
AT-A-GLANCE ARTICLE

Integrins

Malgorzata Barczyk & Sergio Carracedo &

Donald Gullberg

Received: 7 May 2009 /Accepted: 25 June 2009 /Published online: 20 August 2009
# The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Integrins are cell adhesion receptors that are

evolutionary old and that play important roles during

developmental and pathological processes. The integrin

family is composed of 24 αβ heterodimeric members that

mediate the attachment of cells to the extracellular matrix

(ECM) but that also take part in specialized cell-cell

interactions. Only a subset of integrins (8 out of 24)

recognizes the RGD sequence in the native ligands. In some

ECM molecules, such as collagen and certain laminin

isoforms, the RGD sequences are exposed upon denatur-

ation or proteolytic cleavage, allowing cells to bind these

ligands by using RGD-binding receptors. Proteolytic

cleavage of ECM proteins might also generate fragments

with novel biological activity such as endostatin, tumstatin,

and endorepellin. Nine integrin chains contain an αI

domain, including the collagen-binding integrins α1β1,

α2β1, α10β1, and α11β1. The collagen-binding integrins

recognize the triple-helical GFOGER sequence in the major

collagens, but their ability to recognize these sequences in

vivo is dependent on the fibrillar status and accessibility of

the interactive domains in the fibrillar collagens. The

current review summarizes some basic facts about the

integrin family including a historical perspective, their

structure, and their ligand-binding properties.
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History

Integrins are cell adhesion receptors that are evolutionary old

(Johnson et al. 2009). Despite their long history, they have

only been characterized at the molecular level for approx-

imately 25 years. During this period, a large number of

articles on the ever-increasing intricacies of integrin action

has been published. To summarize this large amount of data

on integrins “at a glance” is thus almost an impossible task.

In the current review, we have however attempted to

provide some of the basic facts about integrins. Recent

excellent reviews on various aspects of integrins structure

and function will be referred to in the text.

One reason for the difficulties encountered when trying

to characterize the integrin family is that many of their

ligands are large multi-adhesive extracellular matrix (ECM)

molecules that, in addition to binding integrins, bind other

proteins including ECM molecules, growth factors, cyto-

kines, and matrix-degrading proteases. One successful

approach that was instrumental in the identification of

integrins took advantage of antibodies that blocked cell

adhesion (Horwitz et al. 1985; Knudsen et al. 1985). In

another approach, the mapping of the minimal cell adhesion

site in fibronectin to the RGDS sequence gave rise to

affinity chromatography protocols with increased specific-

ity (Pierschbacher et al. 1983; Ruoslahti and Pierschbacher

1986). In these affinity protocols, the optimization of ion

composition in the purification buffers was essential and

resulted in the empirical finding that manganese ions (Mn2+)

increased integrin affinity (Gailit and Ruoslahti 1988). In

1986, the antibody approach led to the expression cloning

of cDNA encoding the chick integrin β1 subunit (Tamkun

et al. 1986). The name “integrin” was given to denote the

importance of these receptors for maintaining the integrity

of the cytoskeletal-ECM linkage (Hynes 2004, Tamkun et
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al. 1986). In the 1980s, several groups were working on

seemingly disparate cell surface proteins, which at the time

were named position specific (PS) antigens in Drosophila

(Leptin et al. 1987; Wilcox et al. 1984), very late antigens

of activation (VLA) on immune cells (Hemler et al. 1985),

cell surface receptors on lymphoid and myeloid cells

(Springer et al. 1986), and platelet glycoproteins (Parise

and Phillips 1985, 1986). With the cloning of the cDNAs

encoding these proteins, it became clear that they were

related to the fibronectin receptors isolated by using RGD

peptides or cell adhesion blocking antibodies, and that they

all belonged to what was to be called the integrin family of

cell adhesion receptors (Hynes 2004; Fig. 1, see also

Electronic Supplementary Material).

Structure

When integrins were being identified with antibodies

to integrin β subunits, several proteins were co-

immunoprecipitated, and the number of subunits that

composed the functional receptors was by no means

obvious. However, with antibodies to integrin α sub-

units, and with protocols using RGDS peptides enabling

the affinity purification of pure receptors, it became

clear that the functional receptors were heterodimers.

Integrin heterodimers are composed of non-covalently

associated α and β subunits (Hynes 2002). In verte-

brates, the family is composed of 18 α subunits and 8 β

subunits that can assemble into 24 different heterodimers

(Takada et al. 2007). The integrins can be grouped into

subgroups based on ligand-binding properties or based on

their subunit composition (see Table 1, 2).

The β1 integrins, β2 integrins, and αv-containing

integrins are the three largest groups in this kind of

classification (Fig. 2, see also Electronic Supplementary

Material). The α and β subunits show no homology to each

other, but different α subunits have similarities among

themselves, just as there are conserved regions in the

different integrin β subunits.

Integrin α subunits

The α subunit is composed of a seven-bladed β-propeller,

which is connected to a thigh, a calf-1, and a calf-2 domain,

together forming the leg structure that supports the integrin

head (Fig. 3, see also Electronic Supplementary Material).

The last three or four blades of the β-propeller contain EF-

hand domains that bind Ca2+ on the lower side of the blades

facing away from the ligand-binding surface. Ca2+ binding

to these sites allosterically affects ligand binding

(Humphries et al. 2003; Oxvig and Springer 1998).

Nine of the integrin α chains contain an I domain, also

called the A domain, which is a domain of approximately 200

amino acids, inserted between blades 2 and 3 in the β-

propeller (Larson et al. 1989). The αI first appeared in

chordate integrins, and is thus absent in invertebrates but is

present in vertebrates (Johnson et al. 2009). The αI domain is

present in the β2 integrin subgroup of integrins, in the

collagen-binding integrins belonging to theβ1 subfamily (α1,

α2, α10, and α11), and the αE integrin chain forming the

αEβ7 heterodimer. The I domain assumes a Rossman fold

with five β-sheets surrounded by seven α helices. Ligand

binding occurs via a coordinating Mg2+ ion in the so-called

metal-ion-dependent adhesion site (MIDAS) motif (Lee et al.

1995). The αI domains with the capacity to interact with

collagens, in addition, contains a so-called αC helix (Emsley

et al. 1997), which has been suggested to play a role in

collagen binding.

The αI-domain-containing integrins show fairly high

homology in their αI domains, but the α chain cytoplasmic

domains are highly divergent, only sharing the GFFKR

sequence or even the core GFFXR sequence in the

membrane proximal region.

Relatively little is known about proteins interacting with

the α-chain cytoplasmic tails.

An area between the hybrid domain in the β subunit and a

surface in the β-propeller of the α subunit seems to be crucial

Fig. 1 Integrin founding fathers. Erkki Ruoslahti (left) and Richard O.

Hynes (right) contributed seminal data in the early days of cell adhesion

research leading to the characterization of the integrin family
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Table 1 Characteristics of human integrinα subunits. Data are presented

for the human integrinα chains and have been retrieved from original data

submitted to the NCBI database (http://www.ncbi.nlm.nih.gov/sites/

entrez) and original publications. For ligand specificity, see references

in text ( ICAM intercellular adhesion molecule, VCAM vascular cell

adhesion molecule, VEGF vascular endothelial growth factor)
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Table 2 Characteristic of human integrin β subunits. Data are presented for the human integrin β chains and have been retrieved from original

data submitted to NCBI database (http://www.ncbi.nlm.nih.gov/sites/entrez) and original publications (see text)

Integrin 

chain 

Characteristics Notes

1 (CD 29, Gp

IIa)

798 aa, splice variants 1A,

1B, 1C, 1D

Splice variants 1B and 1C not 

present in mice, minor variants 

with unclear function  

2 (CD18) 769 aa  

3 (CD 61, GP

IIIa)

788 aa, splice variants 3A,

3B and 3C

3A major form

4 (CD104, TSP-

180)

1875 aa, splice variants

4A-E

4A and 4B major forms, 

similar function  

5 799 aa, splice variants 5A,

5B

Both splice variants have similar  

functions

6 788 aa

7 (LPAM-1, P) 798 aa

8 769 aa
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Fig. 2 Representation of the

integrin family. In vertebrates,

the integrin family contains 24

heterodimers. Isolated species

that have undergone genome

duplication (e.g., Danio rerio)

have more integrin family

members. In higher vertebrates,

the integrin family has 24 pro-

totypical members

α    1   2  I domain  3   4    5   6   7    Thigh    Calf-1   Calf-2

β -propeller domain repeats
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Fig. 3 Representation of a prototypical αI-domain-containing integrin

heterodimer. Nine out of the 18 integrin α chains contains an αI

domain, as shown, but all integrins contain a βI domain in the β

subunit. A Representation of the domains in αI domain-containing

integrin (stars divalent cation-binding sites). B Representation of

arrangement of domains in αI-domain-containing integrin
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for the integrin heterodimerization that occurs intracellularly

prior to transport to the cell surface (Humphries 2000).

Presumably, the specificity of chain selection lies in those

sequences adjacent to these interacting surfaces. Generally,

an excess of β subunits exists in the cell, and the amount of

α subunit determines the amount of receptor that will go to

the cell surface (Santala and Heino 1991). Free α and β

subunits do thus not exist at the cell surface.

Integrin β subunit

The β subunit contains a plexin-sempahorin-integrin (PSI)

domain, a hybrid domain, a βI domain (Lee et al. 1995),

and four cysteine-rich epidermal growth factor (EGF)

repeats. The βI domain contains an Mg2+ coordinating

MIDAS and a site adjacent to MIDAS (ADMIDAS)

binding an inhibitory Ca2+ ion. This ADMIDAS site binds

the Mn2+ ion leading to a conformational change resulting

in an active form of the integrin (Humphries et al. 2003).

The β integrin chains share homology in the cytoplasmic

tail, with NPX/Y motifs able to bind proteins containing PTB

domains. In recent years, several proteins have been found to

interact with the β subunit (Legate and Fassler 2009).

Some key proteins seem to be essential for binding and,

in doing so, break salt bridges formed with the α subunit

that keeps the integrin in the inactive conformation. A

detailed study has recently clarified the interacting regions

in the αIIb and β3 subunit transmembrane domains,

suggesting a model for conformation-mediated changes

over the membrane (Lau et al. 2009). Talin 1–2 and

kindlins 1–3 seem to act synergistically to activate integrins

by binding to integrin β subunit tails (Larjava et al. 2008;

Senetar et al. 2007; Tadokoro et al. 2003), whereas filamin

A negatively regulates activation (Kiema et al. 2006).

Migfilin is another molecular switch that, by blocking the

integrin-binding region of filamins (Ithychanda et al. 2009),

can regulate integrin activation. More recently, the integrin-

linked kinases (ILK) (Honda et al. 2009) and focal adhesion

kinase (FAK) (Michael et al. 2009) enzymes taking part in

outside-in signaling have also been shown to affect integrin

activation via inside-out signaling.

Conformational changes in integrins

The crystallization of a soluble integrin heteodimer has made

clear that integrins can exist in a compact bent conformation

(Xiong et al. 2002). Later research has shown that this

conformation represents an inactive conformation (Nishida

et al. 2006). Some data suggest that integrins “breathe” and

change between different conformations with individual

variations as to their degree of bending. Furthermore, the

bent conformation does not always seem to be inactive,

especially with regard to small ligands (Askari et al. 2009).

More recently, mechanical tension has been demonstrated to

consolidate integrin contact points by further stretching the

conformation to stabilize the active conformation, thereby

increasing affinity (Askari et al. 2009; Astrof et al. 2006;

Friedland et al. 2009). For integrin α5β1, the mechanical

tension induces α5β1 engagement with the synergy site in

fibronectin, in turn leading to FAK phosphorylation

(Friedland et al. 2009). A recent synergy site in nephronectin

has been suggested mainly to exert its action by bringing the

RGD site into a best-fit conformation with regard to high-

affinity integrin binding (Sato et al. 2009).

In addition to the affinity modulation that occurs in various

activation states, integrin clustering by multivalent ligands,

and possibly also changes in membrane fluidity, cause avidity

changes of integrin contacts (Carman and Springer 2003).

For integrins that require a tight control of activity, such

as platelet integrin αIIβ3 and β2 integrins, precise

activating mechanisms must exist (Luo et al. 2007). When

kindlin-3 is mutated, integrin activation in leukocytes and

platelets fails (Moser et al. 2008; Svensson et al. 2009),

demonstrating the central role of kindlin-3 for integrin

activation on these cell types.

Ligand recognition

The ligand-binding site forms in a region at the intersection

of the integrin α-chain β-propeller and the βI domain, with

the α chain being central in determining ligand specificity.

Integrins with an αI domain bind ligands via the αI

domain, but since this ligand-binding causes distinct

conformational changes in the I domain, this in turn affects

the conformation of the β subunit (Luo et al. 2007). For

some αI domains, interactions with the β chain are even

needed for the proper folding of the αI domain (Valdramidou

et al. 2008). The list of integrin ligands is long (Humphries

et al. 2006; Johnson et al. 2009) and includes the major

constituents of the ECM.
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Prototypic integrin ligands and recognition sequences

The prototypic integrin ligand, fibronectin, contains the

amino acid sequence RGDS at the apex of a flexible loop

connecting two β-strands in the 10th fibronectin type III

repeat (Dickinson et al. 1994). The RGD sequence is also

present in vitronectin, fibrinogen, and the LAP complex

part of inactive transforming growth factor-β (TGF-β) and

many other ECM proteins (Humphries et al. 2006).

Elegant studies have shown that the epithelial αvβ6

and αvβ8, by binding RGD in LAP, are the major

integrins that activate TGF-β in vivo either by allosteric

changes in TGF-β-LAP (αvβ6) or by inducing matrix

metalloproteinase-14 and causing proteolytic release of

TGF-β (αvβ8; Aluwihare et al. 2009; Mu et al. 2002;

Munger et al. 1999). More recently, a mechanical-strain-

dependent contribution of myofibroblast β1 integrins to

TGF-β activation has been demonstrated (Wipff et al.

2007).

.

.

.

In many biochemistry and cell biology books, the RGD

sequence is presented as the major integrin-binding se-

quence, but only a third of the integrins are known to bind

this sequence (Table 1). RGD peptides can be used to

assess the involvement of RGD-binding integrins in a

certain event, but lack of effect of RGD peptides does not

exclude integrin involvement in a process since two-thirds

of integrins bind ligands RGD-independently.

Some isoforms of the basement membrane protein

laminin contain an RGD sequence, but the sequence is

not evolutionary conserved in these isoforms and is not

recognized by the laminin-binding integrins. In laminin-

111, the RGD site is masked in the native molecule

(Aumailley et al. 1990; Schulze et al. 1996), whereas in

laminin isoforms containing the α5 chain, it is exposed in

the native molecule (Domogatskaya et al. 2008; Forsberg et

al. 1994; Genersch et al. 2003; Sasaki and Timpl 2001).

The full physiological importance of the αvβ1- and αvβ3-

mediated binding to laminin-α5-containing laminins how-

ever remains unclear. As pointed out, the EHS-produced

laminin-111 is a poor ligand for the laminin-binding

integrins. Accumulating data suggest that a major

integrin-binding site is present in laminin LG1-3 domains

in the C-terminal part of the laminin heterotrimer (Ido et al.

2004; Kunneken et al. 2004). In addition to laminin α-

chain-specifc sequences, C-terminal residues of both β- and

γ-chains contribute/facilitate integrin binding (Ido et al.

2004; Kunneken et al. 2004). Splicing in the extracellular

domain of integrin α7 affects it preference for certain

laminin isoforms (Nishiuchi et al. 2003; Taniguchi et al.

2009; von der Mark et al. 2002; Table 1).

RGD sequences present in triple helical fibrillar collagen

sequences are normally not available for fibronectin recep-

tors in native fibrillar collagen (Davis 1992; Gullberg et al.

1990), only becoming available in denatured collagen I.

Instead, the collagen-binding integrins recognize the triple-

helical GFOGER sequence (Knight et al. 1998), or variants

thereof, in native collagens. An assembled database on

collagen-I-binding sites and mutations has enabled the

construction of a model in which the GFOGER site is

present in a cell-interactive domain that is suggested to be

exposed once per microfibril unit (each microfibrillar unit is

composed of five collagen triple helix monomers), allowing

the clustering of integrins (Sweeney et al. 2008). However, a

number of components in the fibrillar matrix might influence

the availability of these sites. Interestingly, collagen IX,

which is present in cartilage, has been shown to be a good

ligand for all of the collagen-binding integrins (Kapyla et al.

2004), but in vivo, not all of the collagen-binding integrins

are expressed in chondrocytes. In the case of α11β1 integrin,

if cartilaginous tissue is not dissected free of perichondrium,

a signal from α11 will be derived from α11 expression in the

perichondrium (Tiger et al. 2001), which lacks collagen IX.

The identity of the integrins that might physiologically be

relevant as collagen IX receptors in various regions of

cartilage thus remains to be defined.

Collagen IX lacks the prototypic collagen-binding

integrin recognition sequence GFOGER, and the exact

sequence awaits mapping. Certain variants of the GFO-

GER sequence might show specificity for the different

collagen-binding integrins, as indicated by a recent finding

showing that the bacterial collagen-like peptide, sscl, with

the active binding site GLPGER, is preferred by α11β1-

expressing cells over α2β1-expressing cells (Caswell et

al. 2008).

Other integrin-binding motifs include the α4-integrin-

binding sequence LDV (Clements et al. 1994; Komoriya et

al. 1991), variants of which are also present in the adhesion

molecules ICAMs and MadCAM recognized by β2

integrins and the α4β7 heterodimer, respectively (Wang

and Springer 1998).

In addition to physiological ligands, integrin ligands

generated by proteolysis are receiving increasing recogni-

tion. Endostatin (derived from collagen XVIII), endorepel-
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lin (derived from perlecan), and tumstatin derived from

collagen α3 (IV) are the best-known examples (Bix and

Iozzo 2005; Suhr et al. 2009; Table 1). In addition, integrins

can bind snake toxins called disintegrins (Calvete et al.

2005; Swenson et al. 2007) and certain viruses (Stewart and

Nemerow 2007) and bacteria (Hauck et al. 2006; Palumbo

and Wang 2006). Some of these interactions occur outside

the regular ligand-binding sites in the integrins and display

distinct binding characteristics compared with the binding

of physiological ligands.

Integrins as mechanical links

The first function established for integrins was their

function as links between the ECM and the cytoskeleton.

For a majority of integrins, the linkage is to the actin

cytoskeleton (Geiger et al. 2009), whereas α6β4 connects

to the intermediate filament system (Nievers et al. 1999).

Recently, the intermediate filament protein vimentin has

been shown to be dependent on β3 integrins for its

recruitment to the cell surface (Bhattacharya et al. 2009),

indicating that an intimate relationship exists between the

various cytoskeletal networks and integrins.

Some of the components in this mechanical linkage,

such as talin, play a dual role and also take part in

activating integrins in an inside-out signaling mechanism

(Tadokoro et al. 2003). A new dimension of integrins as

mechanical links has come to the fore with the realization

that integrins can act as mechanosensors and generate

signals that affect cell physiology via complex intracellular

signaling mechanisms including autocrine and paracrine

mechanisms (Chen and O’Connor 2005; Linton et al. 2007;

Millward-Sadler and Salter 2004; Millward-Sadler et al.

1999; Zhu et al. 2007). As mentioned above, mechanical

tension can also increase integrin affinity.

Integrins as signaling receptors

Integrins are bi-directional signaling receptors involved in

outside-in and inside-out signaling. The inside-out signal-

ing mainly acts to bring the integrin into the active

conformation. As previously mentioned, talins, kindlins,

filamins, migfilin, FAK, but also ILK (Honda et al. 2009)

can regulate integrin activation.

Upon ligand binding, integrins undergo conformation

changes leading to outside-in signaling. This activates

signaling events that are complex and cell-specific, depend-

ing on what other signaling receptors and signaling systems

are available in the cell. The scope of this review does not

include these events, but readers are referred to recent

excellent reviews on this subject (Askari et al. 2009;

Gahmberg et al. 2009; Larjava et al. 2008; Legate et al.

2009; Luo and Springer 2006).

Integrin expression

Integrins are widely expressed, and every nucleated cell in

the body possesses a specific integrin signature. Impor-

tantly, the regulation of integrins is dynamic and quickly

Integrin signatures of some selected cell types. Each cell in an organism contains a specific integrin signature under certain conditions. The integrin

repertoire is dynamic, changes with developmental age, and is strongly responsive to microenvironmental conditions. Sometimes, a specific integrin

isoform is indicative of the cell type or the differentiation status (integrins given in bold are the predominating integrins present)

Cell type Integrin 

Expression  

Selected References 

Hub cells in 

germline stem cell 

niche  (Drosophila)  

PS3 (Tanentzapf et al. 2007)

Epidermal stem 

cells 

1 integrins (Jensen et al. 1999, Jones et al. 1995) 

Chondrogenic 

mesenchymal stem 

cells (human)  

10 (Varas et al. 2007) 

Neural stem cells 1 integrins (Campos et al. 2004, Jacques et al. 1998) 

 

Embryonic stem 

cells 

6B (Hierck et al. 1993)

Satellite cells 7 (Mayer 2003, Mayer et al. 1997, Sacco 

et al. 2008)  

Epithelial cells 6, 3  (Thorsteinsdottir et al. 1995) 

Fibroblasts 11, 2, 1, 5  (Gardner et al. 1996, Tiger et al. 2001, 

Zutter and Santoro 1990)

Endothelial cells 1, 2, 6  (Gardner, Kreidberg, Koteliansky and 

Jaenisch 1996, Thorsteinsdottir et al. 

1995, Zutter and Santoro 1990) 

Chondrocytes 10 (Camper et al. 1998, Camper et al. 2001) 

 

Skeletal myofibers 1D,  7A and  

7B 

(Baudoin et al. 1998, Martin et al. 

1996, Velling et al. 1996)

Cardiac myocytes 7B (Velling et al. 1996) 

Table 3 Integrin signatures of some selected cell types. Each cell in an

organism contains a specific integrin signature under certain conditions.

The integrin repertoire is dynamic, changes with developmental age, and

is strongly responsive to microenvironmental conditions. Sometimes, a

specific integrin isoform is indicative of the cell type or the differentiation

status (integrins given in bold are the predominating integrins present)
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changes once cells are taken out of their normal environ-

ment. A few integrins are more restricted than others to

certain cell lineages, but the expression if often develop-

mentally regulated.

Most cells in the body express β1 integrin, and the use

of β1 as part of a stem cell signature should thus be used

with some caution. However, β1 integrin expression levels

have been successfully used as a marker for epidermal stem

cells, which express high levels of β1 integrins (Jensen et

al. 1999). In Drosophila, the finding that βPS3 is needed to

maintain the germ-line stem cell niche has shown the

importance of integrin-mediated events for early stem cell

function (Tanentzapf et al. 2007). In vitro studies have

revealed that cell adhesive interactions can provide signals

that keep stem cells undifferentiated on certain ECM

molecules. The signals emanating from cell adhesion

mediated via α6β1 and αvβ1 integrins to specific laminin

isoforms can influence intracellular signaling to maintain

the undifferentiated state (Domogatskaya et al. 2008). As

stem cells differentiate, they change their integrin expres-

sion. In chondrogenic mesenchymal stem, the α10/α11

ratio reflects chondrogenic differentiation (Varas et al.

2007). Table 3 lists some integrins expressed on various

characteristic cell types. The list is not complete and does

not consider the dynamic changes in integrin expression

that take place during growth and regeneration phases.

Integrin function

Integrins are essential cell adhesion receptors, and individual

integrins have become specialized for certain functions.

Although knockout animal models have provided essential

information about integrin function (Table 4), several integrin

functions remain to be clarified. Two examples come from

the conditional deletion of β1 integrins in cartilage and

skeletal muscle, respectively, and indicate important roles for

β1 integrins during myogenesis and chondrogenesis (Aszodi

et al. 2003; Schwander et al. 2003). The specific β1 integrin

heterodimers involved in skeletal muscle and cartilage have

not as yet been characterized. A combination of conditional

deletions of multiple integrin α-chains might be needed to

resolve these issues.

We have just started to comprehend the way that

integrins work in complex biological systems. A new age

with more refined assays, methods, and tools is likely to

meet the challenge of understanding the integrated role of

integrins in these biological systems.
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