5 to S9, respectively. Visualization of PDX

growth curves is an essential part of data quality control and

analysis. Tumor growth curves for individual PDXmodels and for

matched control-treatment models can be plotted using the

plotPDX function (Supplementary Table S2). Examples of PDX

tumor growth curves in control (untreated) and treatment (pac-

litaxel) conditions are shown in Fig. 1D. All 4,483 tumor growth

curves withmatched control can be found in SupplementaryData

File S1. PDX-related genomic data and linked drug screening

response data can be extracted using the function summarizeMo-

lecularProfiles (Supplementary Table S2). Similarly, the drugSensi-

tivitySig function (Supplementary Table S2) allows users to quan-

tify the strength of each gene–drug association using a linear

regression model.

Gene expression is consistent across passages

PDX models are known to better represent the molecular

characters of human tumor compared with simpler in vitro

Mer et al.
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models (13, 35, 36). PDXs show high similarity to patient

samples for mutation rate (17, 37) and CNA (13) and methyl-

ation (38) patterns, histological and molecular sub-

types (13, 36, 39). Before conducting drug screening, PDXs are

passaged multiple times with the assumption that genomic

characteristics of PDXs are stable across passages. Several studies

have shown that mutation and copy number patterns are largely

stable across passages (14, 36, 40–44). However, a meta-analysis

Figure 2.

Gene expression landscape of PDXs is consistent across passages. A,Distribution of samples in different passages. B, t-SNE analysis of gene expression data (for

17,304 genes) from different passages of the PDXs. Samples belonging to same lineage but belonging to different passages are linked together by line (light gray

color). Overlapping samples or samples very near to each other are connected using curved lines (light gray color). C, Pearson correlation for related sample

pairs (belonging to same lineage) and randomly selected samples pairs. The correlation coefficient of related pairs is significantly higher than randomly selected

pairs (P < 0.001). All available (17,304) gene expressions were used for the computation of the correlation coefficient.

Analysis of Patient-Derived Xenografts
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using inferred copy number data asserted that the genomic

landscape of PDXs changes rapidly during passaging (45). Given

these contradictory results, it is vital to perform systematic anal-

ysis of noninferred genomic data (i.e., gene expression profile)

across passage (45).

To address these concerns, we sought to systematically analyze

the changes in gene expression pattern across passages. We

curated gene expression data for 661 PDX samples [all samples

are overlapping with Ben-David and colleagues (45) study],

derived from 371 patients and spanning from passage 0 (P0) to

passage 5 (P5; Fig. 2A; Supplementary Table S3). To visualize the

consistency of gene expression patterns across passages, we per-

formed a t-distributed stochastic neighbor embedding (t-SNE)

analysis andprojected thehigh-dimensional PDXgene expression

data into a two-dimensional plot (Fig. 2B). PDXs derived from a

patient but belonging to different passages (defined as belonging

to same lineage) were linked together in the t-SNE visualization.

We observed that in the visualization PDXs from the same lineage

are projected nearby even though coming fromdifferent passages.

Next, we computed the Pearson correlation coefficient for all pairs

of PDX samples belonging to same lineage using all available

genes (Fig. 2C) and L1000 gene set (Supplementary Fig. S10). We

A

B

Null Null Null

Null Null Null

Null Null Null

m

Figure 3.

PDX maintains expression pattern of the genes across passages. A, Violin plot shows ICC for genes across PDX passages for all samples and is

stratified by tissue type. Black violin plot represents ICC values for genes calculated using nonpassage-related (randomly selected) samples. B,

Pathways are stable across passages in PDXs. Barplot shows top 10 pathways with negative enrichment score in gene-set enrichment analysis. Only

one pathway has a statistically significant (FDR < 0.05) negative enrichment score across PDX passages.
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found that themedian Pearson correlation for related pairs is high

(0.98) in comparison with nonrelated tissue-specific PDX pairs

(0.87) and the difference was statistically significant (Wilcoxon

rank sum test, P < 0.0001). Collectively, these results strongly

support that the gene expression profile of PDXs is consistent

across different passages. For specific genes, however, the expres-

sion behavior can vary across PDX passages, which may affect

drug response depending on which passage is used for drug

testing. We therefore assessed stability of each gene across pas-

sages by computing the intraclass correlation coefficient (ICC) for

genes in samples from same PDX lineage for all tissue types and

stratified by tissue type (Fig. 3A). We found that the ICC values of

genes in pairs of related PDXs are higher when compared with

nonrelated pairs (Wilcoxon rank sum test, P <1E�15). Further-

more, the ICC values of genes are skewed towards high values,

indicating that the majority of genes have a stable expression

pattern across PDX passages. Our results show that expression

patterns of known biomarker genes such as EGFR, ERBB2, and

MAP2K1 are stable across passage (Table 1; Supplementary Data

File S2). Consistent with Rubio-Viqueira and colleagues (46), we

found that expression of genes such asVEGFA,MDM2, andCDK4

is stable in pancreatic cancer PDXs.

To identify pathways that are enriched with unstable genes, we

performed a gene set enrichment analysis with the genome-wide

ranking of genes based on their stability across passages (ICC

values; Fig. 3B; Supplementary Data Files S3 and S4). Pathways

enriched with unstable genes will be sensitive to passage and

targeting these pathways might result in inconsistent drug

response across passages. Our analysis shows that the pathways

in the Hallmark gene set (47) have positive enrichment scores,

indicating high stability of these pathways across passages (Sup-

plementary Data File S3). For the Reactome gene set (31), we

found that posttranscriptional mRNA processing pathways such

as mRNA 30 end processing andmRNA splicing are enriched with

unstable genes (Fig. 3B; Supplementary Data File S4). It is well

established that during proliferation and differentiation, cells

adjust the mRNA and protein level by controlling the posttran-

scriptional mRNA processing pathways (48–50). Therefore, the

instability of these posttranscriptional mRNA-processing path-

ways might be attributed to the tumor growth in the PDX.

Targeting these pathways using a drug in PDXs might result in

inconsistent response at different passages.

In vivo biomarker discovery

One of the main goals of pharmacogenomic studies is to find

genomic biomarkers for drug response prediction. We evaluated

the association between a molecular feature and response to a

given drug (gene–drug association) in PDXE (17) data. The PDXE

data consists of a 1 � 1 � 1 experimental design where 60

compounds were tested across 277 PDXs. The Xeva function

plotPDX provides an interface for the visualization of time versus

tumor volume data of PDXs. To model the tumor growth curve

and to quantify the response of PDXs, we implemented several

drug response metric including slope, area between curves, linear

mixed effects model (28), BAR, and mRECIST (17).

We used Xeva to identify biomarkers for drug response pre-

diction by computing gene–drug associations for drugs in the

PDXE data and their corresponding known biomarker genes

defined using OncoKB resource (32). For the analysis, a PDX's

response to a drug is defined using BAR and association was

computed using concordance index. Analysis was done for

each tissue type with gene expression, CNA, and mutation data.

In vitro drug testing has shown that the drug encorafenib can

produce synergistic effects with binimetinib in cutaneous mela-

noma (17, 51). This drug combination also shows synergistic

effects in PDXs as 50% of tested PDXs show tumor shrinkage,

whereas binimetinib and encorafenib monotherapy show tumor

shrinkage in 40% and 25% of PDXs, respectively (Fig. 4A and B).

For the drug combination of encorafenib and binimetinib, we

found that NRAS mutation status is significantly associated with

response (Wilcoxon tests, FDR ¼ 0.01; Fig. 4C). Among PDXs

with NRAS wild-type status, 63.6% show a negative BAR to the

Table 1. Consistency of expression pattern of biomarkers across PDX passages

ICC

Biomarker Drug(s) All tissue Breast Lung Pancreas Skin Ovary

EGFR Tyrosine kinase inhibitor (erlotinib, gefitinib, saracatinib) 0.74 0.64 0.70 0.50 0.42 0.78

HGF c-Met/HGF inhibitors (crizotinib) 0.78 0.97 0.46 0.23 0.15 0.02

MET c-Met inhibitors (crizotinib, cabozantinib) 0.72 0.51 0.63 0.41 0.79 0.84

ERBB2 HER2 inhibitors (lapatinib, trastuzumab) 0.63 0.47 0.65 0.49 0.17 0.75

ALK ALK inhibitor (TAE684, crizotinib, ceritinib) 0.61 0.42 0.74 0.07 0.25 0.76

HGF c-Met/HGF inhibitors (crizotinib) 0.78 0.97 0.46 0.23 0.15 0.02

MET c-Met inhibitors (crizotinib, cabozantinib) 0.72 0.51 0.63 0.41 0.79 0.84

CDK4 CDK4/6 inhibitor (palbociclib, abemaciclib) 0.63 0.61 0.43 0.61 0.57 0.22

CDK6 CDK4/6 inhibitor (palbociclib, abemaciclib) 0.67 0.75 0.64 0.57 0.63 0.73

MAP2K1 MEK inhibitor (binimetinib, trametinib, selumetinib) 0.51 0.44 0.49 0.42 0.63 0.40

MAP2K2 MEK inhibitor (binimetinib, trametinib, selumetinib) 0.42 0.38 0.35 0.42 0.59 0.50

NQO1 Tanespimycin 0.82 0.50 0.89 0.64 0.82 0.60

MDM2 Nutlin-3 0.68 0.72 0.38 0.70 0.64 0.62

SRC SRC inhibitors (saracatinib, dasatinib, bosutinib) 0.49 0.31 0.20 0.17 0.41 0.67

VEGFA Bevacizumab 0.46 0.30 0.48 0.44 0.43 0.07

BRAF Sorafenib 0.48 0.50 0.51 0.48 0.62 0.29

RAF1 Sorafenib 0.53 0.39 0.42 0.49 0.71 0.63

FLT3 Sorafenib 0.21 0.27 0.01 -0.01 -0.03 0.34

ABCC5 5-FU 0.72 0.54 0.88 0.52 0.57 0.56

DPYD 5-FU 0.60 0.58 0.63 0.68 0.48 0.54

ERCC1 Cisplatin-based chemotherapy 0.66 0.71 0.49 0.70 0.78 0.81

NOTE: ICC values for biomarkers of FDA-approved anticancer agents in a complete dataset (all tissue) and stratified by tissue type. A higher ICC value indicates that

expression pattern for the gene is consistent across passages. Biomarkerswith ICC >0.5 are considered preserved across passages and are highlighted in blue or red

otherwise.
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binimetinib and encorafenib drug combination, whereas in the

mutated category only 20% show a response.

The drug trastuzumab (Herceptin) is an monoclonal anti-

body that targets the extracellular domain of the HER2 protein

and inhibits the proliferation of tumor cells. In the breast

cancer PDXE data, we found that expression of the HER2

encoding gene (ERBB2) is significantly associated with trastu-

zumab response (CI ¼ 0.682; FDR ¼ 0.02; Fig. 5). ERBB3,

another member of the EFGR (EGFR/ERBB) family, was also

found to be associated with trastuzumab response (CI ¼ 0.68;

FDR ¼ 0.026). ERBB3 is known to be implicated in growth,

proliferation, metastasis, and drug resistance in tumors through

interacting with ERBB2 (52, 53).

The drug binimetinib is a targeted and potent MAPK kinase

(MAP2K or MEK) inhibitor (54). In breast cancer PDXs, expres-

sion ofMAP2K2 (CI¼ 0.67; FDR¼ 0.02; Fig. 5) was significantly

associated with binimetinib response. This gene belongs to the

MAP2K kinase family and produces a protein that activates the

MAPK/ERK pathway. Associations between potential biomarkers

and PDX drug response for all tissue types can be found in

Supplementary Data File S5.

To gain understanding of the association between drug

response and target pathway, we performed gene set enrich-

ment analysis (Fig. 6). Drugs were classified into 11 classes

according to their known targets and the Reactome pathway

database was used for gene set enrichment analysis. We

found that EGFR signaling in cancer pathway is significantly

enriched (FDR < 0.05) in the EGFR class of drugs. Similarly,

for MAPK class drugs, relevant pathways such as MAPK

activation in Toll-like receptor (TLR) cascade and NF-kB and

MAPK activation by TLR are significantly enriched (FDR <

0.05). Associations between each drug and reactome pathways

can be found in Supplementary Data File S6.

Discussion

PDXs are valuable models for cancer modeling and pharma-

cogenomic analysis. However, the translational potential of PDX

preclinical models is highly dependent on the tools and techni-

ques to processing and analyzing the data. Computational tools

that enable standardized processing are thus an integral part of

this line of research, and harmonized approaches can provide the

community with accessible means for the analysis. The Xeva

platform allows researchers to visualize and analyze the complex

pharmacogenomic data generated during in vivo drug-screening

studies. The key strengths of the Xeva platform is its ability to store

all metadata from a PDX experiment, link genomic data to

corresponding PDX models, and provide user friendly functions

for analysis.

In a recent study, Ben-David and colleagues (45) analyzed

changes in CNAs during PDX passaging using experimental and

computational inferred copy number alterations (CNA) from

gene expression profiles. They concluded that the CNA landscape

of PDXs changes rapidly with passage as within four passages

12.3% (median) of the genome was affected by model-acquired

CNAs. Although such an analysis is an important component of

credentialing PDX as a preclinical platform, their analysis

depended largely on inference rather than direct measurement

of CNAs: for 84% (933 of 1,110) of PDX samples, the CNAs were

inferred from microarray-based gene expression data and lack

matched normal tissue samples. As the authors stated, virtual

karyotyping does not fully recapitulate the CNA observed from

SNP microarrays or whole-exome sequencing. For the samples

where DNA-based CNA profiles are available, the authors have

reported a concordance of 0.82 between experimental (DNA-

based) and expression-based inferred CNA profile. However,

directly assessing the gene expression pattern can provide better

insight about changes in genomic landscape of PDXs across

passages than the CNA profile. In this study, using Xeva, we have

assessed the gene expression landscape of PDXs. Our results

indicate that the gene expression landscape of PDXs is similar

across different passages as the correlation between the related

PDXs is very high. At the level of individual genes, we observe

high consistency in expression patterns for the majority of

genes. However, caution is required when analyzing genes with

low stability in PDX models. Lack of stability in gene expression

may lead to inconsistent results when targeting proteins or

pathways related to genes with low expression stability. We
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Figure 4.

Xeva facilitates biomarker discovery and visualization. Waterfall plots show

response of CM PDXs for drugs binimetinib (A), encorafenib (B), and

binimetinibþ encorafenib (C). Each bar represents one PDX derived from a

patient and color represents NRASmutation status (red mutated and blue

wild-type). Response of the PDX is defined as BAR. Association between

mutation and drug response was calculated using Xeva function

drugSensitivitySig and FDR correctionwas applied to P values. For

visualization,waterfall function in Xeva is used.
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have provided a list of genes and their stability score that will help

researchers to assess the consistency in expression patterns of

genes of interest and thereby deciding if PDXs are suitablemodels

for their (targeted) drug of interest or to study behavior of a

particular gene.

In our study, we found that the multiple known biomarkers

predictive of drug response can be identified in the large Novartis

PDXE dataset. Notably, the dataset used in this study has the 1� 1

� 1 PDX experiment design (Supplementary Fig. S4). Thus, our

results demonstrate that the 1 � 1 � 1 PDX experiment design is

an adequate way to discover drug response predicting biomarkers

at the population level. Although the 1� 1� 1 experiment design

is a cost- and animal-resource efficient way to find biomarkers,

using Xeva, we have found cases where control (untreated) mice

show a partial response (PR) or tumor shrinkage. Possible causes

of such early tumor shrinkage might include experimental error,

handling glitches, or genetic properties of the tumor. In a 1�1�1

experiment design, lack of replicates makes it impossible to

decipher the exact cause. Visualization and analysis of PDX

response data using Xeva provides an efficient way to recognize

such cases.

For biomarker discovery analysis, treatment response in PDXs

is defined by the BAR (17). This metric of treatment response

provides a continuous value; however, it does not take into

account the control arm of the PDX experiment. As PDX-based

pharmacogenomics gains popularity, standardized metrics to

define response are required, thereby taking into account the

control arm of the PDX experiments. Such methods will also

improve the biomarker discovery process. Xeva provides a stan-

dard tool for comparison of different PDX response metrics.

The Xeva package enables easy and efficient analysis of the

PDX-based pharmacogenomic data. Xeva includes functions to

Figure 5.

PDXs faithfully recapitulate known gene–drug associations. For the breast cancer PDXE dataset, the left side of the figure showsmutation (top), CNA (middle),

and expression (bottom) pattern of known biomarker genes. Here, each column represents genomic features from an individual PDXmodel. The right panel

shows association (concordance index) between genomic features and response of the drug. Columns represent drugs for which names are annotated on the

top. In this panel, the association between gene feature and drug is represented using circles. For drugs, the corresponding biomarker is highlighted using dark

gray color if the association is statistically significant (FDR < 0.05). Association between genomic feature and drug response was computed using the Xeva

function drugSensitivitySig and visualization was done using ComplexHeatmap.
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link molecular features to drug response, therefore providing a

unified framework for analysis and development of biomarkers

of drug response.

We developed the Xeva package to facilitate visualization,

analysis, and biomarker discovery in PDX pharmacogenomic

data. We showed that PDX gene expression is consistent across

passages. Our platform allowed us to confirm the existence of

several drug response prediction biomarkers in a large PDX

pharmacogenomic dataset. The reproducibility of known bio-

markers and consistency in gene expression shows that PDX

experiments are suitable for in vivo biomarker discovery or

validation. Xeva is an open-source, flexible, and timely tool in

an era of increasing efforts to use PDXs as the main model system

for cancer research. We envision Xeva will play a crucial role in

Figure 6.

Pathways targeted by drugs are significantly enriched in PDXs. In the circos plot, drug classes (left) and targeted pathways (right) are linked when the

association is significant (gene set enrichment analysis, FDR < 0.05). Activity of EGFR class drugs has significant association with EGFR signaling pathway.

Similarly, MAPK class drugs show significant association with MAPK activation-related pathways.
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PDX-based pharmacogenomic analysis, biomarker discovery, and

validation.
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