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COMMENTARY

Integrin traffic – the update

Nicola De Franceschi*, Hellyeh Hamidi*, Jonna Alanko*, Pranshu Sahgal and Johanna Ivaska`

ABSTRACT

Integrins are a family of transmembrane cell surface molecules that

constitute the principal adhesion receptors for the extracellular matrix

(ECM) and are indispensable for the existence of multicellular

organisms. In vertebrates, 24 different integrin heterodimers exist

with differing substrate specificity and tissue expression. Integrin–

extracellular-ligand interaction provides a physical anchor for the cell

and triggers a vast array of intracellular signalling events that

determine cell fate. Dynamic remodelling of adhesions, through rapid

endocytic and exocytic trafficking of integrin receptors, is an

important mechanism employed by cells to regulate integrin–ECM

interactions, and thus cellular signalling, during processes such as

cell migration, invasion and cytokinesis. The initial concept of integrin

traffic as a means to translocate adhesion receptors within the cell

has now been expanded with the growing appreciation that traffic is

intimately linked to the cell signalling apparatus. Furthermore,

endosomal pathways are emerging as crucial regulators of integrin

stability and expression in cells. Thus, integrin traffic is relevant in a

number of pathological conditions, especially in cancer. Nearly a

decade ago we wrote a Commentary in Journal of Cell Science

entitled ‘Integrin traffic’. With the advances in the field, we felt it would

be appropriate to provide the growing number of researchers

interested in integrin traffic with an update.

KEY WORDS: Integrin, Trafficking, Rab GTPases, Migration,

Invasion, Signalling crosstalk

Introduction

Integrins are among the most abundant cell surface receptors and

are expressed in all cell types apart from erythrocytes; they

constitute the principal adhesion receptors for the extracellular

matrix (ECM). Integrins were originally named to denote their

role as integral membrane complexes linking the ECM to the

actin cytoskeleton. However, it is now clear that integrins alone,

or in combination with other cell surface receptors, mediate many

key intracellular signals and are indispensable for the existence of

multicellular organisms. As such, tight regulation of integrin

signalling is paramount for normal physiological function,

and misregulated integrin activity is associated with many

pathological conditions including cancer. The regulation of

integrin function can be achieved on several levels, including

ligand engagement and binding of intracellular proteins. Endocytic

trafficking of integrins offers an important complementary

mechanism for regulating integrin–ECM adhesion turnover, and

thus integrin signalling, by tightly controlling specific integrin

heterodimer availability at the cell surface. With increasing interest

on the biological relevance of integrin traffic, the number of

adaptor and signalling proteins and cellular machineries identified

as key regulators of this pathway is rapidly expanding and thus

reveals the complexity of integrin traffic regulation and the close

connection with the cytoskeletal and signalling apparatus of a cell.

Importantly, conceptual progress in the field has identified well-

known cancer oncogenes and mutations as being crucial regulators

of integrin traffic and, therefore, cell invasion and metastasis.

Mounting data highlights how integrin trafficking is deeply wired

into the cytoskeletal and signalling apparatus of a cell and how

integrin trafficking is tightly and spatially regulated in the cell. In

this Commentary, we will describe the newest findings in the

regulation of integrin traffic. In addition, we have compiled

several examples of the role of integrin traffic in different

pathophysiological conditions, with a particular focus on cancer

metastasis (Table 1).

Canonical integrin trafficking

In the classical model of integrin traffic – which still holds true to

a large extent – cell surface integrins are constitutively

endocytosed through clathrin- or caveolin-mediated routes and

undergo endosomal sorting that determines degradation or

recycling of the receptor. The role of integrin degradation was

neglected for a long time due to the overall long half-life of

integrins. However, several studies now suggest that trafficking

through the degradative pathway is coupled to integrin activity

and receptor dynamics in migrating cells (examples are discussed

in the following sections), even though most integrin receptors

appear not to be degraded. Instead, integrins are recycled back to

the membrane by one of two spatially and temporally distinct

mechanisms (Caswell and Norman, 2006; Morgan et al., 2009;

Scita and Di Fiore, 2010) to provide the cell with a constant fresh

pool of integrins to engage the matrix and generate new adhesions

(Box 1). With emerging new evidence, this picture is rapidly

developing in complexity, and cell-type- and context-dependent

variations to the general dogma have been documented. Reports

from recent years have demonstrated integrin recycling from late

endosomes (Dozynkiewicz et al., 2012) or directly from tubular

Arf6-containing endosomes that bypass the early endosome

compartments (Chen et al., 2014). New routes of integrin

endocytosis include macropinocytosis from circular dorsal

ruffles (CDRs) triggered by growth factor receptor signalling

(Gu et al., 2011) and internalisation by clathrin-independent

carriers (Lakshminarayan et al., 2014) (Box 1). It is evident

that various distinct and previously unappreciated cellular

components are involved in the regulation of integrin traffic

and that, in most cases, these are pathways that are highly

dependent on the integrin heterodimer and cell type, as well as on

stimuli and the matrix (Bridgewater et al., 2012; Caswell and

Norman, 2006). Importantly, the route of integrin internalisation
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and recycling has been shown to dictate the ability of
these receptors to promote two-dimensional (2D) and three-
dimensional (3D) cell migration, and as discussed below, this
requires the integration of multiple signals from matrix ligation,
GTPase activity and receptor crosstalk to altered membrane
dynamics and the cytoskeletal machinery.

Integrin–ECM adhesions and integrin traffic

Integrin–ECM adhesions can be classified into several subtypes
based on morphology, protein composition and stability (reviewed
in Valdembri and Serini, 2012). Clustering of integrins in newly
formed nascent adhesions leads to the recruitment of adaptor and
signalling proteins and the formation of focal complexes. The
maturation of focal complexes into focal adhesions (FAs) serves to
anchor the ECM to the actin cytoskeleton and the centripetal
translocation of the a5b1 integrin heterodimer towards the cell body
leads to the formation of very long and stable tensin-rich fibrillar
adhesions. Invadopodia and filopodia represent specialized actin-
rich matrix contacts that also contain integrins. Invadopodia are

typically confined to invasive cells (Linder et al., 2011) and are sites
of active ECM degradation by the transmembrane type 1 matrix
metalloproteinase (MT1-MMP, also known as MMP14). Filopodia
are integrin-dependent structures that have been recently implicated
in cancer cell invasion (Arjonen et al., 2014; Machesky and Li,
2010). Although invadopodia and filopodia share some similarities
and common features, invadopodia-mediated cell invasion appears
to be dependent on active MT1-MMP recycling (Monteiro et al.,
2013), whereas filopodia-driven cell invasion occurs as a
consequence of increased integrin recycling (Arjonen et al.,
2014). Intriguingly, integrins and MT1-MMP can be recycled
along the same pathway (Dozynkiewicz et al., 2012; Macpherson
et al., 2014); in particular, b3-integrin–MT1-MMP co-trafficking
along a Rab4 recycling pathway has been shown to be necessary for
hepatocyte growth factor (HGF)- and Rab5-dependent induction of
invadosomes, resulting in cell invasion and matrix degradation
(Frittoli et al., 2014). Whether, a similar recycling pathway is
implemented in filopodia to promote cell invasion remains to be
investigated.

Table 1. Integrin traffic pathways and associated pathophysiological conditions in humans

Integrin

receptor

Associated molecule/

trafficking step Pathophysiological condition

Biological process and clinical

significance References

a1, a2, a5, a6,

b1

Rab21/endocytosis Prostate cancer, lung cancer Migration, cytokinesis and

generation of aneuploidy

Högnäs et al., 2012; Pellinen

et al., 2006; Pellinen et al.,

2008

b1 Rab5/endocytosis Lung cancer, stomach cancer, breast

cancer

Invasion, metastasis Li et al., 1999; Yang et al., 2011;

Yu et al., 1999

b1 Myo10/recycling Breast cancer, pancreatic cancer Invasion, metastasis, poor

prognosis

Arjonen et al., 2014; Cao et al.,

2014

b1, b3 Dab2/endocytosis Epithelial ovarian cancer, prostate

cancer, nasopharyngeal

carcinoma, breast cancer

Invasion and metastasis Mok et al., 1994; Tong et al.,

2010; Wang et al., 2002; Xu

et al., 2014

b1, b3 Numb/endocytosis Breast cancer, non-small cell lung

cancer, salivary gland carcinoma

Proliferation, poor prognosis Maiorano et al., 2007; Pece et al.,

2004; Westhoff et al., 2009

a5b1 Rab25/recycling Ovarian cancer, breast cancer, colon

cancer, intestinal neoplasia

Invasion Cheng et al., 2010; Cheng et al.,

2004; Dozynkiewicz et al.,

2012; Fan et al., 2006;

Goldenring and Nam, 2011;

Nam et al., 2010

a5b1 RCP/recycling Breast cancer, mutant p53

carcinomas, squamous cell

carcinoma of the head and neck

Invasion and metastasis Dai et al., 2012; Mills et al., 2009;

Muller et al., 2009; Zhang et al.,

2009

a5b1 CLIC3/recycling Ovarian cancer, pancreatic cancer,

breast cancer

Invasion, poor prognosis Dozynkiewicz et al., 2012;

Macpherson et al., 2014

a5b1, a6 GIPC1/endocytosis Breast cancer, ovarian cancer,

gastric cancer, pancreatic cancer

Invasion and metastasis,

vascular development

Kirikoshi and Katoh, 2002;

Muders et al., 2006;

Rudchenko et al., 2008;

Valdembri et al., 2009;

Yavelsky et al., 2008

a5b1, avb3 PRKD1/recycling Breast cancer, prostate cancer,

gastrointestinal cancer, skin

cancer

Proliferation, invasion Eiseler et al., 2009; Jaggi et al.,

2003; Ristich et al., 2006;

Shabelnik et al., 2011

a3b1, a5b1 STX6 and VAMP3/recycling Breast, colon, liver, pancreatic,

prostate, bladder, skin, testicular,

tongue, cervical, lung and gastric

cancers

Proliferation Riggs et al., 2012

a5b1, a2b1,

avb3, a6b4

Rab11/recycling Skin carcinogenesis, Barrett’s

dysplasia, mutant p53 carcinomas

Invasion and metastasis Gebhardt et al., 2005; Goldenring

et al., 1999; Muller et al., 2009

avb6 HAX1/endocytosis Breast cancer, oral cancer, colon

cancer

Neoplastic transformation,

invasion, metastasis, poor

prognosis

Bates et al., 2005; Ramsay et al.,

2007; Trebinska et al., 2010

a9b1 Arf6/recycling Axonal development and

regeneration in peripheral nervous

system

Tissue repair Eva et al., 2012; Eva and

Fawcett, 2014
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ECM in integrin traffic

Processing of ECM molecules and/or complete detachment of
integrins from their substrates, to allow receptor endocytosis, is a
necessary step in the initial stages of integrin traffic. The presence
of extracellular molecules in endocytic vesicles supports co-
endocytosis of integrins with matrix ligands. For example,
fibronectin, a fundamental component of the ECM, is
endocytosed with b1 integrins in a caveolin-1-dependent manner
and is targeted for lysosomal degradation (Sottile and Chandler,
2005). However, given the large size of fibronectin fibrils, integrin–
fibronectin co-endocytosis would not be feasible without
proteolytic cleavage of fibronectin fibrils. Therefore, the size of
detachable ECM components, regulated byMT1-MMP proteolysis,
is crucial for directing a5b1 integrin endocytosis (Shi and Sottile,
2011). In a low-fibronectin ECM environment, the endocytosed
fibronectin is re-secreted from late endosomes and lysosomes,
possibly together with integrins (Dozynkiewicz et al., 2012), to
promote cell migration (Sung et al., 2011). These findings, together

with observations that ECM degradation, previously thought to be
restricted to invadosomes, also occurs in FAs (Stehbens et al., 2014;
Wang and McNiven, 2012), suggest that matrix turnover and
integrin traffic can be coupled on multiple levels.

Integrin traffic and cell–ECM adhesion turnover

The dynamic assembly and disassembly of integrin–ECM
adhesions is crucial for the stabilisation of membrane protrusions
and the application of tension to the ECM and retraction of the cell
rear during cell migration, with integrin recycling being central to
the regulation of this process of dynamic adhesion turnover
(Caswell et al., 2009). The different adhesion subtypes, mentioned
above, exhibit differing turnover rates, suggesting that alternative
integrin trafficking routes are employed during the assembly and
disassembly processes. Although the exact nature of adhesion-
type-specific trafficking is currently not well understood,
nevertheless some specific examples have been described. In
endothelial cells, Ras and Rab interactor 2 (RIN2) regulates

Box 1. Canonical integrin trafficking

Integrin endocytosis can occur by several routes broadly classified as clathrin dependent and clathrin independent (see figure). Newly identified

pathways include macropinocytosis from circular dorsal ruffles (CDRs) (Gu et al., 2011), F-actin-rich membrane projections on the apical cell

surface, and a RhoA-dependent form of clathrin-mediated endocytosis (Mai et al., 2014), both triggered by growth factor receptor signalling. In

addition, b1 integrin can be endocytosed via clathrin-independent carriers. In contrast to other endocytic routes, this glycosphingolipid- and actin-

dependent pathway is initiated at the extracellular surface of the cell. Here, the carbohydrate-binding protein galectin-3 (indicated by the yellow

star in the figure) interacts with the glycosylated extracellular domain of b1 integrin and has been suggested to promote mechanical deformation of

the plasma membrane and clathrin-independent receptor endocytosis (Lakshminarayan et al., 2014).

Integrin recycling back to the plasma membrane occurs through one of two spatially and temporally distinct mechanisms often referred to as

short-loop and long-loop pathways (Caswell and Norman, 2006; Morgan et al., 2009; Scita and Di Fiore, 2010). Recycling through the short-loop

pathway is Rab4 dependent and promotes rapid delivery of receptors back to the plasma membrane. Alternatively, receptors entering the long-

loop pathway relocate to Rab11-positive perinuclear recycling compartments (PNRC) prior to returning to the cell surface. These recycling

pathways facilitate adhesion turnover and provide the cell with a constant fresh pool of integrins to engage the matrix and generate new

adhesions.

Nucleus

PNRC

Long-loop pathway

α5β1 integrin

Active β1 integrin

Rab11

RCP

Early endosome

Lysosomes

Cytosol

Integrin internalisation routes

Clathrin

Caveolin RhoA

Macropinocytosis

Extracellular matrix

Short-loop pathway

αvβ3 integrin

Rab4

Inactive β1 integrin

Clathrin-independent

carriers

Extracellular matrix

Internalisation

Integrin

COMMENTARY Journal of Cell Science (2015) 128, 839–852 doi:10.1242/jcs.161653

841



J
o

u
rn

a
l 
o

f 
C

e
ll
 S

c
ie

n
c
e

integrin endocytosis from nascent adhesions (Sandri et al., 2012),
whereas an endocytic complex consisting of the adaptor GAIP
interacting protein C-terminus member 1 (GIPC1) and neuropilin-1
(Nrp1; a cell surface receptor) specifically drives a5b1 integrin
endocytosis from fibrillar adhesions (Valdembri et al., 2009).

FA disassembly has been suggested, under some specific
conditions, to be linked to endocytosis of ligand-bound active
integrins. Proteins such as dynamin-2, focal adhesion kinase
(FAK, also known as PTK2), clathrin, disabled-2 (Dab2) and
AP2, as well as microtubules, have been shown to regulate FA
turnover (Chao and Kunz, 2009; Ezratty et al., 2005; Ezratty
et al., 2009). The targeting of these proteins to adhesion sites is
fundamentally dependent on the spatially restricted production of
phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) at the plasma
membrane by type I phosphatidylinositol phosphate kinases
(PIPKI) in response to integrin–ECM adhesion (reviewed in Ling
et al., 2006). Three PIPKI isoforms (encoded by PIP5K1A,
PIP5K1B and PIP5K1C in humans) and multiple splice variants
exist in mammalian cells, and two of these have been implicated
in FA turnover. PIPKIb has been shown to mediate the
endocytosis of active b1 integrin from zyxin-positive FAs and
therefore drive FA disassembly (Chao et al., 2010). Depletion of
PIPKIb blocks clathrin assembly at adhesion plaques, prevents
complex formation between dynamin 2 and FAK, and impairs
cell migration. Interestingly, in contrast to PIPKIb, PIPKIc661 is
implicated in FA assembly (Ling et al., 2002). This PIPKI variant
regulates the recruitment of talin and vinculin to FAs by local
production of PtdIns4,5P2 (Legate et al., 2011). Thus,
functionally distinct pools of PtdIns4,5P2 produced by PIPKIb
or PIPKIc661 can function as specific platforms for the
recruitment of proteins involved in FA assembly or
disassembly. How the activity of these two PIPKI isoforms is
coordinated and targeted specifically to FA sites is not yet clear,
however post-translational modifications of PIPKI C-terminal
domains have been implicated in this process (Chao et al., 2010;
Ling et al., 2002).

In mammalian cells, cholesterol, in the form of low-density
lipoprotein (LDL), is recruited to FAs from late endosomes in an
acid lipase, NPC1- (Niemann-Pick C1 protein) and Rab8a-
dependent fashion, resulting in increased number, size and
turnover of FAs, and consequently enhanced cancer cell
migration (Kanerva et al., 2013). Inhibition of cholesterol levels
in the trans-Golgi network triggers syntaxin-6 accumulation into
Rab11-positive recycling endosomes and adversely affects avb3
and a5b1 integrin recycling and cell migration (Reverter et al.,
2014). A role for syntaxin-6 in a3b1 and a5b1 integrin trafficking
has also been demonstrated in chemotactic cancer and endothelial
cells, respectively (Riggs et al., 2012; Tiwari et al., 2011).
Importantly, these studies identify a new integrin recycling step
that traverses the trans-Golgi network and highlight an intriguing
role for the Golgi and cholesterol traffic in controlling FA
dynamics. The degree of cholesterol-mediated effects on FA
turnover is likely to be dependent on the rate of cholesterol uptake
and the integration of cholesterol into different membrane
compartments.

The cell cytoskeleton and integrin traffic

Integrin engagement by extracellular ligands leads to the
initiation of signals that impinge on the organisation of the cell
cytoskeleton. Different components of the cellular cytoskeleton –
actin, intermediate filaments and microtubules – and their
associated molecular motors, in turn, have been implicated in

the regulation of adhesion turnover through direct or indirect
modulation of integrin endocytosis and/or recycling.

Microtubules in integrin traffic

Directed intracellular vesicle movement is guided by polarized
microtubules and the microtubule-based motor proteins dyneins
and kinesins. Microtubules trigger FA disassembly by the local
dissolution of adhesions, following physical contact with and
delivery of clathrin and two adaptor molecules, autosomal
recessive hypercholesterolemia (ARH, also known as LDLRAP1)
and Dab2, to the targeted integrin–ECM adhesion site (Ezratty
et al., 2005; Ezratty et al., 2009; Kaverina et al., 1999). Although
microtubules are not absolutely required for FA disassembly or
for clathrin transport to the plasma membrane, nevertheless
they increase the rate of FA turnover (Ezratty et al., 2009;
Kaverina et al., 2002) (Fig. 1). Very recently, microtubule-
mediated delivery of the mitogen-activated protein kinase
(MAPK) kinase kinase kinase 4 (MAP4K4) to FAs through its
interaction with end-binding 2 (EB2, also known as MAPRE2)
protein has been shown to enhance FA dissolution through an
Arf6-dependent mechanism (Yue et al., 2014). Microtubule-
associated cytoplasmic linker associated proteins 1 and 2
(CLASP1 and CLASP2) have been shown to tether microtubules
to FAs, thereby triggering FA disassembly and turnover through
the local exocytosis of metalloproteinases. Intriguingly, the
accumulation of CLASPs in FAs has been suggested to occur
independently of microtubules and to be guided by a signal that is
located at FAs (Stehbens et al., 2014). Localisation of a-tubulin
acetyltransferase 1 (aTAT1) at paxillin-rich adhesions and its
interaction with AP2, present in clathrin-coated pits, has been
shown to promote microtubule stabilization at the leading edge,
potentially enhancing microtubule-mediated FA turnover
(Montagnac et al., 2013).
The microtubule-dependent delivery of cargos, such as

organelles and vesicles, is promoted by microtubule motor
proteins such as kinesins. In terms of integrin traffic, the
kinesin KIF1C directs the recycling of endocytosed a5b1
integrin to the rear of migrating cells (Theisen et al., 2012)
(Fig. 1), highlighting a new functional role for FAs at the trailing
edge. Here, KIF1C-dependent delivery of integrins is necessary to
allow rear FAs to mature and to resist the actin traction force in a
process described as ‘rear steering’. In this model, a well-
anchored cell tail maintains directional cell migration by
assigning a defined polarity to the cell. In contrast, tail
retraction leads to loss of cell polarity and re-establishment of a
new cell axis (Theisen et al., 2012). KIF15, another kinesin
motor, was recently identified in a fluorescence-microscopy-
based RNA interference screen as a new regulator of inactive
a2b1 integrin traffic (Eskova et al., 2014). However, unlike
KIF1C, KIF15 promotes a2b1 integrin endocytosis through the
transport of Dab2 to the plasma membrane to engage the a2
integrin tail (Fig. 1). KIF15-triggered endocytosis appears to be
integrin specific because Dab2 has not been associated with
trafficking of other receptors (Maurer and Cooper, 2006).

Actin and integrin traffic

In yeast, actin has a fundamental role in vesicle trafficking
and endocytosis (Kaksonen et al., 2006). Although actin is
dispensable for the process of endocytosis in higher eukaryotes,
several studies have indicated an important regulatory role for
actin in integrin endosomal traffic particularly on endosomes.
Actin-related protein (Arp)2/3, a multiprotein complex and actin
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nucleator, promotes the assembly of branched F-actin networks at
the plasma membrane and on endosomes (Goley and Welch,
2006; Kaksonen et al., 2006). Activation of Arp2/3 is mediated by
nucleation-promoting factors such as members of the Wiskott–
Aldrich syndrome protein (WASP) family, all of which function
in distinct subcellular locations (reviewed in Takenawa and
Suetsugu, 2007). WASH (WASP and SCAR homologue, of
which there are two isoforms, WASH1 and WASH2) recruits
Arp2/3 to early endosomes, where it promotes Arp2/3-dependent
actin polymerization, which is necessary for a5b1 integrin
recycling (Duleh and Welch, 2012; Zech et al., 2011). WASH
depletion reduces integrin recycling from perinuclear early
endosome antigen-1 (EEA1)-containing early endosomes,

without influencing integrin endocytosis. As a consequence,
a5b1 integrin accumulates in CD63-positive (a marker of
late endosomes and lysosomes) vesicles (Fig. 1). In ovarian
carcinoma cells, WASH is important for invasion into
fibronectin-rich matrices and for migration on cell-derived
matrices but is dispensable for 2D migration (Zech et al.,
2011). However, in fibroblasts, WASH depletion disrupts a5
integrin localization to FAs, decreases FA number and impairs
adhesion and migration on fibronectin (Duleh and Welch, 2012).
Thus, the requirement for WASH-mediated integrin endocytosis
for cell migration on 2D substrates appears to be cell-type-
specific or perhaps even cancer specific. Other roles for the
actin machinery in integrin traffic include myosin-X

Arp2/3

WASH

Arp2/3

WASH

Rab5/21

R
a
b

4
/1

1

KIF15

KIF1C

+
+

+

Clathrin

Early endosomes

Late endosomes/lysosomes

Recycling endosomes

Extracellular matrix

Cytosol

α2β1 integrin

α5β1 integrin

Actin

Microtubules

Dab2

Dab2

ARH

Myo6
Myo10

Focal adhesions Fibrillar adhesions

Filopodia

Adhesions at rear of cell

Internalisation

Recycling

Degradation

Key

Fig. 1. Role of cytoskeletal proteins in integrin traffic. Internalisation: clathrin-dependent endocytosis of integrins from FAs is promoted by acetylated

microtubules and adaptors, such as Dab2 and ARH. The microtubule motor kinesin KIF15 promotes endocytosis of inactive integrins by delivering Dab2 to these

receptors, whereas Myo6, an actin motor, mediates internalisation of a5b1 integrins from fibrillar adhesions. Recycling: in the early endosome compartment,

WASH-mediated recruitment of Arp2/3 and subsequent Arp2/3-mediated actin reorganisation drives integrin traffic to recycling endosomes. Here, several

mechanisms support integrin recycling back to the plasma membrane. For example, KIF1C promotes a5b1 recycling towards the rear of migrating cells for FA

maturation, and Myo10 traffics integrins to filopodia tips. Degradation: in the absence of WASH, integrins are rerouted towards degradation.
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(Myo10)-dependent regulation of integrin delivery to filopodia
tips (Zhang et al., 2004) to drive cell migration, invasion and
metastasis (Arjonen et al., 2014) and myosin-VI (Myo6)- and
Rab5-mediated endocytosis of active a5b1 integrin (Valdembri
et al., 2009) (Fig. 1).

Taken together, it is clear that the cytoskeletal machinery is
crucial for the regulation of integrin traffic. As integrin–ECM
engagement at the plasma membrane generates signals that
regulate cytoskeletal dynamics in cells, the role of the
cytoskeleton in integrin traffic is deeply connected with integrin
activity and function.

Trafficking of active and inactive integrin heterodimers

Integrin activity is tightly regulated by intracellular adaptors and
extracellular factors that lead to conformational changes in the a-
integrin–b-integrin heterodimer. Integrins can exist in either (1)
an inactive, bent conformation with a closed head-piece and low
affinity for ECM ligands, (2) a primed, extended conformation
with a closed head-piece and low affinity for ligand, or (3) an
active, extended conformation with an open head-piece and high
affinity for ECM ligands (Fig. 2A; reviewed in Askari et al.,
2009; Luo et al., 2007). In addition to differing ligand-binding
affinity and downstream signalling at the plasma membrane,
active and inactive integrin conformers can be trafficked through
distinct routes.

Using antibodies specifically recognising integrin activation
states (Byron et al., 2009), active and inactive b1 integrins have
been shown to be endocytosed through the same clathrin- and
dynamin-dependent routes to Rab5- or Rab21-positive EEA1-
containing early endosomes in PC-3, MDA-MB-231 and NCI-
H460 cells (Fig. 2B; Arjonen et al., 2012). From here, active b1 is
recycled through the long Rab11-dependent recycling loop,
whereas the inactive b1 receptor is rapidly recycled in an actin-
and Rab4-dependent manner to Arf6-positive protrusions at the
plasma membrane (Fig. 2B). Consequently, the net endocytosis
rate of active b1 integrin is relatively high compared to its
inactive conformer and, therefore, in the steady-state situation,
inactive b1 is mostly localized at the plasma membrane, whereas
active b1 integrin appears to be more cytoplasmic. This
localisation is most likely linked to the observation that ligand-
bound active integrins traffic to late endosomes and lysosomes,
either for degradation (Lobert and Stenmark, 2012) or for ligand
detachment, in an increasingly acidic environment, to allow
recycling of unbound free integrins back to the plasma
membrane. In line with this, active b1 integrin appears to
recycle slowly (possibly owing to the requirement for ligand
dissociation prior to recycling) and the active, but not the inactive
receptor, has been observed in Rab7-positive late endosomes
(Arjonen et al., 2012). However, a fascinating study now shows
that integrins can be recycled back to the plasma membrane
directly from lysosomes while still in their active conformation
(Dozynkiewicz et al., 2012). This process, which occurs
specifically in cancer cells, requires the concerted activities of
Rab25 and chloride intracellular channel protein 3 (CLIC3).
Rab25 directs ligand-bound active a5b1 integrins to late
endosomes and lysosomes, where, instead of degradation, the
receptors undergo retrograde transport to the plasma membrane
at the rear of cancer cells in a CLIC3-dependent pathway
(Dozynkiewicz et al., 2012). Conversely, in the absence of
CLIC3, ligand-bound integrins are directed towards degradation
(Fig. 2B). Interestingly, in that study, a5b1 integrin traffic was
not dependent on CLIC3 in the absence of exogenously added

fibronectin, indicating a role for CLIC3 specifically in the
recycling of active ligand-engaged integrins to the back of
invading cells. This process was implicated in tail retraction
during cell migration on cell-derived matrices and in cell invasion
in 3D organotypic microenvironments (Dozynkiewicz et al.,
2012). This reveals an intriguing, apparently highly context-
dependent role, for a5b1 recycling in the dynamics of the cell
rear. As described previously, KIF1C delivery of a5b1 integrin to
the cell rear stabilizes FAs, inhibits rear detachment and guides
directional migration in a 2D environment (Theisen et al., 2012),
whereas, in 3D or on cell-derived matrices, CLIC-3-dependent
a5b1 integrin recycling to the cell rear facilitates dissociation of
the retracting tail. In addition to roles in integrin recycling,
CLIC3 has been associated with cell invasion and poor prognosis
in oestrogen receptor (ER)-negative breast cancer independently
of Rab25 by directing the recycling of the pro-invasive MT1-
MMP from late endosomes to the plasma membrane (Macpherson
et al., 2014).

Small GTPases govern integrin traffic

Small GTPases are important signalling molecules that cycle
between an active GTP-loaded form, capable of associating with
effectors, and an inactive GDP-loaded form. The switch between
the two activation states is primarily mediated by guanine-
nucleotide-exchange factors (GEFs) and GTPase-activating
proteins (GAPs). Among the Ras superfamily of small GTPases,
members of the Rho, Rab and Arf families have been implicated in
integrin traffic. The Rho GTPases (Rho, Rac and Cdc42) impact on
integrin trafficking by modulating actin cytoskeleton dynamics
(Ridley, 2006). The Rab and Arf family of small GTPases have a
more dominate role in the regulation of membrane dynamics and
receptor trafficking and will be discussed below.

Rab GTPases and integrin traffic

Rab proteins constitute the largest family of Ras-related small
GTPase molecules that facilitate docking and fusion of transport
vesicles (Zerial and McBride, 2001). The Rab family members
are compartmentalised into specific endosomal membranes,
suggesting that there is a unique function for each GTPase in
the recycling pathways (Sönnichsen et al., 2000). Integrin
endocytosis from the plasma membrane to the early endosomes
is regulated by Rab5 and Rab21. Rab21 interacts with integrins
directly (Pellinen and Ivaska, 2006) through the conserved
membrane-proximal WKLGFFKR sequence found in the
majority of the integrin a-tails (Hynes, 2002) and mediates b1
integrin endocytosis to EEA1-containing early endosomes (Mai
et al., 2011). Here, p120RasGAP (RASA1) competes with Rab21
for the same binding sites within the integrin cytoplasmic
domain. Displacement of Rab21 by RASA1 drives b1 integrin
recycling from EEA1-containing endosomes back to the plasma
membrane and is important for directional cell motility (Mai
et al., 2011) (Fig. 3). Rab25 also interacts directly with a5b1
integrins through the b1-subunit cytoplasmic domain. However,
unlike Rab21, Rab25 interacts with integrin on endosomes and
promotes differential recycling of integrins based on receptor
activation status. Inactive integrin receptors undergo locally
restricted recycling in extended protrusions of invading cells to
drive invasion, whereas active receptors might be targeted for
degradation in late endosomes (Bridgewater et al., 2012; Caswell
et al., 2007) (Figs 2 and 3).
To date, the GEFs and GAPs that regulate Rab21 and Rab25

activities in integrin traffic remain elusive. In contrast, there is
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Fig. 2. Trafficking of active and inactive integrin heterodimers. (A) Stepwise model of integrin activation through a conformational switch. (B) Schematic

representation of the trafficking routes of active and inactive integrin heterodimers. Internalisation: at the plasma membrane, both active and inactive integrins

are endocytosed to early endosomes in a Rab5- or Rab21-dependent fashion. Dab2 acts as an adaptor for endocytosis of inactive (unengaged) integrins,

whereas an Nrp1–GIPC1–Myo6–APPL module mediates endocytosis of active a5b1 integrin from fibrillar adhesions. Recycling: inactive b1 integrins are rapidly

recycled to Arf6-positive protrusions in a Rab4-dependent manner, whereas active receptors are trafficked through the Rab11 long-loop pathway (the red

asterisk indicates recycling from PNRC – omitted here for simplicity). Degradation: in early endosomes, SNX17 binding to the cytoplasmic domain of inactive b-

integrin promotes recycling of the receptor over degradation. Similarly, in the late endosome and lysosome compartment, CLIC3-mediated recycling prevents

degradation of the active integrin receptor.
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some evidence for specific Rab5 GEFs and GAPs in modulation
of integrin-specific endocytic routes and integrin signalling.
RIN2, a Rab5-specific GEF, together with R-Ras has been
implicated in b1 integrin endocytosis (Sandri et al., 2012). R-
Ras, which is mainly expressed in endothelial and vascular cells,
is activated by ECM-induced integrin ligation at the plasma
membrane and recruits RIN2 to nascent adhesions in
lamellipodia. R-Ras inhibits RIN2 GEF-activity towards Rab5,
converting RIN2 into an adaptor with increased affinity for
GTP-loaded Rab5, and targets Rab5 to the plasma membrane to
promote the endocytosis of active, ligand-bound b1 integrin
together with the R-Ras–RIN2–Rab5 complex. In endosomes,

R-Ras activates Rac1 through the Rac1 GEF Tiam1 (T-
lymphoma invasion and metastasis-inducing protein 1), leading
to Arf6-mediated transport of Rac1-GTP to the plasma
membrane (Holly et al., 2005; Radhakrishna et al., 1999;
Sandri et al., 2012) to promote actin polymerization and
assembly of nascent adhesions at the lamellipodia. This further
triggers R-Ras activation, thus creating a positive feedback
mechanism to promote cell migration (Fig. 3). RN-tre (also
known as USP6NL) represents a Rab5 GAP that localizes to FAs
and Rab5-positive endosomes and inhibits endocytosis of b1, but
not of b3 integrin, to regulate FA turnover and chemotactic cell
migration (Palamidessi et al., 2013).

Rab21
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Fig. 3. Role of small GTPases in integrin traffic. Rab and Arf GTPase family members and their GTPase regulators are intimately involved in different steps of

trafficking pathways. Internalization: integrin endocytosis to early endosomes can be triggered by both Rab5 and Rab21, regardless of integrin activation status.

Other reported pathways of integrin internalization involve the activation of Arf5 facilitated by a BRAG2–clathrin–AP2 complex at clathrin-coated pits (dependent

on PtdIns4,5P2), or the activation of R-Ras and the formation of an R-Ras–RIN2–Rab5 complex at the plasma membrane downstream of integrin–ECM

signalling. In early endosomes, this complex also activates Rac1, through the Rac1 GEF Tiam1, ultimately promoting Rac1 translocation to the plasma

membrane and the assembly of new nascent adhesions at lamellipodia (Rac1 activation and translocation is represented by red arrows). Recycling: in EEA1-

containing early endosomes, RASA1 outcompetes Rab21 for binding to the b-integrin subunit and drives b1 integrin recycling. Rab25 interacts directly with a5b1

on endosomes to facilitate receptor recycling. Arf6-dependent b1 integrin recycling is regulated by the Arf6 GAPs ARAP2 and ACAP1 which localise to different

Arf6-positive endosome compartments. ARAP2 promotes the transition of the integrin receptor from APPL-containing endosomes to EEA1-containing early

endosomes and towards recycling compartments and/or degradation (blue arrows). In addition, ARAP2 might prevent the direct recycling of integrins from the

early endosomes to the tubular recycling compartments or to the membrane (grey arrows). ACAP1 has been implicated in rapid b1 integrin recycling from Arf6-

positive tubular endosomes (green arrow). The red asterisk indicates integrin traffic from recycling endosomes.
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Arf GTPases and integrin traffic

Arfs represent the smallest family of the Ras superfamily of
small GTPases and key regulators of membrane dynamics. Arf6
has an established role in both clathrin-independent integrin
internalisation (Sakurai et al., 2010; Yue et al., 2014) and
integrin recycling back to the plasma membrane (Dunphy et al.,
2006; Morgan et al., 2013; Powelka et al., 2004) to regulate FA
dynamics and cell migration (Morgan et al., 2013). In addition,
inactive b1 integrin localizes in Arf6-positive protrusions at the
plasma membrane (Arjonen et al., 2012). A recent study has
demonstrated how Arf6 binding to structurally distinct GAPs
can further fine-tune Arf6-dependent integrin trafficking
pathways. The Arf6 GAPs ACAP1 and ARAP2 localize to
distinct Arf6-positive endosomal compartments and exhibit
opposing effects on FA morphology (Chen et al., 2014).
ARAP2 binds to the endocytic protein APPL and mediates
transport of b1 integrin from the very early APPL-containing
endosomes through EEA1-containing early endosomes, whereas
ACAP1 is associated with Rab11-containing tubular recycling
compartments and faster integrin recycling (Dai et al., 2004)
(Fig. 3). All of these trafficking steps appear to be specific for
integrin receptors, as depletion of the key mediators of these
pathways has no effect on transferrin receptor or epidermal
growth factor receptor (EGFR) trafficking (Chen et al., 2014;
Moravec et al., 2012).

Another member of the Arf family, Arf5, has recently been
implicated specifically in b1 integrin endocytosis (Moravec et al.,
2012). BRAG2, a member of the BRAG family (brefeldin-
resistant Arf GEFs), is able to activate Arf4, Arf5 and Arf6, but
only Arf5 activation has been linked to integrin endocytosis from
fibrillar adhesions or FAs (Dunphy et al., 2006; Moravec et al.,
2012). BRAG2 is recruited to clathrin-coated pits at the plasma
membrane through direct interaction with clathrin and AP2
(Moravec et al., 2012) (Fig. 3) and further interacts with plasma
membrane PtdIns4,5P2, which has been shown to potentiate the
GEF activity of BRAG2 (Sakurai et al., 2011). BRAG2-mediated
activation of Arf5 at the plasma membrane drives the endocytosis
of active a5b1 integrins to early endosomes. Interestingly, the
BRAG2-driven endocytic pathway appears to be specific for this
heterodimer, as BRAG2 only mediates the recycling, but not the
endocytosis, of the avb3 integrin heterodimer (Manavski et al.,
2014) (Fig. 3).

In addition to GEFs and GAPs, Rab- and Arf-dependent roles
in integrin traffic can be further defined by specific downstream
effectors (not discussed in this review). Importantly, the precise
spatiotemporal regulation of integrin endocytic and excocytic
traffic is likely to be highly dependent on the coordinated
activities of Rabs, Arfs and their effectors.

Heterodimer specificity of integrin traffic in cell migration

and invasion

Interactions at the integrin cytoplasmic domain

The cytoplasmic tails of integrins are critical in the translation
and coordination of extracellular signals to determine cell fate. As
the integrin cytoplasmic domain lacks enzymatic activity,
integrin-mediated signalling is initiated by direct recruitment of
intracellular proteins to form macromolecular complexes at sites
of cell–ECM contact (FAs) (Zaidel-Bar and Geiger, 2010). As
such, both a- and b-integrin subunits contain a wealth of
overlapping linear motifs in their cytoplasmic domains and the
complexity of these molecular codes is becoming more apparent
as new binding sites are continuing to be defined.

In the b subunit, the NPxY motifs have been shown to regulate
integrin endocytosis by binding to clathrin adaptors Numb
(Nishimura and Kaibuchi, 2007) and Dab2 (Teckchandani
et al., 2012). During retina morphogenesis, the transmembrane
protein Opo (also known as OFCC1) antagonises Numb-
dependent integrin endocytosis by directly competing for Numb
binding through an integrin-like NPxF motif. Thus, Opo might
promote polarized integrin localization to aid in optic cup folding
(Bogdanović et al., 2012). This spatial restriction of Numb-
mediated integrin traffic has also been linked to efficient cell
migration. Phosphorylation of Numb by atypical protein kinase
C (aPKC) prevents its association with integrins, the AP2 and
Par complex, and recruitment to clathrin-coated structures.
Subsequent Numb dephosphorylation, at the leading edge of
a migrating cell, promotes localised integrin endocytosis
(Nishimura and Kaibuchi, 2007). Dab2 has been implicated
both in the turnover of ligand-engaged and ligand-free integrins
in different cell types. In HeLa cells, Dab2 regulates b1 integrin
endocytosis from the dorsal membrane in 2D microenvironments,
to deliver fresh receptors during cell migration (Teckchandani
et al., 2012), whereas in fibroblasts, Dab2 plays a role in
microtubule-induced FA disassembly (Ezratty et al., 2009). In the
endosomal compartment, the sorting nexin family members
SNX17 and SNX31 disrupt integrin–kindlin-2 interaction by
binding to the same membrane-distal integrin NPxY motif as
kindlin-2 and preventing b1 integrin from progressing along the
degradative pathway by a yet unknown mechanism (Böttcher
et al., 2012; Tseng et al., 2014).
Other less-conserved motifs have been identified on the b-

subunit and are potentially involved in heterodimer-specific
traffic regulation. Binding of ACAP1 to b1 integrin at
cytoplasmic residues 10–15 (which are also found in b3 and b5
integrins) elicits a recycling signal (Bai et al., 2012). In addition,
HAX-1 binding to b6 integrin between residues 731 and 758
triggers integrin endocytosis and impacts on cancer cell migration
(Ramsay et al., 2007).
On the a-subunit, the importance of the conserved GFFKR

motif in integrin traffic is exemplified by the role of Rab21 in
endocytosis and, in particular, during cytokinesis (Pellinen et al.,
2008). Similar to the b-subunit, the concept of competition
equally applies to the a-subunit, where RASA1 competes with
Rab21 for the same binding site to promote integrin recycling
(Mai et al., 2011).

Differential heterodimer recycling

The 24 functionally distinct integrin heterodimers in mammals
have overlapping binding specificities to the ECM. However,
binding of a heterodimer to the same ECM ligand can elicit very
different biological responses. One of the best examples is the
differential receptor recycling and crosstalk of the fibronectin
receptors a5b1 and avb3. Several studies have demonstrated a
mechanism whereby the activity of avb3 integrin suppresses
recycling of a5b1 integrin (White et al., 2007). In the context of
cell migration, avb3 integrin recycling supports Rac-dependent
lamellipodia formation and directionally persistent cell migration.
Conversely, a5b1 integrin recycling induces fast random cell
migration through a Rho–ROCK–cofilin pathway (Danen et al.,
2005; Morgan et al., 2013; White et al., 2007). When cancer cells
migrate invasively through a 3D microenvironment that is rich in
fibronectin, increased recycling of a5b1 promotes invasion
through the reorganization of the actin cytoskeleton and cell
morphology – characterized by the extension of long pseudopods
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(Caswell and Norman, 2008; Jacquemet et al., 2013; Rainero
et al., 2012). The pathways that have been implicated in the
switch from avb3- to a5b1-mediated recycling are described
below and are summarized in Fig. 4.

In some cases, recycling of specific integrin heterodimers has
been demonstrated but the basis for the specificity remains to be
identified. Rab25 regulates the localized recycling of a5b1
integrin in protrusions of invading cells. However, the interaction
is mediated by the b1 cytoplasmic tail (Caswell et al., 2007),
which is shared by several different integrin heterodimers, and
therefore does not explain the heterodimer specificity of this
pathway.

Role of growth factor signalling, Src and mutant p53 in integrin-

heterodimer-specific recycling

One important mechanism that defines the differential recycling
of integrin heterodimers is the growth-factor-stimulated delivery
of integrins back to the plasma membrane. Under basal
conditions, internalized a5b1 and avb3 enter the PNRC and are
recycled back to the plasma membrane in a Rab11- and PKB/Akt-
dependent manner. However, stimulation with platelet-derived
growth factor (PDGF), diverts avb3 integrin, but not a5b1,
through a fast short-loop recycling route that involves Rab4 and
the association of avb3 with the PKC-related kinase PKD1 (also
known as PRKD1) (Woods et al., 2004). PDGF stimulation
promotes PKD1-mediated phosphorylation of rabaptin-5 (a Rab5
effector) and the subsequent formation of a rabaptin-5–Rab5–
Rab4 complex (Christoforides et al., 2012). This complex triggers
delivery of avb3 integrin to the leading edge of migrating cells
for persistent cell migration and an avb3-dependent mode of cell
invasion into microenvironments with low fibronectin content
(Christoforides et al., 2012). Interestingly, PDGF has also been
implicated in integrin endocytosis from CDRs, actin-dependent
structures at the dorsal cell surface, by macropinocytosis (Gu
et al., 2011), suggesting that context-dependent responses of
integrins to growth factors exist. In another study, HGF has been
shown to induce rapid b1 integrin endocytosis to drive protease-
and integrin-dependent collective cell migration in 3D Matrigel in
a process requiring clathrin, RhoA and the clathrin adaptor HIP1
(Mai et al., 2014). HIP1 in complex with the clathrin light-chain
has also been shown to be necessary for the recycling of the
endocytosed inactive integrin and to promote cell migration in
fast-migrating lung cancer cells (Majeed et al., 2014). However,
whether growth factor signalling feeds into this trafficking route
was not addressed. Nevertheless, there are clear indications that
crosstalk between integrins and growth factor receptors functions
not only to integrate multiple extracellular signals but also to
modify integrin traffic and adhesion dynamics.

Src is a tyrosine kinase implicated in many cancer types.
Interestingly, it has also been linked to integrin traffic and
migration. Src-mediated phosphorylation of syndecan-4 (a
proteoglycan receptor for ECM molecules and growth factors)
inhibits Arf6 activation and Arf6-dependent a5b1 integrin
recycling, leading to increased FA stabilization and directionally
persistent cell migration on cell-derived matrices. In the absence of
Src-mediated syndecan-4 phosphorylation, increased a5b1
recycling accelerates FA turnover and inhibits cell migration
(Morgan et al., 2013) (Fig. 4). Disruption of syndecan-4 recycling
leads to the accumulation of fibroblastic growth factor (FGF) and
b1 integrin in syndecan-containing endosomes, suggesting
potential co-trafficking of these receptors (Zimmermann et al.,
2005).

Differential recycling, which determines the bioavailability of
avb3 and a5b1 integrins to engage matrix ligands, has also been
identified as a crucial mechanism regulating the mode of cancer
cell invasion in 3D microenvironments. Integrin association
with the Rab-coupling protein [RCP; also known as Rab11
family interacting protein-1 (RAB11FIP1)] determines which
heterodimer is recycled back to the membrane (Caswell et al.,
2009; Muller et al., 2009). Cancer cell invasion can occur by
several mechanisms that are characterized by dramatic changes in
cell morphology and actin reorganization that are dependent on
the antagonistic activities of Rac1 and RhoA downstream of avb3
and a5b1 integrin signalling, respectively. In fibroblasts and
cancer cells expressing both avb3 and a5b1, RCP is associated
with avb3 integrin. Gain-of-function mutants of the tumour
suppressor p53 or the disruption of avb3 function using avb3
inhibitors releases b3-associated RCP. RCP then binds to a5b1
integrin and promotes its recycling to phosphatidic-acid-rich
membranes at the tip of invasive cell pseudopods (Caswell and
Norman, 2008; Muller et al., 2009; Rainero et al., 2012). RCP and
a5b1 integrin cooperatively recruit receptor tyrosine kinases,
including EGFR1, to further regulate trafficking and downstream
signalling on the plasma membrane through the activation of
PKB/Akt. PKB phosphorylates RacGAP1 and so triggers its
recruitment to IQGAP1 at the invasive front. This pathway
downstream of integrin recycling suppresses Rac activity and
concomitantly activates RhoA locally in these specific subcellular
regions at the cell front. The Rac-to-RhoA switch promotes the
extension of pseudopod protrusions and invasive migration into
fibronectin-containing matrices (Jacquemet et al., 2013). These
protrusions contain actin spikes that resemble filopodia.
However, how increased a5b1 recycling and downstream
Rho activation influences filopodia formation remains to be
determined. Interestingly, mutant p53 also induces expression of
the filopodial protein myosin-X, leading to enhanced filopodia
formation and cell invasion in breast and pancreatic cancer
(Arjonen et al., 2014). This is linked to the ability of myosin-X to
transport integrin b1 to filopodia tips where integrin-adhesions
enhance the stability of these structures and drive cancer cell
invasion (Arjonen et al., 2014; Zhang et al., 2004). Thus, integrin
traffic and filopodia formation appear to be linked and this will be
an interesting topic for investigation in the future.
As described above, mutant p53 proteins promote invasion, in

part, by enhancing RCP-dependent a5b1 integrin recycling. In
addition, p53 mutants have been implicated in the recycling of
MET, the HGF receptor, leading to enhanced MET signalling,
invasion and cell scattering in response to HGF in a MET- and
RCP-dependent manner (Muller et al., 2013). Tensin-4, an
oncoprotein and a known b1-integrin-binding partner, provides
an additional link between MET and b1 integrin traffic. Tensin-4
interacts with active MET, possibly coupling MET and b1
integrin, and stabilizes MET by inhibiting its endocytosis. Thus,
the tensin-4–MET complex promotes cell survival, proliferation,
tumour growth and cell migration (Muharram et al., 2014). It is
therefore possible that the trafficking pathways of MET and b1
integrin are intimately linked and that distinct growth factor
signals determine both endocytosis and the RCP recycling partner
of integrins to mediate the appropriate cell behaviour.

Conclusions and future perspectives

Major advances have been made in our understanding of how
integrin traffic is regulated as well as its biological importance.
An increasing number of studies have linked integrin endosomal
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traffic, and, in particular, its recycling to invasion and metastasis
in cancer. Cross-talk between integrins and receptor tyrosine
kinases is hard-wired into this system and will be an interesting
area of research in the future as the details of growth-factor-
induced regulation of integrin traffic under different conditions
remains incompletely understood. However, it is clear that
endosomal adaptors and scaffold proteins are key mediators of
the coordinated traffic of these receptors and, interestingly, some
of these adaptors, such as RCP or tensin-4, are upregulated in
carcinomas (Muharram et al., 2014; Zhang et al., 2009).
Furthermore, regulation of the activity of the Rho family of
small GTPases, including Rac1 and RhoA, which are crucial
downstream effectors of integrin signalling, has been linked to
integrin traffic and is a key factor in determining cell shape,
mobility and invasive capacity in many different cancer types
(Jacquemet et al., 2013; Mai et al., 2014). Several studies have
now established important regulatory steps in integrin traffic
that determine whether the receptor is recycled or targeted for
degradation. It appears that, unless the integrin is diverted
towards recycling by proteins including WASH, SNX17 or
CLIC3, the receptor is instead trafficked to lysosomes resulting in
reduced integrin levels in cells. This suggests that upon inhibition
of recycling degradation might become the default pathway of
endocytosed integrin cargo.

Although many of the mechanistic details of integrin traffic
are becoming increasingly well established, it is only poorly
understood whether these pathways have any specificity towards
certain integrin heterodimers. Distinct integrin heterodimers are
known to exhibit tissue-specific expression and elicit specific
signalling processes following ligand engagement. However, most
of the currently established integrin traffic mechanisms are shared,
for example, by all b1 integrins. How specificity is established and
what are the mechanisms that allow cells to specifically regulate
the traffic of a subset of ligand-engaged integrins is one of the
major unanswered questions in the field.

In the field of cancer, metabolism is widely studied for its
important role in regulating oncogenic proliferation and cancer
cell survival. Interestingly, recent evidence has linked
metabolism and glycolysis to the regulation of angiogenesis.
Increased glycolysis in the sprouting endothelial tip cells is
important for the cell’s migratory properties and the glycolytic
enzymes appear to localize to the cell leading edge with actin (De
Bock et al., 2013). Furthermore, integrins have recently been
shown to turn over by autophagy. In breast cancer cells,
autophagy modulates cell migration and b1 integrin membrane
recycling, suggesting a link between integrin traffic and
metabolic alterations in cancer (Tuloup-Minguez et al., 2013).
The potential links between metabolism and integrin traffic
should be investigated in the future. This opens up the exciting
possibility that integrin traffic could be regulating invasion and
migration differentially in cancer cells and that the ‘Warburg
effect’ might not only regulate cell proliferation but also invasion
and metastasis through integrins.
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