
ESD-TR-76-372 MTR-3 1541

Rev. 1

INTEGRITY C~ONSIDERATIONS

FOR SECURE COMPUTER SYSTEMS

APRIL 1977

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Project No. 522B
____________________Prepred by

THE MITRE CORPORATION
1.J Approved for public micae; Bdod ascuet* ~~,J distribution unlimited.,eirMascuet

ww Contract No. F19628-75-C-OO1

LA

ESD-TR-76-372 MTR-3-15$

Rev. 1

INTEGRITY CONSIDERATIONS

FOR SECURE COMPUTER SYSTEMS

APRIL 1977

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

Hanscom Air Force Base, Bedford, Massachusetts

MA lt19nF

Project No. 522B

Prepared byTHE MITRE CORPORATION

Approved for public release; THE MITR aCO usRttO
distibuton ulimied.Bedford, Massachusetts- -- i distribution unlimiteid.

Contract No. F19628-75-C-0001
LA.

i1

When U.S. Government drawings. specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, te government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is riot to be

regarded by implication or othewise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, er sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication,

" "/':! 'RO~r4. E,, Captain, USUSA

WILLIAM R. PICE,CaptainS Lt Colonel USAF
Techniques Engineering Division AW System Secrity Program Manager

FOR THE COMMANDER

STANLEY 15. RESKA, Colonel, USAF
Deputy Director, Computer Systems Engineering

)eputy for Command and Management Systems

UNCLASSI~tED
SECURITY C S'ICATION OF 'I'MS C

m
ASE (W',eu, Dot* Enivrod)

el-q REPORT DOCUMENTATION PAGE 'EFRE INSTRUTINSOR

5ECUREOMPUTE~YSTEM.6. EOMIRG OGPLEPOT NUMER

TheMITRE Corporationle

B4TI Edfod, MAtile 0173 FOR_
_

SE.CNREN COMPICER AM EMS AND ADDOMNGRESSEOR UME

UNCLASSIFIED)0

9. PR; OMINGORGAIZATON NME AD ADRES DECLASSIFICATNPDOJENGR AN

The DISTRTINTEE N Corothiet

Apoedd for pulcrees;7itiuto3nlmtd

15I. COUTRLINAR OTESNM N DRS

COputER SErComRITY PRORA INTEGRITYtes QL APO t7

14MNTOGRITY MGECH ANME DRSSi difeen from, Cotolig fie)/./EUIT LAS o'Mr

20. AISTRACUTI(ONtiu STTMNT (orf aieI Re r n dntt yboc

Anprivetegrit plic deiease foralaccssionstraiitse. cifefciel nod

proec daTRBTa froTMEN impoer odfictedIn.ok2,i dferenth intmerity rbem oe

are KE ODeveloted an thver effecitinoess adieated. Ay plcubrottp)euecmue

DDOMP1473 SECITY CPINVR5I BOGTE UNCLASSIFTE

SECURITYY CLSSFCAIHANINSMSG * DtaEtee

,P.,
SECURITY CLASSIFICATION OF THIS PAGE(When Data Eaered)

II

'4

iOD

- 9 CUItITY C.ASIIFICATIOW OF THIS PAGErheW.. Data Enlafa) :

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under

Project No. 522B. The contract is sponsored by the Electronic Systems

Division, Air Force Systems Command, Hanscom Air Force Base,

Massachusetts.

1~

........................"

.

l k

I

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS
e

SECrION I INTRODUCTION 5

OVERVIEW 5

BACKGROUND 6

The Reference Monitor 6

Security Policy 9

The Kernel Concept 11

OUTLINE 11

SECTION II THE INTEGRITY PROBLEM 13

INTEGRITY DEFINED 13

INTEGRITY THREATS 14

Threat Sources 14

Threat Types 14

Examples 15

INTEGRITY POLICY ENFORCEMENT 16

iNTEGRITY PROBLEMS 18

National Security 19

User Identity 20
Protected Subsystems

2

PROTECTION ENVIRONMENTS 21

SECTION III INTEGRITY POLICY 23

TYPES OF POLICY 23

MANDATORY INTEGRITY POLICY 23

The Elements of Policy 23

Definitions
26

The Low-Water Mark Policy 27

Te Ring Policy 31

The Strict Integrity Policy 32

DISCRETIONARY INTEGRITY POLICY 34

Access Control Lists 35

Rings 39

SECTION IV APPLICATION 43

MULTICS ACCESS CONTROL STRUCTURE 43

Protection Mechanisms 43

Subject Structure 44

KERNEL INTEGRITY 45

Kernel Threats 46

Kernel Policy 47

VIRTUAL ENVIRONMENT INTEGRITY 49

A Recommended Policy 50

3

TABLE OF CONTrTS (Concluded)

Page

! IVirtual Environment Impact 52
Verification Considerations 56

SECTION V CONCLUSION 59

APPENDIX I THE CAPABILITY POLICY 61

REFERENCES 63

LIST OF ILLUSTRATIONS

Figure Number

1 A Reference Monitor 6

2 Access Domains 9

3 External and Internal Integrity Threats 16

4 Enforcement Mechanisms 17
5 Low-Water Mark Policy 28

6 Ring Policy 32

7 Strict Integrity Policy 33

8 Access Control Lists 36

9 Rings 40

10 Subject/Process Structure 44

11 Security and Integrity Constraints 55

12 Inaccessible Objects 56

13 Typical Object Hierarchy 57

I

I

SECTION I

INTRODUCTION

OVERVIEW

Ensuring legitimate access to privileged information has become

a major area of concern for information processing technology. The

rapidly growing use of complex resource sharing information systems
1

has emphasized the need to carefully identify and guarantee who has
which access to what data. Experience has indicated that the protec-
tion issue is two-pronged: concerned both with the proper dissem-
ination of information and with that information's validity. Our

concern, in this paper, is an examination of how information validity

may be maintained.

Our context is the Secure General Purpose Computer Project of
the Air Force's Electronic Systems Division [1]. Its purpose is the

6 design, construction, and formal validation of a secure computer
utility for the military environment. The term secure computer
utility refers to an interactive, multi -)grammed, multiprocessor

computer system supporting resource sharing in a manner determined
by an information protection policy. Its effective enforcement of
the protection policy must be formally validated before it can be
certified, by the appropriate authority, for use with classified
information.

The protection policy of particular interest in a military
environment: [2] [3] takes the form of the DoD security regulations.

To date, security has been interpreted to address the authorized

observation (dissemination) of classified information. We intend to

extend the certified function of the utility to address the proper

modification of information within the computer system.

iThese systems are realized in many forms including: network packet-

switches, time-si.ared mainframes, microcomputer arrays, and dedi-

cated data base systems.

5

BACKGROUND

Before beginning a discussion of information validity, a re-
view of fundamental notions upon which this paper (and the project)

is built is appropriate. These aren

1) the reference monitor;

2) a formalized security policy; and

3) the concept of a kernel.

Those readers familiar with these concepts may skip ahead to

Section II where we begin our analysis of an integrity policy.

The Reference Monitor

An investigation [4] into the protection problems of military
computer systems proposed the abstract notion of a reference

monitor as a generic solution.

REFERENCE

MONITOR

I PROTECTION POLICY

Figure 1. A Reference Monitor

6

"ad"-

LI]
A reference monitor is an entity that monitors and decides the p

allowability of all accesses by information processors (subjects)
to information repositories (objects). The protection policy,
enforced by the reference monitor, is reflected in the data base in
which the allowability decision is encoded.

A reference monitor must satisfy three logical pruperties:

1) it is complete: all accesses by subjects to objects are
monitored and enforced;

2) it is protected: its function may not be maliciously or
accidently modified by unauthorized forces; and

3) it has provably proper behavior: it must faithfully enforce
the specified protection policy.

We will see that the second property is concerned with the mainte-
nance of the validity of the reference monitor.

The protection policy has historically [2] [3] [5] been repre-

sented as a set of axioms constraining access by subjects to ob-

jects. A generic policy model will illustrate the concept. We
define a set S of subjects, a set 0 of objects, a relation a C S x 0
denoting that a subject s may access an object o, and a function
domain: S -> POWERSET(O). The axiom A1.1 defines the function of I
the reference monitor.

(Al.1) VsGS,oGO s a o -> o 6 domain(s).

The function domain is an encoding of a protection policy identify-
ing the accessible name spare of its subject argument. A1.1 speci-
fies that a subject s may access an object o only if o is in the
domain of s. A protection policy takes the form of a decision
algorithm defining the name spaces (or partitions of name spaces)

7' assigued to subjects. The dotted lines of Figure 2 represent the
access domains of the two subjects S1 and S2. The arrows have the
following interpretation: arrows pointing to an object represent a
modification of an object by a subject; arrows pointing to a subject
from an object represent an observation of the object by the subject.

7

Access Modes

The above example presented a rather abstract form of access,
independent of the semantics associated with an access. In general,

access domains are partitioned on the basis of the mode (semantics)
of the access. In this paper we will be concerned with three ab-

stract modes of acces~i observation, modification, and invocation.
Access permission, for each of these modes, will be explicitly
identified.

Observation, as the name implies, relates to the viewing of in-
formation by a subject. Central to observation is the testing of
information. We state that observation is the testing of information
that res3ults in a choice of distinct states of the obseiving subject
(and possibly distinct outputs). In other words, the observing subject
can make a choice based on the observed information, and that choice

manifests itself in the resulting state of the observer.

Modification may be defined in terms of observation. A subject
modifies information if its value is changed so that an observation,
by a subject (possibly distinct from the modifier), results in a
different state than previous observations (a discernable change).

J

Invocation is a logical request for service from one subject to
another. Since the control state of the invoked subject is a func-

tion of the fact that the subject was invoked, invocation is a'I special case of modification. Invocation is an abstraction of the
primary control construct for transferring couitrol between distinct
subjects in (possibly) differing access domains. En general we
require that the invoking subject not be informed of the success or

failure of the operation. Such information may be passed by subse-
quenit invocations, the sequencing determined by some cortrol proto-
col.. Interprocess communication is one instance of an invocation
mechanism where the wakeup signal. passed from the invoking process

to the invoked process constitutes the invocation. A subroutine

type of intersubject control tructure may be accomplished by two

invocations: the invoker first signals the invoked subject and then

waits for the invoked subject to reactivate it (return) via a subse-

quent invocation. A necessary consequence of th subroutine type of

control structure is that the invoking and invoked subjects must each

have invocation privilege to the other

It should be noted that "execute" access is quite different than

invocation. While invocation represents a control access between

distinct subjects in (possibly) differing domains, execution Is the

access, by a subject, to an object for the purpose of obtaining

8

instructions. Since during execution a subject obtains its
instructions by observing the object in which the instructions
reside, we will consider execute access to be equivalent to observe
access for our purposes.

From these elemeutnry constructs, we nay compose complex sub-
systems accessing many objects (subjects) with combinations of pri-
mitive access modes.

Security Policy

The protection pollcies invest'gated, to date, have addressed
the problem of information security. Security denotes the property
of protection against compromise: unauthorized dissemination of
information. The security policy defines access domains of subjects
based on considerations derived from DoD security attributes of sub-
jects and objects. Several axiomatic systems [2] [3] represent this
policy. We present a model defining this policy below.

a 03

DOMAI N (Sl)NZ DOMAIN (S2)

Figure 2. Access Domains

9

First, we define the elements of the model.

S: a set of subjects;

O0. a set of objects where the intersection of S and 0 is null;

SL: a partially ordered set of security levels that forms a

lattice;

sl: S x 0 -> SL, a function mapping subjects and objects into

security levels;

<: a subset of SL x SL defining the partial ordering "less
than or equal";

o: a subset of S x 0 defining the access capability for

observation; and

m: a subset of S x 0 defining the access capability for modi-
fication.

The access domain of each subject is partitioned with respect
to the mode of access. The following axioms2 define the access

domain.

(Al.2) VsGS,o6O s o o "> sl(o) < sl(s).

(Al.3) Vs6So6O s m o => sl(s) < sl(o).

The access domain foi- each subject s is thus the set:

i o 0: 0_o)< __ or <s)

A subject may observe the information contained in an object if its" i I ' I I ~i security level is greater than or equal to that of the object. A

subject may modify the information contained in an object if its se-

curity level is less than or equal to that of the object. These
constraints insure [2] [3] that information may be transferred only

"upward" in security level, even by subjects untrusted to behave

property.

We may a- o extend the above axioms to intersubjat invocation

by the relat on i: subset of S x S defining the access capability

for intersubject invocation.

2Formal statements are labelled according to the following conven-

tion: a section specific number prefaced by "A" for axioms, "T"
for theorems, and "D" for definitions.

10

(Al.4) V s[ll,s[.2] 6 S s[l] i s[2] -> sl(s[l]) < sl(s[2]).

The Kernel Concept

The realization of a reference monitor within a computer sys-

'tem is termed a kernel. Conceptually, the kernel is a central,

localized hardware/software system that enforces the protection

policy of the reference monitor it implements [1]. The kernel

defines an abstract machine composed of logical objects and

operations3, access to which is determined by the protection policy.
A crucial part of the kernel development process is the formal
verification of the property: the protection policy is enforced

for all designated accesses.

The first kernel in the ESD program was constructed for the

PDP-11/45 [6]. Its successful implementation encouraged the design

and implementation of a large-scale prototype, based on the

Honeywell Information Systems' Multic& [7]. The kernel design

for this system incorporates the protection considerations described
in this paper.

OUTLINE

We will address the following issues:

1) identification of relevant integrity problems;

2) definition of protection policies that address these

problems; and

3) identification of the computer system alements (subsystems)
to which these protection policies should be applied.

Our analysis of integrity policies begin in Section II with a

discussion of integrity problems within a military computer utility.
Section TTI formally proposes several integrity policies designed to

cope witi the problems posed in Section II. Section IV considers

the application of these policies within a prototype computer utility.

3 Implemented either in software, firmware, or hardware.

11

..-, I . . o; ,, ... ' " 'i . .

A caution to the reader. This investigation occurs in the con-

text of a Multics' kernel development. Therefore many of the

examples (and particularly the jargon) are takcen from this milieu.
While the issues (and conclusions) generalize, some familiarity with
Multics [7] is useful.

-. 2

12 12

SECTION II

THE INTEGRITY PROBLEM

INTEGRITY DEFINED

What do we mean by integrity in computer systems? In this sub.-
section we will investigate our intended meaning of integrity and
establish the context for the integrity formulations of the succeed-
ing sections.

Webster's dictionary provides an initial integrity definition:

integrity - la: an unimpaired or unmarred condition: entire
correspondence with an original condition: SOUNDNESS

ib: an uncompromising adherence to a c%.de of moral,
artistic or other values.

This definition, and our informal notions of integrity point to

a similar conception: integrity does not imply guarantees concern-
ing the absolute behavior of systems. For instance, a parson
thought to have the property of integrity is only considered to
behave consistently with respect to some standard: no statement (or
decision) about the quality of the standard is implied.

This concept can be applied to computer systems. We consider
a subsystem to possess the property of integrity if It can be
trusted to adhere to a well-defined code of behavior. No a priori
statement as to the properties of this behavior are relevant.

The concern of computer system "ntegrity is thus the guarantee
that a subsystem will pe-form as it was intended to perfor. by its
creator. We assume that a subsystem has been initially determined
(by some system external agency) to perform properly. Program
verification technology addresses just this problem of initial sub-
systems validation. We then wish to insure that the subsystem cannot
be corrupted to perform in a manner contrary to the original determi-
nation. The integrity problem is the formulation of access control
policies and mechanisms that provide a subsystem with the isolation

necessary for protection from subversion. Based on an initial
assumption of proper behavior (according to some system external
standard), we are primarily concerned with protection from inten-

tionally malicious attack: unprivileged, intentionally malicious

modification.

13

II

INTEGRITY THREATS

How can integrity be compromised? That is, how can a system be

improperly persuaded (forced) to change its behavior? The following

paragraphs briefly classify integrity threats. The abstract form of

an integrity threat is a subsystem modification not considered in
the subsystem's initial verification of proper behavior. We term

such improper modifications sabotage.

Our viewpoint is that of the subsystem: some subset of a

system's subjects and objects isolated on the basis of function or
privilege. We will consider two dimensions of integrity threats to

a subsystem: source and type. Integrity threat sources identify
where a threat might originate while threat type identifies the Man-

ner in which the threat might be made.

Threat Sources

We consider two threat sources:

1) subsystem external; and

2) subsystem internal.

Their names unambiguously describe their origin. An external threat

is posed by one subsystem attempting to change (improperly) the be-

havior of another by the supplying of false data, improperly invoking

functions, or direct modification of its own behavior. Improperly

performed (or not considered in the specification of its behavior)

modification of behavior can sabotage subsystem function. Internal
threats arise if the subsystem is malicious or, more likely, incorrect.
This threat is addressed by program verification techniques.

Threat Types

A second classification of threats can be made on the basis of

type. We consider two:

1) direct (overt); and

2) indirect (covert).

Direct threats involve "direct" means: a write into a protected

data base object. We must consider, in this case, the protection

properties only of the accessing subject and accessed object. Indi-

rect threats subsume a much larger class of scenarios. Generally,

indirect threats refer to improper modifications resulting from the

use of data or procedures developed (modified) by a malicious sub-

system. This data (procedure), by not fulfilling expected

14

requirements, may then sabotage its user's functions. This struc-
ture requires knowledge, at each access, of both the ultimate source

and transfer path of the accessed information.

Examples

We can illustrate this threat taxonomy by an example drawn from
the "people system." Let us consider threats to the physical inte-
grity of a person. External threats take the form of another person

perpetrating physical harm. Internal threats take the form of self-

inflicted physical harm. For instance:

- external direct: a direct assault by another person with,

say, a knife;

- external indirect: an assault by another parzon via surrepti-
tious means, say, by poison covertly placed in food;

- internal direct: suicide via direct means, say, a gun; and

- internal indirect: unsuspecting suicide via, say, poor care

for one's body.

A protection policy can be formulated to block each of these
threats. For example, a policy which identifies persons who might

commit assault can be used to segregate them so that they have no op-

portunity (no access) to commit assault and to insure that they are
not hired as Looks or servers. In these cases, selective isolation

is sufficient protection. However, what about internal threats?

These can only be blocked by some certification of an individual's

ability and desire to take proper care of himself.

The example can be easily extended LO computer systems. For

instance:

- external direct: one subsystem maliciously modifies a

necessary data base, say executable code, of another sub-

system;

- external indirect: one subsystem foists a maliciously

behaving subroutine onto another subsystem (Trojan Horse

attack);

- internal direct: self-modifying code; and

- internal indirect: inadvertent self-modifying code, say,

via improperly initialized pointers.

External and internal threats are illustrated in Figure 3. Subject

Si maliciously modifies object 01, causing subject S2's behavior to

15

A.~

change. Subject S3 modifies its own data base (object 02) in an

unanticipated manner, causing changes in its subsequent behavior.

-DOMAIN (Si)

-l/ N

(Si -\

Y01 k 2

2 / -K__

DOAI 03)

f \ EDOMAIN (S2)

EXTERNAL INTERNAL

Figure 3. External and Internal Integrity Threats

INTEGRITY POLICY ENFORCEMENT

In each of the above cases, our primary concern is an identifi-

cation of those modifications which preserve the validity (intended

properties) of computer system elements. Integrity policy concisely
organizes this information so that the propriety of a given access
can be easily evaluated by an enforcement mechanism. Two issuas

govern the types of integrity policy a given system may support:

1) available enforcement mechanisms; and

Is 16

2) the integrity problems the system must address.

This subsection will address the former issue, the Zollowing rnubsec-

tion the latter.

The space of enforcement mechanisms is diagramed in Figure 4.

We identify two dimensions: enforcement frequency and enforcement
granularity. Frequency refers to the time. at which access control

enforcement occurs. If enforcement is performed only once (viz.,

at the time a program is created) the frequency is termed static.

If enforcement is performed at each access by a program to an

object, the frequency is termed dynamic. One-time program verifica-

tion of access propriety is a static enforcement mechanism. Hard-

ware descriptor mechanisms support dynamic enforcenaent.

ENFORCEMENT FREQUENCY

STATIC

4 " ENFORCEMENT
GRANULARITY

COARSE FINE

i:I

DYNAMIC

Figure 4. Enforcement Mechanisms

A Granulaiity refers to the size and resolution of the protected

system elements. For effective enforcement of an integrity policy,

the granu]arity of enforcement must match the granularity of the

policy. For example, if a protection policy controls access to

parts of a file, an enforcement mechanism that only controls access

to the entire file cannot effectively implement the policy.

17

Another example mechanism supports static enforcement at a

coarse granularity. The prcpriety of access by a program to coarsely

defined objects (entire files) may be statically evaluated by veri-

fication of the program text at the time the program was created.
We can insure, via this technique, that the program only accesses

certain named files in a proper manner. However, if the renaming of
files is a facility supported by the system, this verification can

be invalidated by the renaming of files accessed by the program. We

note that the solution to this renaming problem centers about the

matching of the frequency and granularity of access enforcement with

the frequency and granularity of the binding of program names to

objects.

These examples illustrate that policies that alter the protec-

tion attributes and existence of subjects and objects must have dy-

namic enforcement at the granularity of the attribute alteration to

support effective access control. Since a computer utility (our

intended application) supports a dynamic environment with these

properties, our subsequent discussions focus on integrity policies

suited for a dynamic environment.

The integrity of information is maintained by guaranteeing that

only proper modifications are made. As indicated above, this can be

done in a number of ways ranging from access control at execution

time to program verification. We find that internal threats, in

general, cannot be addressed by dynamic access control mechanism.

Indeed, we note that for any given computer system, the hardware
access control mechanism defines a certain level of subsystem ac-

cess control granularity. Any access restriction below this level

of granularity (or based on other than hardware defined access modes)

must be guaranteed by static enforcement.

The static nature of internal threat policy enforcement places

it beyond the scope of this report. The prevention of internal
threats is more the province of program verification. Therefore,
our concern focuses on integrity policies for external threats.

INTEGRITY PROBLEMS

Specific interpretations of the notion of "proper" modification

and the consequent protection policies are dependent on problem spe-
cific protection requirements. This subsection does not address all

S..conceivable protection problems: an obviously impossible task. It

does identify certain problems that have, historically, proved trou-

blesome.

18

.4 . - . . . -.

We begin by restating the fundamental principle of integrity

policy: identification and enforcement of proper modifications.

Our job, then, must start with the isolation of relevant, proper

modifications. For a secure DoD computer utility, three classes of

proper modifications are of immediate interest:

1) propriety of modification with respect to the national se-

curity importance of information;

2) propriety of modification with respect to the identity of an

accessing user ("need-to-modify"); and

3) propriety of modification with respect to application speci-

fic reasons.

We consider each in turn.

National Security

The integrity of national security information is clearly of

paramount importance for the intended user conunity. The malicious
modification of crucial information can, in some circumstances, be of

greater importance than ita compromise (unauthorized nbservnLion).
Consider the case of global data bases accessible to a large com-

munity of innocuous applications yet of critical importunze to a few

applications. For example, a data base defining interstate trans-
portation routes is useful to a large number of non-critical tasks.

Yet the sound construction of this data base is crucial to the
proper operation uf logistics programs in time of national emergency.

Clearly, this data bats mut -t protected from modification to a de-
gree comnmeusurate with its imToortance to national. 9ecurity (its

accessing applications), whi]2 still being observable 7o variety

of applications at differing security levels.

A similar situation pertains to access to procedures. Consider
the ill-conceived use of a library subroutine by a critically impor-
tant program. An optimal routing 64broutine of a logistics 1 anage-
ment package is a good exampl(. If the subroutine is not protected
from malicious mod Itcativir at least to the degree of the subject
using it, sabotage of its 17nction may cause im, roper behavior of its

caller. Yet the library routine should be executable (observable)
by the entire user community, at many levels of importance to
nati3nal secu:ity.

Thus, a contradiction exists between che protection necessary
for observation and modification. A single securi-y level cannot be

assigned to these objects so as to satisfy both protection require-

ments: (observable by everyone) and (modifiable by no one). This

19

apparent difficulty must be addressed by an integrity policy distinut

from the security (compromise) policy.

Available DoD policy [8] requires access controls that guarantee

data integrity: that is, the accessibility, maintetance, movement,

and disposition of data shall be governed on the basis of security
classification and need-to-know. However, the interpretation of such

controls has centered on the security issue: information compromise.

Our requirement is the spacification of protection policies addressing

rl.e sabotage of information important to the national security.

We should note that similar considerations apply to applications

other than the military. The need to compartmentalize data modifi-

cation exists in a variety of application areas.

User Identity

Protection against improper modification based on user identity

takes a somewhat different form. Consider a data base owned by user
A. User B wishes to read this data base. ser A does not trust
user B to non-maliciously access an only py and would like to ex-
tend read-only access to this specific data base only to user B and
his subjects (from the set of all users). If user B misuses his

privilege to the data base, user A must have the capability to re-
voke user B's access. The protection mechanism must support dynamic
revocation based on user identity. It should be noted that while
the previous problem isolates classes of users (by national security

privilege) it is orthogonal with respect to this problem since a

given user may operate at many levels of national security privilege.

Protected Subsystems

The preceding problems addressed access restrictions based on

properties of the person who either invokes or creates a subsystem.
A distinct class of protection problems arise from the use of system

services. These services take the form of subjects, system-supplied,

that may be invoked by user-supplied subjects to perform privileged

functions. These subjects (and the data and procedure they access)
must be explicitly protected from their invoker. Likewise, the in-

voking subject often requires protection from the invoked subject.
4

4This situation has been referred to as the "mutually suspicious

problem" [9].

20

Two important instances of protected system eervices are:

1) a security kernel; and

2) a distributed operating system.

However, in t'ise instances the security kernel and operating system

require access to user defined data bases (viz., parameters). Thus,

in the simple case, the operating system has unlimited access to

user space, but the user has only carefully restricted access to

operating system space.5 Our, consideration of this problem will not

be general. Rather, we concentrate on explicating a policy suffi-

cieut to isolate a kernel. '

All three of the abo eexamples of specific problems are in-

stances of the archetypal model presented in Section I. Each policy

attempts to isolate domains of access privilege, each (possibly) dis-

joint from those defined by the other policies. The access frequency

and general properties of each suggest different implementation mecha-
nisms. Indeed, the 'fundamental property of rate of change of privi-

lege, either by thi" accessing subject or by accessed object motivates

the tailoring of policy and mechanism to the properties of the

access.

PROTECTION ENVIRONMENTS

Subsystems within a computer system perform differing functions

and thus often require differing integrity policies. The protection

requl ements are also a function of the perspective with which sub-

systems are viewed. We make the following definitions of perspective:

1) each system user has (at least) one process executing in

his/her behalf;

2) each process is composed of a number of subjects and objects,

partitioned into domains of access privilege within each

process; and

3) some subset of the most privileged subjects and objects with-

in each process define the protected subsystem that comprises

the security kernel.

5Primarily through "system service calls" (viz., "gates" in Multics)

that permit controlled invocation of operating system functions by

the user. An important special case is the invocation of the kernel

from uncertified user subsystems.

21

Based on these definitions, we can identify two environments with
distinct integrity requirements:

1) the set of subjects and objects not contained in the security
kernel. These will be collectively referred to as the user
virtual environment; and

2) the set of subjects and objects that compose the security
kernel. These will be collectively referred to as the kernel

6nvironment.

Section IV applies the integrity policies developed in Section III
to each of these protection environments,

22

II
I1

22

i.

SECTION III

INTEGRITY POLICY

LYPES OF POLICY

Two classes of integrity policy are important: mandatory and
discretionary. They differ in the manner in which protection policy,

once made, may be changed. Mandatory integrity policy refers to a

protection policy which, once defined for an object, is unchangeable

and must be satisfied for all states of the system (as long as the

object exists). The static nature of the policy is governed by

(system) external controls. In our case, the policy addressing

protection of national security information will be of a mandatory

nature. The decision as to the importance to national security of the

integrity protected information is not one that the system may make

internally. On the other hand, a disi.retionary policy is one in which

the protection policy may be dynamically (during the existence of an

object) defined by the user. The latter two examples of Section II

illustrated instances of discretionary integrity policies.

The followiug discussions will, in turn, discuss mandatory and

discretionary modification protection policies for secure DoD I
Multics.

MANDATORY INTEGRITY POLICY

A mandatory protection policy addressing the integrity of na-

tional security information must consider two issues: 1) the iden-

tification of protected abstract objects, and 2) the determination

of permissible modification access. The following analyses define a

set of primitive models which, while sharing common abstract object

identification, propose differing policies for constraining access.

The Elements of Policy

Our presentation of mandatory integrity policies follows a

style similar to that of (3]. Each policy is defined as a set of

relations, one for each type of access mode defined) on the sets of

active and passive computer system elements. This latter categoriza-

tion identifies hose system elements which perform information

accesses (subjects) and those which are accessed (objects). Clearly,

23

1..

differing protection policies may protect differing kinds of objects
from differing kinds of subject's accesses. The identification of

subjects a .d objects is thus often policy dependent. The terms

agent and repository identify analogous elements in [3]. A protec-
tion policy is identified by a decision rule which determines the
access relations.

i It is the decision rule which embodies the content of the pol-
icy. With respect to national security information,6 these decision
rules, for varied policies, have certain comIrin features. The govern-
mental security system uses the mechanism of a security level to de-
fine the trustworthiness of an individual with respect to national

security information. While only properly addressing information

compromise, it is apparent that the trustworthiness of an individual,

as formal zed through his security level, also addresses information

sabotage. Thus each individual's security level can serve to delimit

a range of integrity levels for which the individual, or his/her pro-

gram, is trusted not to perform malicious modification. The assign-
ment of an integrity level to a subject is determined by two con-

straints: 1) the permitted integrity level range of the associated
user, and 2) the minimum8 integrity level necessary to usefully ac-

cess protected information, required for the subject's intended

function.

The integrity level or importance assigned to objects may be de-
termined in a manner directly analogous to that used for security lev-

el assignment. A security level is assigned to information (and thus

objects) on the basis of possible national security damage caused by
disclosure. An integrity level is assigned on the basis of possible

national security damage caused by information sabotage.

The set of integrity levels is defined by the product of the set
of integrity classes ana the powerset of the set of integrity compart-

ments. The resultant set forms a lattice under the partial ordering

..le, similar to the relation defined for security levels [3).

6Indeed, any common protection problem domain.

7An individual trusted not to divulge information is not likely to

maliciously modify it.

8The , oncept of the assignment of the least access privilege [10].

necessary to accomplish a task is applicable.

24

The set of integrity classes may be disjoint from the set of

security classes. This result is not too surprising since they are
assigned, and used, for different purposes. However, these sets

will have common properties. Indeed, a set of integrity classes

may be defined as:

-TOP SECRET: information whose unauthorized modification

could reasonably be expected to cause exceptionally grave

damage to our national security;

-SECRET: information whose unauthorized modification could

reasonably be expected to cause serious damage to our

national security; and

-CONFIDENTIAL: information whose unauthorized modification

could reasonably be expected to cause damage to our

national security.

The above prototype integrity classes were chosen to correspond to

the security classes. This correspondence is suggested because of
the strong analogy between security and integrity.

The set of integrity compartments serves much the same purpose
as the set of security compartments: to partition the sets of sub-

jects and objects on tae basis of functional area. For example,
some integrity compartments might identify differing applications:
logistics, simulation, raal-time command anid coatrol, or budget con-
trol. An integrity level for a computer system element is composed
of an integrity class, identifying the national security importance
of the element, and a set of integrity compartments identifying the
information partitions the element may contain or access.

The above discussion illustrates three points. First, the as-
signment of integrity levels to individuals is based on very similar
considerations to the assignment of security levels: the trustworthi-
ness of individvals. It is not very practical to partition the trust-
worthiness of individuals with respect to disclosure and sabotage.
Human behavior cannot be so neatly divided. Thus, similar considera-
tions apply in the assignment of both security and integrity levels
for individuals. A subject is assigned an integrity level commensu-
rate with the level of its user and with the principle of least privi-

lege.

25

Second, the assignment of integrity levels to objects is based

on quite different criteria than the assignment of security

levels. The example of the transportation data base in Section II

illustrates this point. Integrity levels, by definition, are
assigned not to prevent information disclosure, rather to prevent
information sabotage.

Third, the issue of whether the same values (viz., classes
and formal compartments) are used for the set of integrity levels
and the set of security levels is not decided.

For our examples, we will use the above set of integrity
levels, respectively labelled TS - TOP SECRET, S - SECRET, and
C - CONFIDENTIAL. They are, like security levels, partially ordered:

C le s le TS.

Definitions

Each model to be presented has the following basic elements:

S: the set of subjects s, the active, informaion process-

ing elements of a computing system;

0: the set of objects o, the passive information repository

elements of a computing system (the intersection of S
and 0 is the null set);

I: the set of integrity levels discussed above;

il: S x 0 -> I; a function defining the integrity level of
each subject and object; defines a lattice under the

relation leg;

leq: a relation (subset of I x I) defining a partial ordering

"less than or equal" on the set of integrity levels I;

less: an antisymmetric, transitive relation (subset of I x I)

defining the "less than" relationship on the set of

integrity levels I;

min: POWERSET(I) -> I, a function returning 'he greatest

lower bound (meet) of the subset of I specified;

26

0: a relation (subset of S x 0) defining the capability of
a subject, s 6 S, to observe an object, o 6 0: s o o;

M: a relation (subset of S x 0) defining the capability of
a subject, S 6 S, to modify an object, o 6 0: s m o;

_: a relation (subset of S x S) defining the capability of

a subject, sfl] 6 S, to invoke another subject,
s[2] 6 S: s[l] i s[2]. This operation can be considered

a prototype for interprocess communication and procedure

call.

We now describe three alternative mandatory integrity policies.

The policies are defined by axioms constraining the elements of the
sets o, m, and i. The described models do not exhaustively describe
all possible policies. However, they identify a representative set
of useful models.

The Low-Water Mark Policy

The concept of a security high-water mark found early applica-
tion in secure computer systems [11]. The high-water mark security
policy relates current access privilege of a subject to the highest
security level possessed by observed objects. 9 Its fundamental con-

cept may be equally applied to an integrity policy. Unlike subse-
quent mandatory models we will examine, the low-water mark model is

dynamic, in the sense that the integrity level of a subject is not
static, but is a function of its previous behavior.

The policy provides for a dynamic, monotone and non-increasing

value of il.(s) for each subject. The value of il(s), at any time,
reflects the low-water mark of the previous behavior of the subject.

The low-water mark is the least integrity level of an object ac-
cessed for observation by the subject. Further, a subject is con-

* strained to modify only those objectr -ich possess an integrity
level less than or equal to the su . These properties are

formalized by the following axioms.

9Our interpretation of the policy differs substantially in that we

do not permit modify access to objects having a lesser (or incom-
parable) security level than the accessing subject. A valid criti-
cism of the policy in (11] relates to an inherent vulnerability to

indirect threats (Trojan Horse attacks).

27

.1-I~

(A3.1) For each observe access, of an object o by a subject a, the

integrity level of the subject, il'(s), immediately subsequent

Kf to the access, is defined by:

il,(s) - mi -l(s),i'(o)

where il(s) is the integrity level of a immediately preceding

the access.

(A3.2) VsGS, oO a m o -> il(o) leg il(s).

(A3.3) Vs[l], s[2] 6 S s[l] i s[2] -> il(s[2]) leq l(s[l]).

A3.2, by construction, insures that direct malicious modifica-
tion is impossible. Satisfaction of A3. insures the indirect sabo-
tage, by use of "contaminated" data or procedure, is also impossible.

DOMAI (Sl) (

/ mOl

:\ /
0 I

il(Ol) - "TS"1 il(Of) - "TS"

il(02) - "S" 11(02) M "S"

i_(S1) - "TS" il(Sl) - "S"

Before access to 02 After access to 02

Figure 5. Low-Water Mark Policy

28

-- ,. ..

A3.3 insures that improper activation of more privileged suLacts

may not cause indirect damage to "higher" integrity level objects.

The intent of A3. is to insure that indirect improper modifications
are equally prevented. T3.1 assures us of this protection.

(D3.1) An information transfer path is a sequence of objects

<o[l],...,o[n+l]> and a corresponding sequence of subjects

<s[l],...,s[n]> such that

V i 6 [l,...,n] sti] a oli] and sli] a oli+l].

(T3.1) If there exists an information transfee path from object

o[l] 6 0 to object odn+l] 6 0 then enforcement of the low-water
mark policy requires

il(o[n+l]) leg il(o[l]).

Proof: If an information tranpfer path exlsts, then D3.1 specifies
that there exists the indicated sequence of subjects and objects.
We assume that each access is indivisible and mutually exclu-

sive: that is, access to a given object is deferred pending
the completion of any previous access. Further, we assume each
access was successful and performed in the order: observe,

modify. An unsuccessful access, in the path, denies the hypoth-
esis. For any k 6 [l,...,n]

il'(s[k]) m Min Il(o[j]I 1< j < k

after completion of the k-th observation (A3.). Therefore

V o[j] j 6 [l,...,n] il'(s[n]) leq il(o[j])

after completion of the n-th observation. Since the n-th modify
access succeeds

.il(o[n+1]) leg l'(s[n]).

Therefore: il(o[n+l]) leq il(o[l!).

This policy, in practice, has rather disagreeable behavior.
The transition function specified by A3M1 requires the integrity le-
vel of subjects to change as a function of the objects observed. A
monotonically non-increasiag subject integrity level makes general-

ized, domain independent programming awkward at best, since the set

29

.." - . .- '"" " .. .: " " "i..... ''i < " j '

10

of objects modifiable by a given subject can change with each

observation. In a sense, a subject can sabotage (inadvertently) its
own processing by making objects necessary for its function inac-
cessible (for modification). The problem is serious since there is
no recovery short of reinitializing the subject. However, for some

to a changing set of objects during a subject's existence.

A Low-Water Mark for Objects

The above discussions explicitly assume that it is the integrity
level of subjects which changes. An alternative formulation postu-
lates that it is the integrity level of modified objects which changes.
We can characterize this alternate policy by the following rules.
For each observe access by a subject s to an object o:

i'(s) - mnI l(), i .0

For each modify access by a subject s to an object o:

)o - min Il(s),i1(0)

It should be apparent that the integrity level of a given ob-
ject (or subject) is monotonically non-increasing. Ill-considered
behavior on the part of subjects will result in every subject and
object possessing the lowest integrity level of any accessed object.

Further, this policy doe3 not prevent improper modification; rather
it insures that such modifications are apparent . Thus, this policy
seems ill-suited to a computer system environment.

A Low-Water Mark Integrity Audit Policy

An unenforced variant of the above model, a "level of corruption"
model, provides a measure of possible corruption of data bases with
"lower" integrity level information. We define, for subjects and ob-
Jects, a "currex.t corruption level" (abbreviated cl) which is defined
in the following manner. For each observe access by a subject s to

an object o:

cl() min cl(s;),A-(o)

It can only decrease thu size of the set of modifiable objects and

invocable subjects.

30

For each modify access by a subject s on an object o:

cl'(o) - minlc_(s),cl(o).

The value of cl for an object then represents the least integrity
level of nformation which could have been used to modify1the ob-

ject. We note that detailed analysis of the computations' per-

formed by a subject can be used to refine this value.

The Ring Policy

Section II identified two classes of improper modifications:
direct and indirect. The low-water mark policy dealt with the
direct modification problem directly: it forbade direct modifica-

tions (A3.2 and A3.3). Indirect improper modifications were pre-

vented by a change in the accessing subject's integrity level (and
thus its accessing domain). The ring12 policy provides kernel en-
forcement only of a protection policy addressing direct modification.
The integrity levels of both subjects and objects are fixed during

their lifetimes and only modifications of objects of less than or
equal integrity level are allowed. While permittiag less substan-

tial assurances of integrity,13 particularly concerning indirect
improper modification, the flexibility of the system is substantial-

ly increased. This is accomplished by allowing observation of ob-
jects at any integrity level.

The policy is defined by two axioms.

(A3.4) Vo 6 0, s 6 S s m o -> il(o) leq il(s).

(A3.5) V s[l], s[2] 6 S s[1] i s[2] -> il(s[2]) leail(s[l]).

By construction, no object of "greater" or "incomparable" level of

integrity may be modified (or subject improperly invoked) by a given

subject.

*llThat is, a trace of the sequence of data accesses actually used to

modify the object.

1 2Nae
Named for its similarity to the protection mechanism provided by
the Multics hardware [12].

13That is, without verifying properties of user programs.

31

C1

Of course, the corrupt:.on of data bases (and programs) at a sub-

ject's integrity level is tie programed responsibility of the sub-

ject. Since no external act-ess controls prevent possibly corrupting

observations, the subject must provide internal controls to validate

observed data. Program verificetion (of some form) must insure that

no such corruption occurs. The lank of constraints on observe ac-

cess does, however, allow a much wider range of discretion
(and re-

sponsibility) to subjects as to the validity of observed
data and

procedureo.

The Strict Integrity Policy

The strict integrity policy can be considered the "complement"

or "dual" of the security policy [2] [3]. It consists of two axioms,

which, analogously to the Limple security condition and *-property

[2], prevent the direct and indirect sabotage of information.
In

this case as for security, this property is true only to
the extent

that integrity levels are properly assigned to subjects and
objects.

~DMAIN (Sl)

/01 02

/ o --@m

i i (O l) = "1T S "1 1 i_ ()
= S "

i(02) - "c"
l1(03) = "C"

Figure 6. Ring Policy

32

In many ways, this policy provides the same capabilities as the

low-water mark policy. However, where the lowgter mark changes a
subject's integrity level to prevent indirect sabotage, strict integ-
rity forbids the access. This strategy permits the simple recovery
from 'mproper (observe) access: a situation not found for the low-
water mark policy. However, this is achieved for the price of mak-
ing many objects inaccessible (unobservable) to a given subject.

Three axiomi characterize the strict integrity policy.

(A3.6) Vs 6 S, o 6 0 s o o -> il(s) Il (o).

(A3.7) YsGS, o 6 0 s m o => il(o) ARS il(s).

(A3.8) V s[l],s[2J6S s[1] 1 s[2] -> il(s[2]) lea il(s(l]).

SDOMAIN (Sl)

/ 02

\/ .1

\ /

i(ol) - "ITS" i_.(sl) - "s"

i1(02) - "C"

i1(03) = "s"

11(04) -"TS"

Figure 7. Strict Integrity Policy

33

The satisfaction of A.7 insures that objects may not be
directly modified by subjects possessing insufficient privilege.
However, this assumes that the modifications made by an authorized

subject are all at the explicit direction of a non-malicious program.

Clearly, the unrestricted use of subsystems written by arbitrary
users (to whose non-maliciouty character our user cannot attest) does

not satisfy this assumption. Thus, A3.6 constrains the use of sub-

systems (data or procedures) to those whose non-malicious character
(by virtue of their integrity level) the subject can attest: those

objects having an integrity level greater than or equal to that of

the subject. We can now assure ourselves that the non-malicious
character of these objects is preserved by demonstrating that no

information may be transferred (under the above axioms) from objects
of "low" integrity level to ones of "higher" integrity level
(similarly to T3.1).

(T3.2) If there exists an information transfer path from object o[l]

6 0 to object o[n+l] 6 0 then enforcement of the strict integrity

policy requires

il(o[n+l] leg il(oil]).

Proof: If an information transfer path exists, then D3.1 specifies
that there exists the indicated sequences of subjects and ob-
jects. From A3.6 and A3.7:

Vi 6 [1,...,n] i(o[i+l]) le il(s[i]) le il(ofi]).

Since leq is a partial ordering, it is by definition transitive:

thus

Vi 6 [1,...,n] il(o[i+l]) leq iL(ofi]).

Therefore, i1(oln+]]) legk1~(ol]).

Thus, by virtue of T3.2, we can be assured that the strict integ-
rity policy will maintain the integrity of objects as defined by the
external assignment of integrity level.

DISCRETIONARY INTEGRITY POLICY

The preceding discussion of this section has dealt with manda-

tory integrity considerations. Appropriately so, since the issue of
protection of national security information is the paramount consid-

eration. However, the other integrity protection problems assume

'. 34

an important role for a variety of applications. Thus, this sub-

section will explicitly identify the mechanisms and classes of poli-

cies, other than national security integrity, to be supported by the
Multics kernel.

We adopt the notation of the previous subsection to denote the
model elements. Further. though the models are "dynamic" in origin,
that is, the policy is a function of the system state, we present

only the static constraints applicable to any one state. Dynamic
considerations concerning the specification of the protection af-
forded data will be informally addressed.

Access Control Lists

Access control lists (ACLs) are a mechanism for the specifica-
tion of the set of users whose subjects may access a given object.
The contents of an access control list may be dynamically modified
by an appropriately privileged subject. Hence its discretionary na-
ture.

Model

We define the following additional model elements:

U : a set of users;

o","m" I set of abstract access modes;

user : S -> U, a function mapping subjects into users;

acl: 0 -> POWERSET(U x M) a function mapping objects into an
element of the POWERSET of the cross product of users and

Ii access modes - the set of ACL elements;

name: U x M -> U, a function selecting the user component of an

ACL element; and

mode: U x M -> M, a function selecting the access mode compo-
nent of an ACL element.

The following access constraints are considered only to apply to
subject -> object access. No modelling of subject -> subject invoca-

tion is intended though its derivation is not d.Lficult. Indeed many
implementations of this policy (in particular the Multics Access
Control List) do not apply it uniformly to all objects.

(A3.9) V s 6 S, o 6 0 s o o ->

acle 6 acl(o) name (acle)nuser(s) and mode(acle)-"o".

35

- L

(A3.10) V s 6 S, o 6 0 m 0

acle a acl(o) name(acle)-user(s) and mode(acle)'Im".

The function acl defines the discretionary protection policy. A3.9

constrains observe accesses to those objects specifically naming the

user of the accessing subject on its ACT.. A3.10 similarly constrains

modify accesses. The relations o and M may be changed by modifica-

tions to acl. The privilege to modify ac! is defined by the privilege
to modify the object in which acl is located.

Protection Properties

We may now ask: What properties for integrity protection does

this model provide? The problem of direct modify access is addressed

by the explicit specifications of the ACL contents (A3.10). However,

two problems persist: 1) indirect modification, and 2) identification
of which subjects may modify the protection policy (change the ACL).

DoMAIN (Sl) .DOMAIN (S2)

/- -

Si

/1 01 037~\

L2K

user(Sl)- A user(S2) - B

acl(01) - <A,"o"> acl(03) "<B,'*m">

acl(02) "<A,"m",<B,"O">

Figure 8. Access Control Lists

36

The problem of indirect modification is difficult to address
with this policy/mechanism. The strict integrity policy made pre-
cise statements regarding indirect modification, since static, ex-

ternally defined classes of subjects and objects (integrity levels)
were defined. The properties externally attributed to subjects and
objects of a given integrity level allowed some statement as to
the preservation of these properties. However, no such statement
may be easily made in this case. The problem is compounded by the
dynamic nature of ACLs. 31.ce the set of subjects (users) which
may access an object is not under external control, no properties

of these subjects (users) may be externally defined. Thus, iuo
statement regarding the properties of accessed objects can be made
solely on the basis of the access control mechanism. In fact, the
lack of "precise statements" is a fundamental characteristic of
discretionary policy, and it is this characteristic that tends to
distinguish it fr:om non-discretionary policy. The behavior of
accessing subjects, particularly to which users (subjects) they

delegate privilege, must also be taken into account.

Unlike integrity and security levels, the protection afforded
by ACLs is dynamic. That is, the set of users and access modes,
specified by an ACL (acl) may be modified by an appropriately

privileged subject. For Multics, a appropriately privileged sub-
ject is one that has modify ac ss to the directory containing the
branch defining a given objectig [7]. Since ihe capaility to
change an object's ACL is represented by having modify access to its
containing directory, a subject ha~ing such access may give itself
direct access to the object if it does not already have such access.
Indeed, we may apply this notion recursively to the file hierarchy.
Thus, any subject that possesses modify access to a directory, may
give itself (or other subjects) diocretionary access to c'ny element
of the subtree rooted at that directory.

We may formalize this discussion by defining the directory
hierarchy as done in [3] and redefining the access modes o and m in
such an access hierarchy. An object hierarchy H may be defined as
a rooted tree of objects: a oubset of the entire object set 0.

*14

140r that may obtain it. See discussion in the following para-

graphs.

15
acl(o) is logically contained in the directory for o. Thus,

privilege to change acl is distributed throughout the system.

37

The Multics file system is an example of such a hierarchy. We may
define it by the following axioms defining a relation ancestor for
the tree. For o,p e H ancestor(o,p) states p is an ancestor of o.
This relation is quite similar to the dominates relation of [3].

(A3.11) V o 6 H ancestor(o,o).

(A3.12) V o,p 6 H ancestor(o,p) and ancestor(p,o) -> o-p.

(A3.13) V o,pq 6 H ancestor(o,p) and ancestor(p,q) -> ancestor(o,q).

(A3.14) V o,p,q 6 H ancestor(o,p) and ancestor(o,q) ->

ancestor(p,q) or ancestor(q,p).

Given the above definition, we may augment the relations o and m
given that to access any object in H; a subject must have o access
to all its ancestors.

(A3.15) V s 6 S, o,p 6 H s o o and ancestor(o,p) -> s o p.

(A3.16) V s 6 S, o,p 6 H s m o and ancestor(o,p) And o p -> s p

Further, we identify the set of subtects who may gain access them-
selves or give access to another subject, by the relation
accessible(o,s) for subject o changing the domain of object o.

(A3.17) V s 6 S, o 6 H accessible(o,s) -> s o o or
p G H ancestor(o,p) and s m p.

The community of users and subjects identified by accessible are
those which have or may obtain access to an object. We note that
the definition of accessible and the object hierarchy can be extended
to other protection policies or combinations of policies.

The above analysis states that a number of subjects, not
4, uniquely determined, may determine the ACL contents of a given ob-"

ject. Thus, the modification protection afforded by ACLs in the
file hierarchy is limited by the propagation of privilege. We must
trust the set of subjects which have modify access to some superior
directory (of a given object) not only to give themselves access
(and utilize it properly) but also not to give other subjects (of
other users) access. In an environment characterized by a rapid

38

turnover of users, and extensive data sharing, the dynamic nature of
ACLs provide only limited protection against improper modification16 .

Rings

The ring protection policy/mechanism we shall discuss is the
prototype for the ring policy discussed in the previous subsection.
It offers the capability to

a) protect a subsystem from its invoker; or

b) protect an invoker from an invoked subsystem.

It cannot provide both capabilities for any combination of invoking

and invoked subsystem.

The protection schema we describe differs from the mandatory
ring policy in the following respects:

1) it is hardware supported by the Multics processor;

2) it is applied to different system elementsz particul4r
subjects are mapped to intraprocess procedures rather than

processes;

3) provision is made for the modification of access privilege

(changing of ring allocation); and

4) greater flexibility for intersubject invocation is provided.

Model

We define the following elements:

R: a finite set of ring names, normally small integers;

A useful utility, for a given implementation, would be a function

to identify the current set of users which might potentially gain
access to a given object. From our definition of the relation

accessible, this function would have the value

user(s) a 6 S and accessible(o,s)1.

Of course, this information may only be given to subjects which

themselves have access to the object.

39

<: a linear ordering, "less than or equal", on R;

<: a linear ordering, "less than", on R;

r: a function, S -> R, defining the ring of execution for

each subject;

lir: a function, S -> R, defining the lower ring bound for

each subject's invoker;

uir: a function, S -> R, defining the upper ring bound for

each subject's iuvoker;

umr: a function, 0 -> R, defining the upper ring bound for
modify access; and

uor: a function, 0 -> R, defining the upper ring bound for
observe access.

DOMAIN (S2) .- DOMAIN (Si)'

/ / _\

/ / .

0,m

\ , om/ ..> ,

- -

03

E(S2) 1 r() 0 r(Sl) 4

uor(Ol) - 4 uor(02) - 2 uor(03) - 0

uM(Ol) - 4 umr(2) - 2 umr(03) - 0

Figure 9. R-Ings

40

The constraints on access are formalized by the following

axioms:

(A3..18) Ysfl],sf2]6 S s91] 1 sf2] -

(Lir (s 12) K (s IlI) S uir (as[23 And

E(s[2] < r(slJ)) or

- I (sill) <5 r(s[1)).

A3.18 constrains a subject to invoke subjects:

1) of greater privilege only through an allowed range of rings;

and

2) of less than or equal privilege indiscriminately.

(A3.19) VaGS, o60 s o 0 -> r(s) < uor(o).

A3.19 constrains subjects to nlI~ observe objects in an allowed

range of rings: C < r(s) < uoix(o).

(A3.20) Vs~s, o60 s m o u>r(s)1 < Mr(o).

A3.20 cornstrairs subjects to only modify subjects in an allowed

range of rings: 0 < r(s) < umr(o).

We q9nsider each subject to have a single point of invocation

(entry),' A3.18 constrains intersubject invocation to a specific
"band" of domains (rings). While A3.18 assumes an explicitly speci-
fied lower bound, A3.19 and A3.20 Implicitly assume a lower bound of
the least element of R.

not n~lote, as for access control lists, that this mechanism may

not pplyuniformly to all subjects, objects, and modes of access

withn aspecific implementation.

Protection Properties

H?

The analysis provided above for access control Lists applies to

the ring protection structure. Like ACLs, the protection policy may

be altered by an appropriately privileged subject. The ability to

alter the protection attributes of a subject or object must be

17]

This structure may be mapped onto the Multics "gate" structure

(where multiple entry points are defined per gate) by considering

each entry point to define a unique subject. In this view, multiple

entry points act only as mechanism to conserve space.

41

range~~ ~ of rigs ...s ..o (o) .

restricted to subjects of greater than or equal privilege. The

manner in which access is restricted is dependent upon the manner
in which subjects and objects are organized. Indeed, for Multics,
we find a similar formulation of possible access (as for ACLs) may
be made, particularly within an object hierarchy. Thus, its

discretionary nature poses problems of identifying who does what to
whom.

However, the finite (eight for Multics) size of the set of

possible domains provides room for hope. Careful control (and
limitation) of the set of privileged subjects (particularly in the
"low" rings) allows knowledge of protection behavior. Further, the
set of subjects and objects (in most applications, particularly in
"low rings") remains static. The properties of static subject and

object population (which allows proof of behavior to be applied to
these) and limited number of linearly ordered domains permit useful
application of the ring structure for integrity protection.

II;

42

k

SECTION IV

APPLICATION

The integrity policies described in the previous section may
now be applied to a prototype computer system. The system of parti-

cular concern is a secure, kernel-based Multics. Our investigation

will consider the two integrity environments identified in Section
I: 1) the kernel and 2) the kernel-defined virtual (user) environ-
ment. For each, we will indicate applicable intugrity policies for
identified integrity threats.

We begin this section with a brief overview of the mapping of
model elements to the Multics environment. Of particular concern
is an identification of the protection mechanisms available within
Multics, and which policies are enforceable by which mechanisms.

We then consider integrity issues within the kernel and conclude

with integrity issues within ths virtual environment.

MULTICS ACCESS CONTROL STRUCTURE

Protection Mechanisms

The current Multics hardware base 18 supports two classes of
protection mechanisms: 1) descriptor segments and 2) rings of

protection. The first defines virtual name spaces which provide
(through a binary, yes/no, decision) mappings from virtual names to
physical objects resident on some system storage. The second parti-
tions each of these name spaces into eight equivalence classes and

provides the discretionary ring access controls, discussed in the

previous section, between these sub-name spaces. The protection
characteristics of any name within a name space are determined by
the value of a descriptor for that name within the descriptor seg-
ment. In particular, the descriptor provides two facilities: 1)

an access capability (for all subjects using this name space) defin-
ing all allowed modes of access to this name, and 2) constraints on

that access based on the ring attributes of the accessed name

(defined in the descriptor) and of the accessing subject.

There are two mechanisms for intersubject invocation. The

first is the procedure call: a subject, executing within a ring

within a given name space, invokes another name, as a subject,

1The Honeywell Information Systems' 6100 series and newer level 68.

43

I - __

within the same name space. The invocation may (or may not) be of

a sublect within a new ring; however, the name space remainn the

same. The second mechanism allows transfer from one name space to

another through the change of a ultics processor name space

pointer. For the current implementation of Multics, and for the

proposed kernel-based system under design, structural considerations

(and hardware support) make the former of these mechanisms the most

efficient. We find the procedure call within a name space (con-

strained by the ring protection mechanism) to provide us with the

kernel invocation mechanism.

Subject Structure

A central concern in the mapping of model elements (particular-
ly subjects) to an implementation is a match between the capabilities

of the provided protection mechanisms with both the requirements of

RING 7

i"
PROCESS NP R OOCSS 2

PROCESS 3

Figure 10. Subject/Process Structure

44

'.

the provided protection mechanisms and the requirements of each
subject's protection policy. The discussion of Section II indicated
three protection problems (and policies) of interest: 1) mandatory,

national security information integrity; 2) discretionary integrity
based on user identity; and 3) subsystem integrity, particularly of
the kernel.

The first two policies, in use, are characterized by a rela-
tively low rate of domain change (if any). The granularity of
access, for these subjects, applies to all uncertified, user-supplied

subjects. In addition, a process is associated with a user. Thus,
the protection properties of a process should be derived from those
of its user. The properties of the name space mechanism, above,
seem to match quite closely to these properties. Likewise, the

protection requirements of specific subsystems within these subjects

seem to be best addressed by the intraname space ring protection
mechanism.

A Multics process is then a collection of subsystems, each of
which is a subject constrained by the discretionary ring mechanism,
the union of which can be considered a ,,ubject constrained by a
name space (domain) whose mapping to physical objects is determined
by the mandatory protection policies (security and integrity) and

the discretionary user identity (ACL) policy. The following two

sub3ections will describe in greater detail the protection policies
applicable for both these subject types. Of particular concern for
subs ems is the set of subjects and objects which compose the
pro"-.tion kernel. From the above discussion, the kernel is com-
posed of subjects distributed among all Multics processes (name
spaces - descriptor segments).

KERNEL INTEGRITY

The notion of kernel integrity encompasses the "tamperproof"

isolation property formulated as a reference monitor requirement.
Tampernroof ' 'lies that the kernel domain is protected from modifi-

, ~ot whie" ild result in a functionality differing from that

deined by the kernel specification. Beginning with the assumption
of initial correct kernel operation, a kernel integrity policy must

specify the criteria which, if followed, will preserve the correct-

ness (integrity) of the kernel. Section II defines the kernel as
composed of s tts and objects resident in the most protected

ring domains ach process (name space). Our attention is

therefore focused on protection within a process name space, provided

by the ring structure.

h i 45

.. J-........ -

We begin our analysis with an enumeration of the methods of

improper kernel modification (integrity threats) and conclude with
the required modification policy.

Kernel Threats

The integrity threat categories suggested in Section II will
be used to organize our analysis. We consider both external and

internal kernel threats, with direct and indirect subspecies.

External Threats

External threats primarily arise from incomplete or erroneous
kernel perimeter specifications, particularly with respect to

implicit sharing of data or procedure between the kernel and its

invokers. Direct threats may be summarized by two general attacks:
1) direct modfication and 2) kernel entry at other than intended
entry points. IndirGct threats may be similarly listed as: 1)

incomplete kernel argument validation, and 2) implicit/explicit use

of non-kernel data or procedure.

Direct modification is the direct access (via a read or write

operation) to a kernel data base (or procedure) and the subsequent
performance of improper modifications (viz., any modifl6ation which

alters the non-kernel visible behavior2if the kernel). Kernel
entry at other than the intended gates allows the kernel invoker

the capability to alter the kernel function from that intended.
Such entry, in essence, defines new kernel functions performing un-
intended functions with the access privilege of the kernel subsystem.

Arguments to kernel functions (subsystem entry points) must

satisfy two criteria: 1) the arguments must be located in objects
accessible to the function's invoker, and 2) the value of the argu-

ment must correspond to that specified for this function (and which

the kernel's correctness proof assumes). Satisfaction of these
criteria insure that the kernel cannot be induced to misuse its
privilege (by accessing an object its invoker may not access) and

19Invocation of uncertified subjects, and hence of unknown (possibly

malicious) behavior, with kernel access privileges.

20That is, the behavior specified by the top level formal specifica-

tion of the kernel's function [13].

21Gate is the Multics term for a domain entry point.

.'"46

its function cannot be changed by improper arguments (we assume

the completeness of the formal verification with respect to the

values of tke function's arguments). An extension of this concern

is the kernel use of non-kernel data or procedure. A particular

example is the use of system-wide library routines (viz., a square-

root routine) which may be modified by non-kernel software.

Internal Threats

Assuming the initial correctness (consistency with the speci-
fication) of the kernel, internal threats arise from two sources:
1) false assumptions and 2) improper mapping of kernel names. The
primary source of false assumptions relates to hardwarc behavior.
The a priori specification of perhaps uncertifiably reliable hard-
ware implies that assumptions about its behavior must be made.
These hardware assumptions (as is the wont of hardware) may be

invalidated by quite transient conditions. The improper mapping of
internal kernel names to hardware elements is the other source of
internal threats. We assume that each kernel data object (uniquely
named) bas a unique physical representation. If this is not so
(viz., a working data area mapped onto kernel procedure code) the
kernel state may no longer satisfy the verification conditions
initially proved.

Kernel Policy

External Threats

The direct threats aie, appropriately, the most directly ad-
dressable. The ring protection mechanism/policy supplied by the
Multics hardware is designed specifically for this purpose. First,

we require that the dato bases and procedures constituting the
kernel be assigned a write-ring such that modification may not be
performed outside the kernel ring(s) (domain: probably composed of

rings 0 and 1). The second direct threat can be addressed by: 1)
assignment of "execute" brackets (for kernel procedures) totally
within the kernel domain, and 2) careful restriction of kernel gates
(invocable subjects) to only those operations 12fined by the kernel
specification. Thus, a ring-triple of <1,1,3> for kernel gates,
and <0,1,1>) for kernel data bases and internal procedures would be
appropriate. Of course, the set of kernel segments must be expli-
citly defined, changing (in a precisely defined manner) only co
construct those kernel data basas which implement kernel defined
objects (particularly process definitions).

2 2We assume a two-zing kernel, rings 0 and 1, and a two-iing
perprocess operating system, rings 2 and 3. See reference (12] for
ring technology.

47

FF

Arguments to kernel operations (both input and output) must be
minimally validated as derived only from data accessible (respec-
tively observable and modifiable) in the (non-kernel) domain of the
invoking user process. The Multics hardware, through use of the
ring structure to isolate kernel and non-kernel domains, provides
a convenient mechanism for this validation. Also, the proper value

for thase arguments must be validated at each kernel access to them.
This may be most directly acc.omplished by copying, at function
entry, into kernel domain objects and validated once at entry.
Thus, the arguments are protccted from -odificat.on by non-kernel
subjects. Hoever, tha switching of descriptor segments (name
spaces) and the use of kernel data structures global to all pro-
cesses must be shown not to compromise integrity, particularly
between distinct non-kernel domains.

procedure may be most directly approached by avoidance: the kernel

(other than function arguments discussed above) does not use such
data or procedure. The practicality of this suggestion may only be
tested in a concrete implementation. However, at this time it would
appear that the only problem would arise with library procedure
used by the compiler in which both the kernel and the non-kernel
software are primarily written. Since these procedures are not
modifiable outside the kernel, a single kernel copy is all that
is needed.

Internal Threats

The possibility of hardware malfunction, while not discounted,
cannot be addressed as directly as software integrity. Clearly, the
hardware may itself be considered as a distinct "level" of reference
monitor (implementing a software defined policy contained in the ~.1 scriptor segments). Thus, all of the above considerations apply.
However, the issue of hardware "correctness" is not easily addressed.

Unlike the kernel software, the hardware has not been designed with
proof in mind (viz., well-structured to avoid combinatorial explo-
sion). The feasibility of hardware (or ill-structured firmware)

validation has not been demonstrated. Exhaustive testing, in the

233

For example, the issue of direct modification of hardware may seem

absurd; however, the advent of dynamically microprograced archi-
tectures makes the issue of "firmware" modification substantial.

48

cesss mst b shwn nt t copromse..te.ity.par..u.r.

absence of well-structured hardware, may be the only feasible
methodology for the validation of hardware (firmware) properties."'

Further discussion of hardware reliability is beyond the scope of

this investigation.

The prevention of kernel name mis-mapping may only be prevented
by careful enumeration of all kernel names and the appropriate modes
of access to them. The actual implementation must then be rigorously
verified to maintain the relationships (and protection) dofiaied by
this enumeration. The provision of name space "firewalls", of

protection domains within the kernel, could aid in this endeavor.
Firewalls may be constructed (for Multics) by partitioning the
kernel into multiple rings (thus protecting the inner rings from all
outer rings) and by the provision for multiple name spaces within
the kernel. Multiple name spaces may be constructed by providing
multiple, asynchronous processes (within the kernel) to define
kernel facilities. Examples within the current Multics design

include the resource schedulers.

VIRTUAL ENVIRONMENT INTEGRITY

The virtual environment, as previously defined, is composed of
those subjects that do not constitute the protection kernel. The
access 'domains of these subjects are constrained by several integ-
rity policies: 1) a mandatory policy addressing the integrity of

national security information; 2) a discretionary policy addressing
user identity access specification; and 3) subsystem protection.
The policy provided for subsystem protection is that used for kernel

integrity maintenance. Similar considerations apply to any user-
defined subsystem. The properties of access control lists were ex-
tensively investigated in the previous section, and in the literature

on Multics. We shall not address these policies further in this

paper%

Thus, in this subsection we will be particularly concerned with
the identification of a suitable mandatory integrity policy and its

application to the Multics virtual environment.

24We assume no eagerness to redesign (and reimplement) the hard7are

in a well-structured manner.

49

A Recommended Policy

The mandatory models defined in Section III do not sxhaustively

enumerate the space of models. However, the set does represent a

preliminary cul.ing of worthwhile protection notions in the DoD

environment. With that caveat, some summary analysis and selection

of the "best-suited" policy is in order.

K !None of these models addresses all of the integrity protection

problems in the virtual environment. The discretionary models

address another portion of possible problems. However, many pro-
blems are highly application-specific, thus beyond the scope of

this investigation. A mandatory model is addressed to one purpose:

protection from malicious modification. It has little effe t with

regard to prevention of accidental improper modOfcations.25 our
goal may only be the construction of a policy which enforces integ-

ricy protection commensurate with the appropriateness of external

assignment of integrity levels to users, data, and programs. In

this light, we suggest the strict integrity model as most suitable.

The policy is selected for the following reasons. First, it

provides the greatest practicable protection. The constraint with

respect to "reading down" (A3.6) provides a significant barrier

' against the placement of Trojan Horses (or other forms of malicious

modification). While similar protection is provided by the low-

water mark policy, the behavior of that policy, in regard to a

changing subject domain (integrity level), makes its practical use
undesirable. Second, the protection provided is relatively easy to

understand. Recent results [14] indicate the difficulty in formu-
lating effective arbitrary access control policies. A policy, such

as strict integrity, that is simple and universally applied Is the
easiest to certifiably enforce.

However, the utility of strict integrity is dependent on its

use in a "real" environment. While T3.2 does insure some protection,

it is commensurate with the properties, externally enforced and

assigned, attributable to integrity levels. As indicated above, it

25The anecdote describing the production of Hamlet by a particularly

long-lived simian is appropriate here. An accidental error, in a

suitably privileged program, will sometimes cause a modification

labelled improper. As indicated earlier only fine-grained (appli-

cation dependent) access control provided by system external certi-

fication can be of assistance. Such certification can be provided

by program verification techniques.

50

cannot address (except peripherally) accidental modification. Thus,

the utility of the policy must be judged by its use. In an environ-

ment characterized by the presence of a number of subsystems (com-

posed of both data and procedure) that require unique levels of
modification protection and in whik there is much cross-"evel shar-
ing of data and procedure objects, the strict integrity policy
finds its greatest utility. However, some environments may find
its constraints too cumbersome for practical use.

A viable alternative for such environments is the use of the
ring policy. The effective removal of A3.6 allows greater program-
ming freedom while retaining protection against direct sabotage.

However, the re3ponsibility for protection against indirect sabotage

(viz., placement of Trojan Horses) must rest with programming con-
vention or explicit user execution time checks (viz., validation

of the proper library routine). The policy provides no explicit
protection against indirect integrity threats. The impact on
integrity control caused by the enforcement of the ring policy
rather than strict integrity is related to the impact on security

caused by the removal of *-property [2] enforcement. In each case,
indirect protection threats must be addressed by access controls
outside of the kernel. Since no assurances as to the proper be-

havior of non-kernel access controls can be made, no effective pro-
tection against indirect threats can be provided.

The ring policy may even prove too restrictive or cumbersome

for some environments. For such instances, the integrity policy may
be incorporated into the security policy. One [2] formulation of
the security policy requires that a subject may modify objects only

of equal security level. Thus, the security level becomes a form of
integrity policy, preventing direct modification from subjects of
"lesser" security level. However, as will be shown below, this
policy cannot address certain problems posed by hierarchical file

systems, or the differing protection requirements for shared deta

bases, discussed earlier.

26The benefit is maximized when sharing is distributed over a nt-uber

of integrity levels. If the shared objects are all "global" ob-
jects, which must then by convention be placed at a "system high"
integrity, then the convention has, in practice, usurped the func-

tion of A3.6. With such glebal sharing, other mechanisms (notably

ACLs) may be used to effect proper protection.

51

The enforcement of any of the above policies might prove im-

[practical in some benign environment. For such systems, the low-
water mark integrity audit policy provides a tool for the adminis-

trative control of integrity corruption. Its use as an audit
mechanism may prove useful to a community of systems supporting
information sharing in a generally benign environment. However, it

must be noted that auditing provides no protection, only post facto
notification of an integrity compromise. Thus, it is useless forthe prevention of integrity compromise.

Virtual Environment Impact

Our preliminary analysis of the impact of the imposition of the
strict integrity policy focuses on two issues:

1) application of the strict integrity policy to the classes

of objects supported by the Multics kernel, and

2) some indication of the impact on user behavior (particularly

the assignment of integrity levels).

We discuss each in turn.

Application

We briefly consider the application of the strict integrity
policy to the functional Multics environment provided by the se-
curity kernel. Our analysis is confined to the primary kernel sub-
systems of process control/communication, on-line storage control
and external I/O. For each functional area, the specific application

of A3.6 - A3.8 is presented.

Let us consider the set of subjects that compose the user envi-
ronment of a Multics process. Each process is assigned an integ-ity
level equal to the integrity level of its component subjects. The

4 process control functions of create, delete, and wakeup are all in-

stances of the model operation of invocation, operating on other
processes. Hence, A3.8 constrains the access domain. Thus, the
integrity constraints on i, for any process p invokino a process p'
are realized as:

i-(p') leg il(p).

52

We identify an external 1/0 socket as an instance of an object.

An I/0 socket is a logical I/O stream that acts as a data and control
path between a Multics process and an I/0 device. Each sucket, fox
each process, is assigned an integrity level. A process p is then

constrained to send (an instance of modification satisfying An) only

over a socket sk where:

il(sk) leq il(p).

A process p' may receive only over a socket sk' where:

il(p') leq il(sk').

We identify a segment as an instance of an object. Each segment

is assigned an integrity level.2 7 A process p is then constrained to
read or execute (including call and return) on those segments s

where:

[1(p) leq i(s) .

A process p' may only write or append those segments s' where:

i_ (0o) Iem i~l (p')

We identify directories as instances of objects. A process p

may only have search or status access to those directories d for

which:

l~p) l il~d).

Message segments constitute not only a multi-security level ob-

ject, but also a multi-integrity level object. Individual messages,

as well as message segments, possess an integrity level. A process
p may enter a message m into a message segment ms (in directory d)
where:

il(m) IM i_1(p) & il(ms) le il(m) & il(m) e il(d).

We note that in a manner analogous to other attributes, the seg-

ment's integrity level implicitly possesses (from the directory

structure) integrity and security level attributes. We will dis-
cuss possible assignment of such attributes beiw.

53

A process p may remove a message m from message segmnt ms (in
directory d) where:

il(pl leq il(m).

The constraints of zhe strict integrity policy dictate the
placement of integrity level constraints on the file hierarchy,

similar to those introduced for security 13]. We require that for
any directory d, its branches b (indicating subordinate objects:

directories, segments, and message segments) must have an integrity

level where:

il(b) leg il(d).

We can arrive at this constraint from some rather basic integ-
rity considerations. Within the directory-based environment, a
file's name may be considered as a vector composed of all branch

names of its superior directories (plus its own branch name).
Clearly, changing any component branch name to indicate a different
subtree is a possible act of sabotage which we wish to avoid. Thus,
the entire filename (including the names of its superior directories)

must have at least the integrity level of the concerned object.
Considered piecewise, the name of each object's superior directory
(which contains the object's name) must have at least the integrity
level of the object. Applied recursively from the root to the leaves,
we obtain the result: the integrity level of objects, in the file
hierarchy, is monotonically non-increasing, considered from the root
to the leaves.

Impact

The impact of the strict integrity policy on user programming

behavior is briefly considered below. We are concerned with the

assignment of integrity levels within the file hierarchy, particularly

in relation to the assignment of security levels.

We begin by examining useful combinations of security and integ-
rity constraints. Figure: 11 illustrates allowable modes of access
for different combinatior.s of constraints. Not surprisingly, we note

that the greatest privile.ges accrue when both subject's and object's
integrity and security levels are respectively equal. Further, the
most useful access (observe) holds only if:

sl(o) < si(s) i±(o) leqil(s).

54

sl(s)sl(o) sl(s)-_1(o) s_.(o)<_(s)

il(s) leq _1(o) 0 0

il(s) . . _o) 0 o, 0

il(o) leq il(s) m m

Figure 11. Security and Integrity Constraints

The application of the strict integrity policy, in conjunction

with the security policy implies, from previous discussion, two prop-
erties of the file hierarchy: 1) monotonically non-decreasing se-
curity level, and 2) monotonically non-increasing integrity level,

considered from the root to the leaves. Thus, if both attributes

vary from the root to the leaves in the indicated manner, for a given

process p (with fixed sl(p) and il(p)) a subtree may become inacces-
sible to some subjects because: 1) the security level is too "great,"
2) the integrity level too "small," or 3) some combination.

This property Is illustrated2 8 in Figure 12. Process p cannot

observe A.A since A.Ats integrity level is too low, cannot observe
A.B since A.B's security level is too high, and cannot access A.C

at all for both reasons.

A typical object hierarchy using integrity levels to protect a

number of distinct applications having differing levels of integrity

The security levels of Figure 12 are labelled as follows:

U-UNCIASSIFIED, S-SECRET, and TS-TOP SECRET. Thece are ordered by 1l:

sl(U)<sl(S)<sl(TS).

55

A il(p)A) "
81(p)-

IiA.A A. B A.C

il(A) - "TS" sl(A) - "U"

il(A.A) - "C" sl(A.A) M "U"

i(A.B) - "TS" sl(A.B) M "TV

i(A.C) - "C" sl(A.C) - "U"

Figure 12. Inaccessible Objects

is illustrated in Figure 13. The TOP SECRET root directory contains

three subsystems each at a distinct integrity level. The directory
ofsubsys_.A"' contains the segments for a CONFIDENTIAL level application.

The directory "subsys B" contains the segments for a SECRET level

application. The directory "subsys_.C" contains the segments for a
TOP SECRET level application. By construction, the CONFIDENTIAL and
SECRET applications cannot interfere with the operation of the TOP
SECRET application: its objects (segments and directories) are
inaccessible.

Verification Considerations

The verification of kernel security properties has two compo-
nents. First, we must verify that the kernel implementation satisfies

the properties defined in the formal specification. Second, the ab-
stract objects accessed by kernel primitives (viz., object attributes

including security and integrity levels) must be accessed in a mode

co-,ensurate with their implicit or explicit security and integrity

56

"ROOT"

il("root") = "TS" il("root.subsysA.1") w "C"
i ("root. subsys A") - "C" il ("root.subsys B. 2") - "S"

il("root. subsysB") - "S" il("root.subsysB. 3") n 'ITS"
il("root.subsysC") - "TS"

Figure 13. Typical Object Hierarchy

29
levels . The verification technique developed for the security
policy is described in [15]. We shall briefly describe its extension
to the strict integrity policy.

The first problem poses no conceptual difficulty. The only addi-
tion the integrity policy makes are the constraints specified by A3.6
- A3.8 for each access. For each kernel operation, specific

29The implicit protection attributes (including those required for
all kernel-supported protection policies) are determined by the set

of objects acceseed (and the mode of access) by each kernel opera-

tion.

57

k~

assertions incorporating one or more of A3.6 - A3.8 must be included

in the formal specification. Similarly to security assertions, the

implementation must be verified to satisfy these constraints.

The second problem is also addressed by an extension of the

current methodology. Each kernel-defined object observable at the

kernel perimeter must be shown not to improperly transmit or modify

information through kernel operations. The established methodology,
for security, proceeds by the derivation of secirity levels for these

kernel-defined objects and shows that their manipuli!on by kernel
primitives does not cause information compromise (viz., satisfies the

constraints of the security policy). Our concern is to show that

their manipulation does not also cause information sabotage.

The established verification methodology [15] may be applied to

any protection policy based on a partially ordered set of protection

levels that defines similar access relations. Since both the set of
security levels and the set of integrity levels are partially

ordered, their product (A - SLxI), a set of access levels, is also
partially ordered. We can define a partial ordering le on A where
for any two access levels al-<sl,il> and al'-<sl',il'>:

al le al' <-> sl < sl' and il' leq il.

The access relations may be redefined as:

s o o -> al(o) Le al!(s) -> sl(o) f Al(s)

s m o -> al(s) le al(o) -> sl(s) < sl(o)

sf1] i s12] -> al(s[1]) Le al(s[2]) u> sl(s[l]) < sl(s[2]).

These definitions encompass both the strict security and strict
integrity policies and are orecisely analogous to the access relations

for the security policy aloe. Since

1) the set of access levels is partially ordered, and

2) the access relations using access levels ate precisely

analogous to the security policy,

the verification methodology used for the security policy can be used
for both the security and strict integrity policies.

58

SECTION V

CONCLUSION

The preservation of the validity of information stored in

resource-sharing computer systems is a major system design question.
The issues of which 1-4%, .az!on to protect, from whom, and with what
mechanism are complex !eBLions requiring careful analysis. This
paper has addresmed tht.< iuf ions for a number of important pro-

tection problems round in computer utilities. The integrity pro-

tection iswues for a security kernel-based Multics provided the

specific context.

We began our investigation with an examination of the abstract

notion of integrity. The concept of integrity as the maintenance of
information validity was discussed and accepted. Specific integrity

maintenance problems for a computer utility (particularly a kernel-

based Multics) were identified and access control policies and mecha-

nisms addressing solutions to these problems were formally specified.
Finally, the application of these policies within the Multics
environment was described.

Three protection problems were explicitly addressed:

1) the integrity protection of information vital to national

security;

2) the incegrity protection of information vital to the needs of

a particular user; and

3) the integrity protection of the security kernel.

Access control policies providing effective protection were identified

for each. These policies may be usefully applied to protection

problems other than those addressed here. Appendix I identifies one
such case.

The imposition of any information protection policy often

has some impact on the user programming environment. Protection

policies, by intention, restrict the behavior of programs. The ap-
parent programming difficulty arising from these restrictions must be
carefully evaluated against the considerable value of effective ac-
cess control. The policies discussed in this paper provide a sub-
stantial tool to system administrators, designers and programmers for
the proper confinement of programs to the least privilege required
for their successful legitimate operation. Programming difficulty is

often transient and disappears once protection policies become

* I, 59

familiar to users. However, protection problems *re not so kind.
Ignored protection problems become security and integrity breaches.
The only way to prevent information compromise is to impose effec-

tively enforced security policies. The only way to prevent a forma-
tion sabotage is to impose effectively enforced integrity policies.

We have directed our attention in thy, paper to a limited number

of integrity problems. No claim for complateness is made. However,
the developed integrity policies may usefully be applied to a much

larger class of problems.

J

60

4j ~ e &a

APPENDIX I

THE CAPABILITY POLICY

The requirement that a security kernel support trusted processes

[2] or complex facilities poses a protection problem not explicitly
addressed by the policies discussed heretofore. These entities are
processes (collections of subjects and objects) to which the kernel
provides special privileges. These privileges are required so that
these entities might define extended secure facilities not ordinarily
provided by the security kernel proper. Examples of these facilities
include the system root process (Answering Service [7]), spooling
manager (I/O Coordinator), and system security officer/administrator.
Each of these facilities require special privileges, most often viola-
tion of the security *-property for one or more kernel operations, in
order to properly perform their function. Cur particular protection
problem is to insure that each of these facilities is extended the
least privilege necessary to perform its function. The special
functions and privileges required are provided by special kernel
operations. We need to define an integrity policy that restricts
these special kernel operations only to those facilities that require
them. The capability policy provides this service.

We define the following policy elements:

S: the set of subjects;

0: the set of objects;

C: the set of capabilities;

caps: S -> POWERSET(C), a function defining the capabilities (facil-
ities) accessible) to the subject;

ocaps: 0 -> POWERSET(C), a function defining the capabilities a sub-
ject must possess in order to observe the object;

rcaps: 0 -> POWERSET(C), a function defining the capabilities a sub-
ject must possess in order to modify the object;

icaps: S -> POWERSET(C), a function defining the capabilities a sub-
ject must possess in order to invoke another subject.

The access relations for the three abstract access modes are

defined by the followine axioms:

61

L..............- Z.i--

(AI.l) V sGS, oO 8 o o> ocaPS(o) cais(s).

The enforcement of AI.1 requires a subject to have at least an ob-

ject's observe capabilities in order to observe the object.

(AI.2) V ses, oO s m o > mcaps(o) caps(s).

The enforcement of AI.2 requires a subject to have at least an ob-

ject's modify capabilities in order to modify the object.

(AI.3) V s[1],s[2]GS s[l] i s12] -> icaps(s[2]) S a_.p(s[l]).

The enforcement of AI.3 requires an invoking subject have at least

the invoked subject's invocation cap-bilities in order to successful-

ly invoke.

We note the similarity of the capability policy to a "lock and

key" protection policy. The ability to access an element (subject or

object) is determined by the possession oZ a key that fits the lock

of the element. A key may be a "master", ablz to unlock all locks
having subsets of its capabilities.

This policy can be used with the discretionary ring policy (see

Section III) to solve the posed protection problem. We partition the

set of kernel subjects and objects into categories based on the spe-

cial privileges they provide. For example, one such category might

identify the privileges necessary for the system root process (often

the privilege to create processes at any security level). Another im-

portant example is the category identifying the kernel privileges as-

sociated with ordinary, untrusted processes. We associate a unique

capability with each category. The capability to access each category

is given only to the facility (trusted process) that requires the spe-

cial access privileges provided by the category's kernel subjects and

objects. The ring policy protects these kernel elements from indis-

criminate access (see Section IV) and thus protects their integrity.

62

REFERENCES

1. "ESD 1974 Computer Security Developments Summary," MCI-75-l,
Electronic Systems Division (AFSC), L.G. Hanscom Field,
Bedford, Massachusetts, December 1974.

2. D.E. Bell and L.J. LaPadula, "Secure Computer System:
Unified Exposition and Multics Interpretation," ESD-TR-75-306,
Electronic Systems Division, AFSC, Hanscom AF Base, Bedford,

Massachusetts, January 1976.

3. K. G. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R.
Ames, Jr., and D. G. Shumway, "Primitive Models for Computer

Security," ESD-TR-74-117, Case Western Reserve University,

Cleveland, Ohio, January 1974.

4. J. P. Anderson, "Computer Security Technology Planning Study,"

ESD-TR-73-51, Volume I, James P. Anderson & Co., Fort

Washington, Pennsylvania, October 1972.

5. R. R. Schell, P. J. Downey, and G. J. Popek, "Preliminary Notes
on the Design of Secure Military Computer Systems," MCI-73-1,

Electronic Systems Division (AFSC), L. G. Hanscom Field,

Bedford, Massachusetts, January 1973.

6. W.L. Schiller, "The Design and Specification of a Security
Kernel for the PDP-11/45," ESD-TR-75-69, Electronic Systems
Division, AFSC, Hanscom AF Base, Bedford, Massachusetts,

May 1975.

7. E.I. Organick, Th Multics System: An Examination of Its

Structure, MIT Press, Cambridge, Massachusetts, 1972.

1 8. Department of Defense, "Security Requirements for Automatic
Data Processing (ADP) Systems," Department of Defense Manual
5200.28M, December 1972

9. M. D. Schroeder, "Cooperation of Mutually Suspicious Subsys-
tems in a Computer Utility," MAC-TR-104, MIT Project MAC,
Cambridge, Massachusetts, September 1972.

10. J. H. Saltzer, "Protection and the Control of Information in

Multics," Communications of the ACM, Volume 17, Number 7,
July 1974, pp. 388-402.

63

it, i

REFERENCES (Concluded)

11. C. Weissman, "Security Controls in -he ADEPT-50 Timne-Sharing

System," Proceedings AFIPS 1969 FJCC, AFIPS Press, montvale,

New Jersey, 1969, pp. 119-133.

12. M. D. Schroeder and J. H. Saltzer, "A Hardware Architecture

for Implementing Protection Rings," Communications of the ACM,

Volume 15, Number 3, March 1972, pp. 157-170.

13. D.E. Bell and E.L. Burke, "A Software Validation Technique

for Certification: The Methodology," ESD-TR-75-54, Volume I,

Electronic Systems Division, AFSC, Hanscom AF Base, Bedford,
Massachusetts, April 1975.

14. M.A. Harrison, W.L. Ruzzo, and J.D. Ullman, "On Protection

in Operating Systems," ACM SIGOPS Operating Systems Review,

Volume 0, Number 5, Proceedings of the Fifth Symposium on

Operating Systems Principles, pp. 14-25.

15. J.K. Millen, "Security Kernel Validation in Practice,"

Communications of the ACM, May 1976.

64

