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ABSTRACT
This paper presents INTEGRIDB, a system allowing a data owner to
outsource storage of a database to an untrusted server, and then en-
able anyone to perform verifiable SQL queries over that database.
Our system handles a rich subset of SQL queries, including multi-
dimensional range queries, JOIN, SUM, MAX/MIN, COUNT, and
AVG, as well as (limited) nestings of such queries. Even for tables
with 105 entries, INTEGRIDB has small proofs (a few KB) that
depend only logarithmically on the size of the database, low verifi-
cation time (tens of milliseconds), and feasible server computation
(under a minute). Efficient updates are also supported.

We prove security of INTEGRIDB based on known cryptographic
assumptions, and demonstrate its practicality and expressiveness
via performance measurements and verifiable processing of SQL
queries from the TPC-H and TPC-C benchmarks.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

Keywords
Verifiable Computation; Authenticated Data Structures

1. INTRODUCTION
With the advent of cloud computing, there has been significant

interest in techniques for ensuring correctness of computations per-
formed by an untrusted server on behalf of a client. An authenti-
cated data structure [22, 41] (ADS) allows a data owner to out-
source storage of data to a server, who can then verifiably answer
queries posed by multiple clients on that data. (Also related is work
on verifiable computation; see Section 1.1 for further discussion.)
Of particular importance is the expressiveness of an ADS; namely,
the class of queries it can support.

In this work we are interested in designing an ADS and an as-
sociated system that supports native SQL queries over a relational
database. Such a system would be suitable for integration into the
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most prevalent applications running in the cloud today, and could
be offered as a software layer on top of any SQL implementation.

Toward this end we design, build, and evaluate INTEGRIDB, a
system that efficiently supports verifiability of a rich subset of SQL
queries. Specific advantages of INTEGRIDB include:

1. INTEGRIDB is expressive. It can support multidimensional
range queries, JOIN, SUM, MAX/MIN, COUNT, and AVG, as
well as (limited) nestings of such queries. As an illustration
of its expressiveness, we show that INTEGRIDB can support
12 out of the 22 SQL queries in the TPC-H benchmark, and
support 94% of the queries in the TPC-C benchmark.

2. INTEGRIDB is efficient. Even for tables with hundreds of
thousands of entries, INTEGRIDB is able to achieve small
proofs (a few KB), low verification time (tens of millisec-
onds), and feasible server computation (under a minute). In
fact, the proof size and verification time in INTEGRIDB are
independent of the size of the stored tables (up to logarithmic
factors). INTEGRIDB also supports efficient updates (i.e.,
INSERT and DELETE).

3. INTEGRIDB is scalable, and we have executed it on database
tables with up to 6 million rows.

4. INTEGRIDB can be proven secure based on known crypto-
graphic assumptions.

INTEGRIDB outperforms state-of-the-art verifiable database sys-
tems in terms of its expressiveness, performance, and scalability.
We provide a comparison to prior work next.

1.1 Comparison to Prior Work
Relevant prior work which could be used to construct an ADS

handling some subset of SQL queries can be classified into two cat-
egories: generic approaches and specific approaches. We discuss
these in turn. (See also Table 1.)

Generic approaches. A verifiable database supporting any desired
SQL query (of bounded size) could be derived in principle using
general-purpose techniques for verifiable computation [15, 5, 6,
16, 7], or one of the systems that have been built to apply these
techniques [39, 38, 37, 2, 9, 42, 4, 3, 13]. To apply this approach,
the data owner would first compile its database into a program (ex-
pressed either as a boolean/arithmetic circuit, or in the RAM-model
of computation) that takes as input a query and returns the corre-
sponding result. This, however, will not necessarily yield a prac-
tical protocol. Circuit-based techniques will be inefficient since
the size of a circuit for the program just described will be at least
as large as the database itself; moreover, using a circuit-based ap-
proach will not allow efficient updates. RAM-based systems will



Table 1: Comparing the expressiveness of INTEGRIDB with prior work. A 3 is placed only if a given scheme supports a given query
with proofs whose size is independent of the table size (up to logarithmic factors). Note that although generic systems are as expressive as
INTEGRIDB, they are less efficient in practice (see Section 7). Below, FUNC can be any of {SUM,MAX/MIN,COUNT,AVG}.

reference JOIN multidimensional JOIN on multidimensional FUNC on polylog
range queries range queries intermediate results updates

INTEGRIDB 3 3 3 3 3
RAM-based [9, 2, 4, 3] 3 3 3 3 3
circuit-based [37], [4, libsnark], [13] 3 3 3 3 7
tree [43] or signature [31]-based 7 7 7 7 7
multirange-based [32] 7 3 7 7 7

partly address these issues; however, as we show in Section 7.3,
their performance will still be worse than that of INTEGRIDB.

Specific approaches. Prior work has also explored custom-built
verifiable database systems. (INTEGRIDB is in this category.) We
can roughly categorize existing approaches as being either tree-
based (using Merkle trees [23] as a main component) or signature-
based (where the server stores values pre-signed by the data owner).

Most tree-based approaches [14, 30, 19, 40, 34, 43, 44, 20,
21, 45] support single-dimensional range queries, but not multi-
dimensional range queries. Signature-based approaches (e.g., [25,
26, 27, 29, 11, 31, 18]) also only support single-dimensional range
queries; moreover, they do not support efficient updates. Martel
et al. [22] present a scheme supporting multidimensional range
queries, but with costs exponential in the number of dimensions.

Papadopoulos et al. [32] recently showed a scheme explicitly de-
signed for multidimensional range queries; however, their scheme
does not support efficient updates.

None of the schemes mentioned above support short proofs for
JOIN queries. Specifically, schemes supporting JOIN queries [29,
19, 43, 31, 31] rely on the idea of Pang et al. [29], which requires
one column to be returned to the client who must then issue a range
query (on the other column) for every element in the returned col-
umn. Thus, the proof size and verification time are, in the worst
case, linear in the size of the smallest column involved in the query.

In addition, and in contrast to INTEGRIDB, none of the above
schemes support short proofs for functions (such as SUM, MAX/MIN,
or COUNT) applied on intermediate results (such as summing the
values of a column that is the output of a JOIN). Instead, these
schemes would require returning the intermediate result back to the
client who would then compute the function locally.

Trusted hardware. Bajaj et al. [1] propose a scheme for verifiable
SQL that relies on trusted hardware. INTEGRIDB does not make
any assumption about trusted hardware.

2. PRELIMINARIES
We let λ denote the security parameter, negl be a negligible func-

tion, and PPT stand for “probabilistic polynomial time.” We use
Õ(f(n)) for O(f(n) · polylog(f(n))), and let [n] = {1, . . . , n}.

2.1 Authenticated Data Structures
We define the abstract notion of an authenticated data structure

(ADS) [22, 41], which allows a data owner to outsource data to a
server that can then be queried by clients with assurance about the
correctness of the result. Particular ADSs are distinguished by the
class of queries Q and type of updates U (if any) they support. By
way of notation, we denote the (true) result of applying query Q to
data D by R = Q(D), and denote the result of applying an update
operation upd to data D by D′ = upd(D).

We consider three types of parties: a data owner, a server, and
a client (which may be the data owner itself). To outsource storage
of data D to the server using an ADS for some class of queries Q,
the data owner first runs an initialization algorithm that outputs a
secret sk and a public key pk, followed by a setup algorithm that
takes sk and D and outputs a digest δ and an authenticated version
of the data D̃. It gives D̃ to the server and publishes δ and pk. Any
client can issue a query Q ∈ Q to the server; in return, the server
uses D̃ and pk to compute a response R along with a proof π. The
client can verify correctness of the response R using δ, π and pk.
Security ensures that if the client accepts, then R is equal to Q(D)
(except with negligible probability).

We will be interested in dynamic ADSs that also support up-
dates. When the data owner wishes to update the data D stored at
the server, it interacts with the server; assuming the server behaves
correctly, the result is a new value D̃′ stored by the server as well as
a new digest δ′. (If the server behaves dishonestly, the data owner
will realize this and reject.) We assume clients are always able to
obtain a fresh copy of the most recent value of the digest; if not,
freshness of the results cannot be guaranteed.

Formally, a dynamic ADS for query classQ and updates U con-
sists of efficient algorithms Init, Setup, Prove, Verify, UpdateO,
and UpdateS that work as follows:

1. Algorithm Init takes as input 1λ, and outputs a secret key sk
and a public key pk. The public key is implicitly provided to
all algorithms below.

2. Algorithm Setup takes as input dataD and the secret key sk,
and outputs a digest δ and authentication information D̃.

3. Algorithm Prove takes as input D̃, δ, and Q ∈ Q. It returns
a result R and a proof π.

4. Algorithm Verify takes as input digest δ, query Q ∈ Q, re-
sult R, and proof π. It outputs 0 or 1.

5. UpdateO and UpdateS are interactive algorithms run by the
data owner and server, respectively. UpdateO takes as in-
put the secret key sk, a digest δ, and an update upd ∈ U ,
while UpdateS takes as input D̃. After completing their in-
teraction, UpdateO outputs a digest δ′ along with a bit indi-
cating acceptance or rejection. (Rejection implies δ′ = δ.)
UpdateS outputs D̃′.

For an ADS to be non-trivial, the sizes of δ and π should be much
smaller than the size of D.

Correctness of an ADS is defined in the natural way and is omit-
ted. The definition of security is also intuitive, though the formal-
ism is a bit cumbersome. Consider the following experiment based
on an ADS specified by the algorithms above and an attacker A,
and parameterized by security parameter λ:



Step 1: Run (sk, pk) ← Init(1λ) and give pk to A, who outputs
a database D. Then (δ, D̃) ← Setup(D, sk) is computed,
andA is given δ, D̃. Values sk, δ,D are stored as state of the
experiment.

Step 2: A can run either of the following two procedures polyno-
mially many times:

• Query:

– A outputs (Q,R, π) with Q ∈ Q, after which b =
Verify(δ,Q,R, π) is computed.

– Event attack occurs if b = 1 but R 6= Q(D).

• Update:

– A outputs upd ∈ U , and then interacts (playing the
role of the server) with UpdateO(sk, δ, upd) until
that algorithm halts with output (δ′, b). The digest δ′

is given to A.
– Set δ := δ′. Also, if b = 1 set D := upd(D).

(Recall that δ,D are stored as part of the state of the
experiment.)

DEFINITION 1. An ADS is secure if for all PPT adversaries A,
the probability that attack occurs in the above is negligible.

2.2 SQL queries Supported by IntegriDB
We briefly describe the SQL queries that INTEGRIDB supports.

Every SQL database consists of a collection of SQL tables, which
are two-dimensional matrices. As we explain each query, we give
an example using a database containing two tables, Table A:

row_ID student_ID age GPA First_name
1 10747 22 3.5 Bob
2 10715 24 3.3 Alice
3 10721 23 3.7 David
4 10781 21 3.0 Cathy

and Table B:

row_ID student_ID Year_enrolled
1 10715 2010
2 10791 2012
3 10747 2011
4 10771 2013

1. JOIN: A join query is used to combine rows from two or more
tables, based on common values in specified columns. E.g., the
query “SELECT A.student_ID, A.age, A.GPA, B.Year_Enrolled
FROM A JOIN B ON A.student_ID = B.student_ID” returns:

student_ID A.age A.GPA B.Year_Enrolled
10747 22 3.5 2011
10715 24 3.3 2010

2. Multidimensional range: A range query selects rows whose
values in one or more specified columns lie in a certain range.
The dimension of such a query is the number of columns involved.
E.g., the two-dimensional query “SELECT * FROM A WHERE (age
BETWEEN 22 AND 24) AND (student_ID > 10730)” returns:

row_ID student_ID age GPA First_name
1 10747 22 3.5 Bob

3. SUM, MAX, MIN, and COUNT: These queries return the sum,
maximum, minimum, or number of the entries in a specified col-
umn. E.g., the query “SELECT SUM(age) FROM A” returns 90.

4. LIKE: This query finds rows with strings in a specified column
matching a certain pattern. E.g., the query “SELECT * FROM A
WHERE First_name LIKE ‘Ali%’ ” returns:

row_ID student_ID age GPA First_name
2 10715 24 3.3 Alice

5. Nested queries: Since the answer to any SQL query is it-
self a table, SQL queries can be nested so that queries are ap-
plied to intermediate results. For example, the query “SELECT
SUM(A.age) FROM A JOIN B ON A.student_ID = B.student_ID”
returns 46, which is the summation of the column “A.age” in the
table generated by the JOIN query earlier. As a more complicated
example, a JOIN query can be applied to the result of a multi-
dimensional range query. E.g., the query “SELECT A.student_ID,
A.age, A.GPA, B.Year_Enrolled FROM {SELECT * FROMA WHERE
(age BETWEEN 22 AND 24) AND (student_ID > 10730)} JOIN B
ON A.student_ID = B.student_ID” returns:

student_ID A.age A.GPA B.Year_Enrolled
10747 22 3.5 2011

3. BUILDING BLOCKS
In this section we describe two authenticated data structures that

we use as building blocks in INTEGRIDB: one for set operations
(that we call ASO), and one for interval trees (that we call AIT ).

3.1 ADS for Set Operations with Summation
INTEGRIDB uses an ADS for verifying set operations that we

introduce here. Our construction is based on prior work of Papa-
manthou et al. [36] and Canetti et al. [10], with the main difference
being that we additionally support summation queries over sets.

For our purposes, a data structure for set operations considers
data as a collection S1, . . . , S` ⊂ Zp of sets over the universe1 Zp.
The class Q of supported queries consists of nestings (see below)
of the following basic queries (we discuss updates in Section 4.5):

Union: Given identifiers of sets S′1, . . . , S′k, it returns
⋃
i S
′
i.

Intersection: Given identifiers of sets S′1, . . . , S′k, it returns
⋂
i S
′
i.

Sum: Given an identifier of set S′, it returns
∑
x∈S′ x mod p.2

The identifier of one of the original sets outsourced by the data
owner is simply its index. (Thus, for example, a user might make
a query Union(I) with I ⊆ [`]; this would return

⋃
i∈I Si.) Sets

computed as the intermediate result of various queries also have
(implicit) identifiers, allowing nested queries. E.g., a user could
query Sum(Intersection(Union(I),Union(J))) with I, J ⊆ [`];
this would return

∑
x∈S′ x mod p where

S′
def
=
(⋃

i∈I Si
)⋂(⋃

i∈J Sj
)
.

We construct an ADS supporting the above queries using the bi-
linear accumulator primitive introduced in [28]. Fix groups G1,
G2, and GT of order p, and a bilinear map e : G1×G2 → GT . For
simplicity we assume G1 = G2 = G but this is not essential. Let g
1Formally, the universe is {0, . . . , B}, with p chosen by Setup
such that p� B.
2Note this gives the true result sum =

∑
x∈S′ x if sum < p and

so there is no overflow.



be a generator of G. The Init algorithm begins by choosing uniform
the set trapdoor s ∈ Zp and letting sk = s be the secret key and
pk = (gs, . . . , gs

q

) be the public key, where q is an upper-bound
on the cardinality of any set. For a set S = {x1, . . . , xn} ⊂ Zp,
define the accumulation value of S as:

acc(S)
def
= g

∏n
i=1(x

−1
i +s).

The digest δ output by Setup for a particular collection of sets
S1, . . . , S` is simply acc(S1), . . . , acc(S`).

Union and intersection queries can be handled as in [36, 10]. (We
use the inverse of set elements rather than the elements themselves,
but this is handled in a straightforward manner.) We now show how
to release the sum sum of the elements in a set S = {x1, . . . , xn}
in a way that can be verified by any client in possession of acc(S).
To do this, the server computes

n∏
i=1

(x−1
i + s) = sn + an−1s

n−1 + · · ·+ a1s+ a0

as a formal polynomial in the variable s. It then releases a1 =∑n
i=1(

∏
j 6=i x

−1
j ) and a0 =

∏n
i=1 x

−1
i , along with

w1 = gs
n−1+···+a2s+a1 and w2 = gs

n−2+···+a3s+a2 .

(Note that the server can compute w1, w2 using pk.) To verify, the
client checks that sum = a1a

−1
0 mod p and that:

1. e(gs, w1)
?
= e(acc(S)/ga0 , g) and

2. e(gs, w2)
?
= e(w1/g

a1 , g).

Security of the above relies on the q-SBDH assumption [8] in
bilinear groups. We sketch a proof. Given an adversary A vio-
lating correctness, we construct an algorithm A′ breaking the q-
SBDH assumption [8]. A′ takes (gs, . . . , gs

q

) as input and, given
a set S (of size n ≤ q) output by A, computes the accumulator
value acc(S). Say A next outputs sum∗, a∗0, a∗1, w∗0 , w∗1 such that
verification succeeds yet sum∗ 6=

∑
x∈S x. Let

n∏
i=1

(x−1
i + s) = sn + an−1s

n−1 + · · ·+ a1s+ a0.

Note that we must have a∗0 6= a0 or a∗1 6= a1. If a∗0 6= a0
then, since e(gs, w∗1) = e(acc(S)/ga

∗
0 , g), we must have g1/s =

(w∗1/(g
sn−1+···+a2s+a1))(a0−a

∗
0)
−1

. As the right-hand side of this
equation can be computed byA′, this violates the q-SBDH assump-
tion. If a∗0 = a0 and a∗1 6= a1, since e(gs, w∗1) = e(acc(S)/ga

∗
0 , g)

we havew∗1 = gs
n−1+···+a2s+a1 . Since e(gs, w2) = e(w1/g

a∗1 , g),
we must have that g1/s = (w∗2/(g

sn−2+···+a2))(a1−a
∗
1)
−1

. Since
the right-hand side of this equation can be computed by A′, this
violates the q-SBDH assumption.

Security of our ASO also relies on an extractability assump-
tion [5], which is inherited from [10].

Support for multisets. Our ASO can be naturally generalized
to support operations on multisets, in which a given element can
have multiplicity greater than 1. The intersection (resp., union)
of multisets S, S′ yields a multiset in which each element appears
with multiplicity equal to its minimum multiplicity (resp., the sum
of the multiplicities) in S and S′. The sum of a multiset is defined
in the natural way, taking multiplicity into account.

Complexity. The complexity of handling union and intersection
is as in [36, 10], and in particular proofs are constant size. A sum

query also has constant-size proofs. In a query involving d set op-
erations (e.g., d = 3 in the query S1 ∩ (S2 ∪ S3)) with result R,
the proof size is O(d) and the verification time is O(d+ |R|).

3.2 ADS for Interval Trees
Fix a function f (possibly randomized). For our purposes, an

interval tree is a binary tree T associated with a set S = {(k, v)}
of key/value pairs, where the keys lie in a totally ordered set. Each
leaf node of T stores one element of S, with the leaves sorted by
key. Each internal node u also stores a key/value pair (k, v), where
v is computed by applying f to the values stored in the left and right
children of u. The key k at internal node u is equal to the maximum
key stored at any node in the left subtree of u, and is strictly less
than the key stored at any node in the right subtree of u.3

For a node u, let Tu denote the set of leaf nodes in the subtree
rooted at u. For a set N of leaf nodes, we say a set of nodes U is a
covering set of N if ∪u∈UTu = N . For our application, we need
support for two types of queries:

Search: Given a key k, this returns the value stored at the leaf node
(i.e., in the original set S) with key k.4

RangeCover: Given kL, kR with kL ≤ kR, let N be the set of
leaf nodes whose key k satisfies kL ≤ k ≤ kR. This query
returns the key/value pairs stored at all the nodes in the min-
imal covering set of N .

We also need to support two types of updates to S:

Insert: Given a key/value pair, this inserts a leaf node containing
that key/value pair into the interval tree, and updates internal
nodes of the tree accordingly.

Delete: Given a key, this deletes all leaf nodes storing that key, and
updates internal nodes of the tree accordingly.

An ADS supporting the above can be constructed generically us-
ing a Merkle tree, as in [24]. This gives a construction in which
each leaf node is augmented with a hash computed over its stored
key/value pair, and each internal node is augmented with a hash
computed over the key/value/hash tuple stored by its children. The
key, value, and hash at the root is the digest of the tree. Inser-
tions/deletions can be performed using rotations as in standard red-
black tree algorithms [12], with hash values being updated when
rotations are performed.

Setup algorithm. We note here AITSetup algorithm is parameter-
ized by function f used to compute the values of the internal nodes
and is written as (D̃, δ)← AITSetupf (D, skD)—see Figure 2.

Complexity. Let n be the number of leaves. The size of the min-
imal covering set output by RangeCover is O(logn). The size of
the proof and the complexity of verification for Search, Range-
Cover, Insert, and Delete is O(logn).

4. OUR CONSTRUCTION
We now describe the ADS used in INTEGRIDB.

3Duplicate keys are accumulated at leaves, i.e., if there are multiple
key/value pairs (k, v1), (k, v2), . . . with the same key k, then a sin-
gle leaf is created with key k and with value computed by applying
f recursively to all the values stored at that leaf. A counter is also
stored in the leaf to indicate the number of duplicates.
4The counter is also returned in the case of duplicates.



4.1 Setup
The high-level idea is that for each table, and each pair of columns

in that table, we create an authenticated interval tree. (Although this
requires storage quadratic in the number of columns, this is fine for
practical purposes since the number of columns is typically much
smaller than the number of rows.) The key/value pairs stored at the
leaves of the tree corresponding to columns i, j are the entries in
those columns that lie in each of the rows (see below). The value
stored at an internal node u will (essentially) correspond to the ac-
cumulation (cf. Section 3.1) of the values stored at the leaves in the
subtree rooted at u. Details follow.

For a table T , let xij denote the element in row i, column j of
that table. Let

Si×j
def
= {(x1i, x1j), . . . , (xni, xnj)} ,

and view this as a set of key/value pairs. Construct an interval tree
for Si×j . Leaf nodes hold key/value pairs from Si×j . Each internal
node u stores a key equal to the minimum key stored at the leaves
of the left subtree rooted at u, and stores the value

fs,sk(u) = Encsk

( ∏
v∈Tu

(v−1 + s)

)
‖ g

∏
v∈Tu

(v−1+s) , (1)

where Tu now denotes the values stored at the leaves in the subtree
rooted at u, and Enc is a CPA-secure encryption scheme.

c1 c2 c3 c4
x11 = 24 x12 x13 x14
x21 = 59 x22 x23 x24
x31 = 47 x32 x33 x34
x41 = 11 x42 x43 x44
x51 = 13 x52 x53 x54
x61 = 36 x62 x63 x64
x71 = 19 x72 x73 x74
x81 = 27 x82 x83 x84

11 13 19 24 27 36 47 59

11 19 27 47

13 36

24

41( )x 51( )x 71( )x 11( )x 81( )x 61( )x 31( )x 21( )x

31key 47x 

41key 11x 

1 1
32 22( )( )1 1

32 22value Enc (( )( )) || x s x s
sk x s x s g

     

42value x

Figure 1: A database table (top) and its interval tree for columns 1
and 2 (bottom). Leaves are sorted based on the key xi1.

Note that the right-most component in (1) is simply acc(Tu), and
the left-most value is an encryption of the corresponding exponent.
Roughly, the right-most component is used by the server to process
all queries on a static database; the left-most component is used
by the server and data owner jointly when the data owner wishes to
update the database. In that case, we will rely on the fact that, given
the secret key sk, the value of an internal node can be computed as
a (randomized) function f of the values of its two children.

Figure 1 shows an example of an interval tree computed for
columns 1 and 2 of the depicted table.

For each table T in the outsourced database, and each pair of
columns i, j (where we may have i = j), Setup computes anAIT

for Si×j as described above. (Note thatAIT does not use any Init
algorithm.) In addition, Setup computes a hash H of each row in
each table.5 Figure 2 gives pseudocode for Init and Setup of the
overall ADS. (Note that although the ASOSetup algorithm does
not appear explicitly, it is called by AITSetup when computing the
function fs,sk from Equation 1.) We assume the attributes ofD are
public, or else are included as part of the digest.

Algorithm (skD, pkD)← Init(1λ)

• (s, pkASO)← ASOInit(1λ), where s is as in Section 3.1.

• Choose secret key sk for encryption scheme Enc.

• Output skD = (s, sk) and pkD = pkASO .

Algorithm (D̃, δ)← Setup(D, skD)

• For each table T in D, with n rows:
for every pair of columns i, j:

(a) Let STi×j = {(x1i, x1j), . . . , (xni, xnj)}.
(b) (δTi×j , ait

T
i×j) ← AITSetupfs,sk (S

T
i×j ,⊥), where

function fs,sk is defined in Equation 1.

• For each table T in D, with n rows and m columns:
for every row i:

set hTi = H(xi1, . . . , xim).

• The authenticated database D̃ includes all the aitTi×j . The digest
δ includes all the digests δTi×j and all the hashes hTi .

Figure 2: The Init and Setup algorithms of INTEGRIDB.

Intuitively, the accumulation value stored in each node will be
used to handle JOIN and multidimensional range queries using
the underlying ASO scheme, as shown in Sections 4.2 and 4.3.
Section 4.4 shows how SQL functions can also be supported. The
encryption of the exponent in each node helps to perform updates
efficiently, as will be described in Section 4.5.

Digest size and setup complexity. Letmi and ni be the number of
columns and rows in table i. The size of the secret key isO(1). The
size of the digest δ is O(

∑
m2
i +

∑
ni), but this can be reduced

to O(1) by outsourcing the digest itself using a Merkle tree (as we
do in our implementation). The setup complexity is O(

∑
im

2
ini).

4.2 Join Queries
We first describe how to handle a JOIN query involving two

columns, neither of which contains any duplicate values; we dis-
cuss how to deal with duplicates below. (Generalizing to more than
two columns is straightforward.) Consider a JOIN query involving
column i of table T and column j of table T ′. Let Ci and C′j be the
set of values contained in each of the respective columns. Observe
that a RangeCover query on STi×i using kL = −∞ and kR = ∞
will return, in particular, the value stored at the root of the AIT
associated with STi×i; this value contains acc(Ci). An analogous
query on ST

′
j×j yields acc(C′j). Making an intersection query using

the ASO scheme results in the set C∗ = Ci ∩ C′j of all values in
5A Merkle tree over the elements of each row could also be used
here, but in practice (assuming the number of columns is small)
doing so will not have much effect.



common. For each such value x ∈ C∗, the server returns the entire
row in T (resp., T ′) containing x in the appropriate column; the
client verifies the result by checking that x is in the correct position
of the claimed row k, and then hashing the row and ensuring that it
matches the corresponding hash value hTk in the digest.

A point to stress here is that the client does not need Ci, C′j in
order to verify the intersection C∗; instead, it only needs acc(Ci),
acc(C′j). This ensures that the entire proof sent back by the server
is proportional to the size of the final result, which is important
when C∗ is small even though Ci, C′j are large.

Handling duplicates. The above approach can be modified easily
to deal with the (possible) presence of duplicates in one or both of
the columns. We view the columns as multisets when computing
their intersection. Then, for each unique x ∈ C∗ we use a Search
query on the AIT associated with STi×i (resp., ST

′
j×j); the result

indicates exactly how many entries in column i of T (resp., column
j of table T ′) have value x. The client then simply needs to verify
that the server returns the correct number of rows from each table.

Pseudocode for Prove and Verify algorithms for handling JOIN
queries, taking duplicates into account, is given in Figure 3. (To
make them easier to read, the algorithms are presented somewhat
informally and we omit small implementation optimizations. The
algorithms are presented assuming a JOIN query involving two
columns/tables, but can be extended for the general case.) We use
RC in place of RangeCover, and let Rx denote the set of rows
in T containing x in column i. (Define R′x similarly.) Algo-
rithms in Figure 3 refer to proving and verifying Rx and R′x for
x ∈ C∗; the result of the JOIN query can be easily computed from
{Rx, R′x}x∈C∗ and this is not much larger than the result itself.

Assume a JOIN query on columns T.i and T ′.j.
Algorithm Prove

• (acc(Ci), πi) := AITProve(STi×i, ait
T
i×i, (RC,−∞,∞)).

• (acc(C′j), π
′
j) := AITProve(ST

′
j×j , ait

T ′
j×j , (RC,−∞,∞)).

• (C∗, π∩) := ASOProve(Ci, Cj , acc(Ci), acc(C
′
j), “∩”).

• For each unique element x ∈ C∗:

– (|Rx|, πx) = AITProve(STi×i, ait
T
i×i, (Search, x)).

– (|R′x|, π′x) := AITProve(ST
′

j×j , ait
T ′
j×j , (Search, x)).

• R := {Rx, R′x}x∈C∗ .

• π := (C∗, acc(Ci), acc(C
′
j), πi, π

′
j , π∩, {πx, π′x}x∈C∗).

Algorithm Verify

• Verify πi, π′j , π∩ and {πx, π′x}x∈C∗ .

• For all x ∈ C∗ and r ∈ Rx (resp., r′ ∈ R′x), verify that:

– r (resp., r′) contains x in T.i of T (resp., in T ′.j of T ′).

– H(r) (resp., H(r′)) is equal to a (distinct) δTk (resp., δT
′

k ).

Figure 3: Handling JOIN queries on two tables.

Security. We briefly sketch why this is secure. The security of
AIT ensures that acc(Ci) and acc(C′j) reflect the correct (multi)sets
Ci, C

′
j . Security ofASO then guarantees that C∗ = Ci ∩C′j . Se-

curity ofAIT then ensures that |Rx| (resp., |R′x|) is a correct count

of the number of rows in T (resp., T ′) that contain x in column i
(resp., column j). The client then verifiers that each row in Rx, R′x
contains x in the appropriate column, and is unaltered.

Complexity. The proof size and verification time are Õ(|R|), where
R is the final result. This is independent (up to logarithmic factors)
of the sizes of any intermediate results or the original tables.

4.3 Multidimensional Range Queries
Fix a table T , and let xij refer to the value in row i and column j

of T . Consider a two-dimensional range query on columnsw and z
of T , with bounds [w−, w+] and [z−, z+], which should return
every row i in which w− ≤ xiw ≤ w+ and z− ≤ xiz ≤ z+.
(Extending our approach to larger dimensions is straightforward.
We also mention below how to handle OR instead of AND.)

We require a (known) column in T in which every element is
guaranteed to be distinct; we refer to this as the reference column.
Such a column is often present, anyway (e.g., serving as a row key);
if not, then such a column can be added before Setup is run. We
assume for simplicity in what follows that column 1 is the reference
column, and moreover that it simply contains the row number.

Let Rw denote the indices of the rows in which the element in
column w in within the specified bounds; i.e., i ∈ Rw if and only
if w− ≤ xiw ≤ w+. Define Rz similarly. In our protocol, the
client will (verifiably) learn R∗ = Rw ∩Rz , from which verifiably
obtaining the rows themselves is trivial (using {hTi }i∈R∗ ).

The key observation is that a RangeCover query on STw×1, us-
ing boundsw−, w+, will return a set of nodesNw = {n1, . . .} that
constitute the minimal covering set for the leaves in STw×1 contain-
ing keys (i.e., elements in column w) in the specified range. Each
node n ∈ Nw contains acc(Cn) such that⋃

n∈Nw

Cn = Rw. (2)

Similarly, a RangeCover query on STz×1, using bounds z−, z+,
will return a set of nodes Nz; each n ∈ Nz contains acc(Cn) with⋃

n∈Nz

Cn = Rz. (3)

We can therefore express the desired answer as

R∗ =

( ⋃
n∈Nw

Cn

)⋂( ⋃
n∈Nz

Cn

)
;

correctness of this answer can then be verified using ASO, given
{acc(Cn)}n∈Nw and {acc(Cn)}n∈Nz .

Note that by using union instead of intersection we can handle
disjunctive queries in addition to conjunctive queries.

Security. The security of AIT ensures that the client obtains val-
ues {acc(Cn)}n∈Nw and {acc(Cn)}n∈Nz for sets {Cn}n∈Nw and
{Cn}n∈Nz such that Equations (2) and (3) hold. Security ofASO
then implies that the claimed value of R∗ is correct. Finally, the
row hashes guarantee that the returned rows have not been altered.

Complexity. Consider a multidimensional range query of dimen-
sion d. The proof size isO(d·logn) and the verification complexity
is O(d logn + |R|). We stress that the proof size is independent
of the sizes of any intermediate results (e.g., the sets Rw, Rz from
above), or the size of the original table (up to logarithmic factors).

Although we introduce a logarithmic overhead in proof size and
verification time as compared to [32], our scheme supports efficient
updates (as we describe later).



4.4 SQL Functions
Here we describe how we can support various SQL functions

on entire columns of the original tables in the database. In some
sense, this is not very interesting since all the answers could be
precomputed for each column at the time the original database is
outsourced. These become more interesting, however, when we
consider nested queries in Section 4.6.

Summation. As acc(Cj) is stored in the root of STj×j (where Cj
denotes the set of elements in the jth column of T ), the client can
obtain and verify this value for any desired column j. Since ASO
supports sum queries, the client can then verify a claimed sum over
that column. The proof size and verification time are both O(1).

Count and average. We can reduce a COUNT query (on a column
guaranteed to contain no duplicates) to two SUM queries as follows:
for each column j of the original table, we include an additional
column j′ in which each entry is one more than6 the corresponding
entry in column j. (I.e., xij′ = xij + 1 for all i.) Note that if
column j contains no duplicates, then neither does column j′. To
perform a COUNT query on column j, the client issues SUM queries
on columns j and j′ and then takes the difference.

An AVG query can be answered by simply dividing the result of
a SUM query by the result of a COUNT query.

Maximum and minimum. We can reduce MAX/MIN queries to a
single-dimensional range query. For example, to answer a query
“SELECT MAX(j) FROM T ,” the server first computes jmax, the
maximum value in column j. It then returns a (verifiable) answer
to the query “SELECT * FROM T WHERE j ≥ jmax.” The client
verifies the answer and, if multiple rows are returned, also checks
that the values in column j are all the same. (Note there may be
multiple rows containing jmax in column j.)

4.5 Updates
To insert/delete a row, the data owner and server jointly update

the correspondingAIT andASO ADSs using their respective in-
terfaces; we provide further details below. In addition, the data
owner adds/removes a hash of the inserted/deleted row.

Recall that the value stored at an internal node is an accumula-
tion value along with an encryption of the relevant exponent. The
data owner uses the encrypted values to update accumulation val-
ues during an insertion or deletion. For example, in Figure 4 there
is a rotation (to maintain a balanced tree) after an update in the in-
terval tree. Before the rotation we have gfA , gfB , gfC , gfBfC , and
gfAfBfC (and encryptions of the respective exponents) stored in
nodes A, B, C, Y , and X , respectively. To compute gfAfB after
the rotation, the data owner decrypts to recover fA, fB , computes
gfAfB , and sends updated values (including an encryption of the
new exponent) to the server. This can be done using O(1) rounds
of communication between the data owner and the server.

Complexity. The complexity of updating one AIT is O(logn),
where n is the number of rows in the table being updated. Since
each table corresponds to m2 interval trees, the overall complexity
of an update is O(m2 logn). The complexity of updates in [32] is
O(m

√
n), which is slower in practice because m � n. (Typical

values might be m < 20 and n ≈ 106.)
SQL supports more general updates involving all rows satisfying

a given constraint. To perform this type of update, the data owner
can first make a query with the same constraints to learn which

6Non-numeric values are anyway mapped to Zp during setup, so
can be treated as numeric.
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Figure 4: A rotation caused by an update (insertion or a deletion).

rows need to be updated, and then make the relevant updates row-
by-row. The complexity of doing so is proportional to the number
of updated rows.

4.6 Nested Queries
The result of any SQL query is itself a table, meaning that queries

can be nested. A natural way to attempt to answer a nested query of
the form Q1 ◦Q2 verifiably would be to return the result R′ of the
inner queryQ2 along with a proof of correctness, and then to return
the final result R along with an another proof of correctness. (This
assumes some structure in the underlying ADS, and not all ADSs
will support such nested proofs.) Note, however, that in general the
size of the intermediate result R′ may be much larger than the size
of the final result R, meaning that the total proof will no longer
have size proportional to the size of the final result.

Informally, we can avoid this in our case by having the server re-
turn a digest of the intermediate result rather than the intermediate
result itself. Details follow.

Let FUNC = {SUM,COUNT,AVG,MAX,MIN}. INTEGRIDB sup-
ports the following nested queries:

• JOIN on the result of a multidimensional range query; (I.e.,
one of the tables participating in the JOIN query is the result
of multidimensional range query.)

• FUNC on the result of

– a JOIN query;
– a multidimensional range query;
– a JOIN on the result of a multidimensional range query.

Our system can also handle a range query on the result of a JOIN
query, since this can be reduced to a JOIN on range query. (This is
also done in regular SQL databases to improve performance.)

JOIN on range. By way of example, consider a JOIN query in-
volving column i of a table T1 in the original database and col-
umn j of a table T ′2 that is the result of a range query on table T2

in the original database. We require that there are guaranteed to
be no duplicates in column j of table T2. Under this assumption,
we can use column j as the reference column when answering the
range query. Instead of returning the result R∗ (using the notation
of Section 4.3), the server only returns acc(R∗). This suffices for
computing a JOIN query over this intermediate result.



We remark that to support this nested query, any column could
potentially be chosen as the reference column. This is the reason
we need to build an AIT for each pair of columns during setup.

SUM, COUNT, and AVG on intermediate results. As described
in Section 4.4, we only rely on the accumulation value of a col-
umn in order to perform a SUM query on that column. Therefore,
SUM queries over intermediate results can be handled as long as the
client can obtain a verified accumulation value of the desired col-
umn of the intermediate result. This holds automatically following
a JOIN query (with no duplicates), and the method described above
(i.e., letting the desired column serve as the reference column) can
be used to ensure that this holds following a range query, whether
followed by a JOIN query or not.

We cannot support a SUM query following a JOIN query with
duplicates while still having short proofs. This is because to obtain
the accumulation value of the column to sum (cf. Section 4.2), the
client needs to make a search query for each unique value in the
intersection, and the complexity of doing so is proportional to the
size of the intermediate result (rather than the final result).

As already described in Section 4.4, COUNT and AVG can be
reduced to SUM.

Note that to perform a SUM query on the result of a range query,
the column to sum must be used as the reference column. Thus,
to support such queries we need to build an AIT for each pair of
columns during setup. However, this can be improved to linear in
the number of columns as we show in Section 5.

MAX and MIN on intermediate results. Recall from Section 4.4
that we reduce MAX/MIN queries to a range query. So if MAX/MIN
is applied to the result of a range query (whether also followed by
a JOIN query or not), we simply incorporate the additional con-
straint in the range query (possibly increasing the dimension by
one). The case of MAX/MIN applied to a JOIN query can be re-
duced to a JOIN query on a single-dimensional range query.

5. ADDITIONAL DISCUSSION
We now discuss various extensions, optimizations, and limita-

tions of INTEGRIDB.

5.1 Extensions and Optimizations
Improving setup complexity. In case we are interested in support-
ing only SUM queries over multidimensional range queries, we can
improve the setup time from Õ(m2n) to Õ(mn), and the server
storage from Õ(m2) to Õ(m). To do this, we construct a homo-
morphic Merkle tree [35] over each row, and add a column c to each
table that stores the root of the Merkle tree for the corresponding
row. Informally, a homomorphic Merkle tree has the property that
the sum of the roots of multiple trees is the root of a new Merkle
tree with the leaves being the component-wise sum of the leaves of
the original trees.

To answer a SUM query on a desired column i, the server first
verifiably answers a SUM on column c. This sum is the root of a
Merkle tree in which the sum of the desired column is a leaf. So the
server can additionally send the desired sum along with a Merkle
proof, and the client can verify correctness.

Using this modification, only column c is ever used as a reference
column for handling SUM queries, and so we can reduce complexity
as claimed.

Supporting LIKE queries. We can add support for LIKE queries
by building on the authenticated pattern matching scheme of Pa-
padopoulos et al. [33]. Their scheme is based on an authenticated
suffix tree, and it is not hard to generalize it to return the number

and locations of all matches. If we view a column as a string, where
each element is delimited by a special character, then we can build
an authenticated suffix tree on top of the entire column and sup-
port LIKE queries over that column. A limitation of this technique
is that a suffix tree does not support efficient updates. Supporting
LIKE queries in a dynamic database is an open problem.

Supporting GROUP BY queries. A GROUP BY query is used to
combine rows having duplicates. E.g., “SELECT SUM(c1) GROUP
BY c2” returns one summation for each set of rows with the same
value in c2. We can support this query by first retrieving all unique
values in c2, which is supported by AIT . Then for each unique
value x, issue a SUM query with constraint c2 = x, which is sup-
ported by our nested query scheme. The number of SUM queries
is the same as the number of unique values in c2, which is propor-
tional to the size of the result.

5.2 Limitations
Comparison between columns. We are unable to support com-
parisons between columns (e.g., a query involving the constraint
c1 ≥ 2 · c2 + 3) with short proofs. However, we can handle this
inefficiently by returning the entire column c1 and then having the
client issue range queries to c2 for each element in c1. The com-
plexity is proportional to the size of column c1, which is not effi-
cient; however, this solution has the same complexity as existing
tree-based schemes.

Aggregations among columns. We cannot support aggregations
among columns (e.g., a query “SELECT c1+2∗c2 FROM . . . ”) with
short proofs. Instead, we can have the server return all columns
involved in the aggregation query and then let the client compute
the result locally.

Join with duplicates in a nested query. As mentioned in Sec-
tion 4.2, we can support JOIN queries with duplicates. However,
when performing a JOIN query on the result of a range query, as
described in Section 4.6, we assume no duplicates are present. Re-
moving this assumption is left open.

6. IMPLEMENTATION
A schematic of our implementation is shown in Figure 5. Recall

there are three parties in our model: a data owner, a client (which
may be the data owner itself), and a server. The data owner runs the
setup algorithm and sends the digest δ to the client, and the database
itself along with authentication information D̃ to the server. In
our implementation, we logically separate the client into an SQL
client and an INTEGRIDB client. The SQL client issues a standard
SQL query; the INTEGRIDB client determines whether this query
is supported by INTEGRIDB and, if so, translates it into an INTE-
GRIDB query and sends it to the server. We also logically separate
the server into two parts: an INTEGRIDB server and a back-end
SQL server. The INTEGRIDB server is responsible for handling all
cryptographic computations (thus providing verifiability) using the
corresponding algorithms described in Section 4. During this pro-
cess, the INTEGRIDB server may make one or more SQL queries
to the SQL server. When done, the INTEGRIDB server sends back
the final result along with a proof for the INTEGRIDB client to ver-
ify. The INTEGRIDB client returns the result to the SQL client if
the proof is correct, and rejects the result otherwise.

Notice that the INTEGRIDB server can be combined with any
existing implementation of an SQL server; only the SQL API meth-
ods in the INTEGRIDB server need to be changed. The client, data
owner, and most of the INTEGRIDB server remain unchanged.

In our implementation, the client, data owner, and INTEGRIDB
server are implemented in C++ using approximately 1,000 lines of
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Figure 5: Structure of INTEGRIDB implementation.

code for the INTEGRIDB client, 1,000 lines of code for the data
owner, and 2,000 lines of code for the INTEGRIDB server. We use
a standard MySQL server as the back-end SQL server. We use the
OpenSSL library for encryption and hashing. In particular, we use
AES-CBC-128 for encryption7 and SHA-256 for hashing. For our
bilinear pairing we use the Ate-paring8 on a 254-bit elliptic curve;
this is estimated to offer 128-bit security.

We implement the authenticated interval tree in our construc-
tion using the authenticated skip list of Goodrich et al. [17]. This
provides expected logarithmic complexity (rather than worst-case
logarithmic complexity), yet its practical performance is better.

Information about INTEGRIDB and links to its code can be found
at integridb.github.io.

7. EVALUATION
We executed our experiments on an Amazon EC2 machine with

16GB of RAM running on Linux. We collected 10 runs for each
data point and report the average.

7.1 Evaluation Using the TPC Benchmark
TPC-H benchmark. We first evaluate the expressiveness of IN-
TEGRIDB using the TPC-H benchmark.9 The TPC-H benchmark
contains 22 SQL queries and a dataset and is widely used by the
database community to compare the performance of new systems.
The performance presented in this section is on query #19 of TPC-
H, which is shown in Figure 6. This query is a SUM query on the
result of a JOIN applied to two multidimensional range queries on
tables lineitem and part.

To support query #19, we encode characters in ASCII (so we
can view them as numeric values) and answer the query as fol-
lows: inside each segment separated by “OR,” we have constraints
on a relevant table. E.g., in lines 5–11 of Figure 6, lines 6, 7, and
9 are constraints on Table part. In particular, line 6 is an equal-
ity check, which is a special case of a single-dimensional range
query. Line 7 is parsed into four equality checks: p_container =
‘SM CASE’ or p_container = ‘SM BOX’ or p_container = ‘SM
PACK’ or p_container = ‘SM PKG.’ Therefore, lines 6, 7, and 9
together constitute a multidimensional range query on Table part.
Similarly, lines 8, 10, and 11 form a multidimensional range query
on Table lineitem. Line 5 is a JOIN query on columns p_partkey
and l_partkey. We answer these queries and then perform a union
on the results obtained. All these queries (also taking nesting into
account) are supported by INTEGRIDB.

As we cannot support aggregation, we let the server return the
resulting table generated by the constraints in lines 4–27 consist-
7Note that authenticated encryption is not needed because cipher-
texts are authenticated as part of the overall ADS.
8See https://github.com/herumi/ate-pairing.
9Available at http://www.tpc.org/tpch.

1. SELECT SUM(l_extendedprice* (1 - l_discount))
2. AS revenue
3. FROM lineitem, part
4. WHERE
5. ( p_partkey = l_partkey
6. AND p_brand = ‘Brand#41’
7. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM

PACK’, ‘SM PKG’)
8. AND l_quantity >= 7 AND l_quantity <= 7 + 10
9. AND p_size BETWEEN 1 AND 5
10. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
11. AND l_shipinstruct = ‘DELIVER IN PERSON’ )
12. OR
13. ( p_partkey = l_partkey
14. AND p_brand = ‘Brand#14’
15. AND p_container IN (‘MED BAG’, ‘MED BOX’,

‘MED PKG’, ‘MED PACK’)
16. AND l_quantity >= 14 AND l_quantity <= 14 + 10
17. AND p_size BETWEEN 1 AND 10
18. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
19. AND l_shipinstruct = ‘DELIVER IN PERSON’ )
20. OR
21. ( p_partkey = l_partkey
22. AND p_brand = ‘Brand#23’
23. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG

PACK’, ‘LG PKG’)
24. AND l_quantity >= 25 AND l_quantity <= 25 + 10
25. AND p_size BETWEEN 1 AND 15
26. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
27. AND l_shipinstruct = ‘DELIVER IN PERSON’ );

Figure 6: Query #19 of the TPC-H benchmark.

ing of columns l_extendedprice and l_discount. The client then
computes the aggregation. The size of this table is included in the
reported proof size.

We executed the query on the TPC-H database. Table lineitem
consists of 6 million rows and 16 columns, and Table part contains
200,000 rows and 9 columns. Due to memory limitations, we only
preprocess necessary columns as part of setup, i.e., four columns
of each table. The performance of INTEGRIDB for handling this
query is summarized in Table 2. We also simulated insertion of a
row into the lineitem table (reduced to four columns, as just men-
tioned). We observe that the proof size, verification time, and up-
date time are all very small, although the times for setup and proof
computation are large.

Table 2: Performance of TPC-H query #19 on the TPC-H database.

setup prover verification proof update
time time time size time

25272.76s 6422.13s 232ms 184.16KB 150ms

We examined all 22 TPC-H queries, and found that INTEGRIDB
supports 12 of them.

TPC-C benchmark. We also tested our system using the TPC-C
benchmark,10 and found that INTEGRIDB supports 94% of those
queries. The only query INTEGRIDB could not support is a JOIN
query with duplicates following two multidimensional range queries.

10Available at http://www.tpc.org/tpcc.
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Figure 7: Setup and update time. The database consists of two tables, each having n rows and m columns. Figure (a) is log-log scale; only
the x axis in (b) is log scale.
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Figure 8: Prover and verification time for different queries. We run range queries of different dimensions d on a 10-column table and the size
of the result is fixed to 100 entries. We also run SUM queries applied to the result of a 3-dimensional range query.

INTEGRIDB can support this query if there is no duplicate in the
columns to join.

7.2 Performance on Synthetic Data
We now present detailed performance measurements of INTE-

GRIDB for different queries. All queries were run on synthetic
tables. The first column of each table contains a row number. The
elements in other columns are randomly generated 32-bit integers.

Server storage. For a table with n rows and m columns, we store
m2 AIT s containing 2n nodes on average; the size of each node
in our implementation is 99.5 Bytes. Therefore, for a table with 105

rows and 10 columns, the server storage is 1.85GB, while the size
of the table itself is 30MB (assuming entries are 30-byte integers).
However, we believe our overhead is acceptable compared to prior
work, e.g., the storage of the signature-based scheme in [27] for the
same table is approximately 0.24GB, yet it only supports single-
dimensional range queries.

Setup time. Figure 7a shows the setup time of INTEGRIDB on
databases of different sizes. As shown in the figure, the setup time
grows linearly with the total number of rows in all the tables in the
database. In particular, setup takes about 4s for two tables with 100
rows and 5 columns each, and 3,000s for two tables with 100,000
rows and 5 columns each. The setup time also grows quadratically
with the number of columns in a table; in practice (as observed
with the TPC-H dataset), however, the number of columns tends to
be small and the setup time is acceptable in this case. We remark

further that setup is only done once, after which arbitrarily many
queries can be supported.

Update time. As shown in Figure 7b, updates in INTEGRIDB are
very efficient, e.g., it takes only 0.9s to insert a row into a table with
100,000 rows and 9 columns. As indicated in the figure, the update
time grows logarithmically with the number of rows in the table.

Join queries. We run a JOIN query on two tables and report the
performance in Table 3. Both tables are of the same size, with
the number of columns set to 10 and the number of rows n vary-
ing from 100 to 100,000. There are duplicates in the columns to
join. We choose the query such that result always has precisely 100
rows. As shown in Table 3, although the prover time grows linearly
with the sizes of the tables to join, the verification time remains
unchanged. (Although the asymptotic complexity of verification
grows logarithmically with n, in our experiments the running time
is dominated by the costs of verifying the set intersection, which
has complexity independent of n.) In particular, it only takes 45ms
to verify a join query on two tables with 100,000 rows each.

As shown in Table 3, proofs are only a few KBs, and their size
grows logarithmically with n as expected. For example, the proof
is only 27.97KB for a JOIN query on two tables of 100,000 rows
by 10 columns, which is 4MB each if elements are 4 byte inte-
gers. This is a big improvement compared to prior tree-based and
signature-based approaches, where the proof size could be even
larger than the original database.



Table 3: A JOIN query on two tables, each with the same number
of rows and 10 columns. The result always has 100 rows.

number prover proof verification
of rows time size time

100 0.041s 11.97KB 40.7ms
1,000 1.38s 16.77KB 45.2ms

10,000 15.7s 23.17KB 45.3ms
100,000 168s 27.97KB 45.4ms

Multidimensional range queries. Figure 8 shows the prover time
and the verification time for range queries of different dimensions
on tables of different sizes, where the size of the result is also fixed
to 100 matches. As shown in Figure 8a, the prover time grows
linearly with the number of rows in the table and the number of
dimensions. It takes around 5000s to generate the proof of a 10-
dimensional range query on a table of 100,000 rows.

Figure 8b shows that the verification time grows logarithmically
with the number of rows in the table and linearly with the number
of dimensions in the query. It takes less than 200ms to verify the
result of a 6-dimensional range query on a table of 100,000 rows,
and around 400ms to verify a 10-dimensional range query on the
same table. The corresponding proof sizes are 135KB and 251KB,
both significantly smaller than the size of the table.

Our verification times for range queries are worse than those
in [32], as we introduce a logarithmic overhead. However, our ver-
ification times are still good in practice, while we improve on the
time for updates by orders of magnitude.

(Nested) sum queries. We run a sum query on the result of a 3-
dimensional range query. There is no duplicate in the column to
sum. We fix the size of the table to 100,000 rows and 10 columns,
but vary the size of the result of the range query (i.e., the size of
the column to sum) from 10 to 100,000. As shown in Figure 8a,
the prover time grows slightly with the size of the intermediate re-
sult. This is because the prover time is dominated by the multi-
dimensional range query, which does not change as the size of the
table is the same. In particular, it only takes 760ms to generate the
proof for the sum on a column with 100,000 elements. Moreover,
Figure 8b shows that the verification time does not change with the
size of the intermediate result, and it only takes around 60ms to ver-
ify the sum on a column with 100,000 elements and the proof size
is only 45KB. In prior work, the entire intermediate result would
be sent to the client, who would then compute the sum by itself.

7.3 Comparison with Generic Schemes
We compare INTEGRIDB to two generic systems for verifiable

computation (VC): libsnark11, an efficient circuit-based VC sys-
tem used in [4], and SNARKs for C [2], an efficient RAM-based
VC system. For libsnark, we wrote SQL queries in C, compiled
them to a circuit, and ran the VC system on the resulting circuits.
Since there is no publicly available code for SNARKs for C, we
estimate the performance on a query by first expressing the query
in TinyRAM and then using this to determine the three parameters
that affect performance: the number of instructions (L), the num-
ber of cycles (T), and the size of the input and output (N). We then
used those parameters along with [4, Fig.9̃] to estimate the running
time. Note that libsnark (and circuit-based VC generally) does not
support updates; we were unable to estimate the update time for
SNARKs for C.

11See https://github.com/scipr-lab/libsnark.

For generic VC systems, the database would be hardcoded in a
program that takes SQL queries as input and outputs the result. To
support different types of SQL queries, there must be a compiler
built in the program to interpret the query. Circuit-based VC can-
not support such a compiler efficiently, and it is unclear how to
implement it using RAM-based VC. Therefore, in our experiments
we use a dedicated program for each type of query. This means the
performance of generic VC systems reported here is likely better
than what they would achieve in practice.

As a representative example, we consider a sum query applied to
the result of a 10-dimensional range query, executed on a table with
10 columns and 1,000 rows. As shown in Table 4, the setup time
and prover time of INTEGRIDB are 10× faster than that of libsnark
and 100× faster than that of SNARKs for C. The proof sizes of the
generic VC systems are always of constant size, while the proof
size of INTEGRIDB in this case is 200× larger. However, proofs in
INTEGRIDB are still only a few KB, which is acceptable in prac-
tice. The verification time of INTEGRIDB is 10× slower that in the
generic systems; however, even the result of a multidimensional
range query can be verified in under 1s in INTEGRIDB.

Table 4: Comparing with generic schemes. Table T has 10 columns
and 1,000 rows. Query is “SELECT SUM(c1) FROM T WHERE (c1
BETWEEN a1 AND b1) AND · · · AND (c10 BETWEEN a10 AND b10).”

[4, libsnark] SNARKs INTEGRIDB
for C [2]

setup time 157.163s 2000s∗ 13.878s
prover time 328.830s 1000s∗ 10.4201s

verification time 7ms 10ms∗ 112ms
proof size 288Bytes 288Bytes 84,296Bytes

update time N/A ?? 0.7s
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