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Abstract Indoor wireless positioning using Bluetooth Low Energy (BLE) beacons have attracted 
considerable attention from industry and academia given the many advantages of this technology such as low 
power consumption, low cost, easy layout, high availability, and high precision. However, the indoor 
positioning accuracy always suffers from non-line of sight (NLOS) propagation, stemming from the 
frequently occurring instances of reflection, refraction, or scattering of BLE radio signals due to the 
complexity of indoor environments. This paper proposes an integrity monitoring (IM) algorithm to detect and 
eliminate two gross errors simultaneously to solve the adverse effects caused by the NLOS. The logarithmic 
attenuation model based on the received signal strength indication (RSSI) of BLE realizes positioning by 
combining trilateration and Least Squares Based on the Taylor expansion (LSBT). Furthermore, the IM based 
on hypothesis testing is employed to improve the positioning quality and the users will be alerted in time to 
avoid risk from positioning accuracy no longer meet user’s requirement. The performance of the proposed 
IM algorithm has been extensively tested by conducting simulation and field experiments. The experimental 
results show that the IM algorithm significantly improved BLE positioning accuracy as well as the robustness 
of the positioning system. The 90% average error (1.9143m) in seven groups of single point experiments was 
reduced by 34.48% over the 90% average error (2.9143m) of the LSBT method after performing IM, and the 
maximum error during continuous positioning did not exceed 3m after performing IM, which were better 
than only using LSBT positioning. 

INDEX TERMS indoor positioning; integrity monitoring; least square; parity vector; maximum likelihood estimation; 
BLE beacons; HDOP 

I. INTRODUCTION 

With the rapid development in the performance of the 
Global Navigation Satellite System (GNSS) and indoor 
positioning technology, location-based services (LBS) have 
progressed fast in last decades and have become an 
indispensable part of everyday life. Positioning and 
navigation systems can give users an accurate description of 
their current position, timing, and posture in a space-time 
coordinate system, and thus meet user demands in diverse 
application cases such as transportation, construction 
engineering, smart city planning, and emergency response. 
However, a positioning and navigation system is not always 
in a stable state. In practice, the positioning sensors have 
faults or the signals are disturbed during the propagation 

process, they may cause a serious deviation in the 
positioning results. The faults defined as the gross errors in 
the observations during positioning process, while the 
observations without faults only contain random noise. If the 
positioning and navigation system fails to exclude faults or 
to alert users in time when faults appear in a positioning 
system or when the positioning accuracy no longer matches 
the application requirement, it will provide hazardous 
misleading information to those users. Therefore, the 
integrity of the positioning and navigation system has 
become an indispensable indicator when evaluating system 
performance.  

Integrity is one of the four navigation performance 
indicators, i.e., accuracy, integrity, continuity, and 
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availability [1]. It detects and identifies faults or abnormality 
that affect positioning accuracy and to inform the user that 
the service is unavailable. Integrity is a confidence measure 
referring the system ability to provide timely notifications or 
to terminate a signal when the positioning and navigation 
system is unavailable, due to faults or when positioning 
errors exceed the alert limit [2]. 

Various indoor applications, e.g., firefighting, 
peacekeeping missions, emergency safety, disaster relief, 
and mobile health services and intelligent robot applications, 
require the positioning system with high integrity. 
Unfortunately, indoor environments are more complex and 
varied than in outdoor environments. Radio waves are 
reflected, refracted, or scattered frequently due to the 
blocked by obstacles, which change the signal propagation 
path to the receiver forming a non-line of sight (NLOS) 
propagation and multipath effects. The NLOS propagation 
and multipath effects will result in a large deviation in the 
positioning results that can seriously affect positioning 
accuracy [3]. Moreover, the indoor spatial layout and 
topology are susceptible to human influences such as 
changes in sound, light, and the electromagnetic 
environment in indoor spaces, for positioning methods based 
on feature matching, the positioning results will be greatly 
affected [4].  

It is challenging to realize high precision, highly robust 
indoor positioning system. Nevertheless, integrity 
monitoring is a desirable option to improve positioning 
system performance. But most of the existing researches 
about integrity monitoring algorithm of indoor positioning 
have some limitations [5-9]: Only single fault (gross error) 
can be identified and eliminated during the positioning 
process (that is, these integrity monitoring algorithms cannot 
identify and eliminate multiple gross errors during the 
positioning process); furthermore, these integrity monitoring 
algorithms all lack an alert mechanism for cases in which 
positioning accuracy completely dissatisfies user 
requirements. However, since indoor environments are 
complicated by reflection, shadowing and multipath, 
multiple gross errors occur frequently during indoor 
positioning. Besides, if an application system only outputs 
information but lacks a reliable description of that 
information, the service is incomplete essentially. Therefore, 
when the positioning system is unavailable or the positioning 
accuracy does not meet user requirements, the positioning 
system should alert the user in time. 

Currently, there are many positioning sources used by 
indoor positioning technology: WiFi [10], Pedestrian Dead 
Reckoning (PDR) [11], Bluetooth Low Energy (BLE) [12], 
ZigBee [13], RFID [14], Ultra Wide Band (UWB) [15], 
Ultrasound [16], Infrared Signal [17], the Computer Vision 
[18], the Magnetic field [19], Optical localization [20] and 
so on. Among those indoor positioning technologies, BLE 
positioning has many advantages such as low power 
consumption, low cost, easy layout, high availability, and 

high precision. The low-energy and low-cost Bluetooth 
devices and the performance of mobile intelligent terminals 
have experienced a fast progress in the last decade. In 2010, 
the release of BLE protocol (Bluetooth 4.0 standard) 
effectively reduced energy consumption; In 2016, Bluetooth 
5.0 standard was released, adding indoor positioning 
assistance function, positioning distance up to 200m and 
with less power consumption [21].  

Bluetooth has higher precision and saves more energy 
than WiFi. In contrast to ZigBee and RFID, Bluetooth is 
easier to deploy. As compared to UWB, Ultrasound, Infrared 
signals, Computer vision, Magnetic field, and Optical 
localization, the Bluetooth costs less and more easily 
implemented [22]. Moreover, all smartphones and wearable 
devices have a Bluetooth module. Because of these 
advantages, Bluetooth has great potential for indoor 
positioning [23-30].  
  At present, indoor positioning algorithms based on 
Bluetooth can be mainly divided into two categories [21]: 
geometric methods and methods based on Received Signal 
Strength Indication (RSSI). This paper is based on the RSSI 
methods. The geometric methods like Time of Arrival (TOA) 
[31], [32], Angle of Arrival (AOA) [33], and Time 
Difference of Arrival (TDOA) requiring specialized 
hardware, which is costlier than RSSI methods [34]. The 
RSSI based positioning methods commonly used can be 
divided into range-free methods and range-based methods 
[35], a classic range-free method based on RSSI is the 
fingerprinting positioning method as in [26, 28]. This 
method has high accuracy, but needs to collect many 
fingerprint information offline, which will require a long 
training period. It can be realized in a small indoor 
environment and is not easy to realize in a large indoor 
environment. Besides, the fingerprint information needs to 
update periodically to guarantee positioning accuracy. In 
contrast, the range method based on RSSI does not need to 
collect fingerprint information offline and uses the wireless 
signal propagation model to convert the Bluetooth signal 
strength into the distance. The range method based on RSSI 
is low-cost and easy to implement. In this paper, we propose 
an algorithm for smartphone-based indoor positioning using 
RSS signals from BLE beacons. The algorithm estimates 
positions using the distances between the target and BLE 
beacons, are made by combining trilateration and the Least 
Squares Based on the Taylor expansion (LSBT).  
  To further improve accuracy and robustness, we propose a 
new integrity monitoring (IM) algorithm for RSSI-based 
indoor positioning using BLE Beacons. In our research, the 
major innovation is the IM alert mechanism that alerts users 
timely for reduce the risk from positioning accuracy no 
longer meet user’s requirements. We collected the RSSI 
fitting the Bluetooth transmission and the distance parameter 
of the logarithmic attenuation model, arriving at a suitable 
Bluetooth ranging model that combines trilateration and 
LSBT to realize indoor positioning. This integrity 
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monitoring algorithm based on hypothesis testing to 
simultaneously identify and remove two gross errors during 
the positioning process. The integrity monitoring constituted 
by the parity vector method and the Maximum Likelihood 
Estimation Gross Error Test (MLEGET) method. We 
conducted simulations and a series of field experiments 
including single point positioning and continuous 
positioning to test and verify the proposed algorithm. The 
experimental results show that the proposed IM algorithm 
can effectively improve the positioning accuracy and system 
robustness. The users will be alarmed in time to avoid risk 
from the positioning accuracy does not meet the user 
requirements due to positioning fault.  
  The rest part of this paper is arranged as follows. Section 
II reviews the related work about integrity monitoring. 
Section III states the methodology for BLE RSSI ranging 
model, indoor positioning algorithm based on ranging and 
integrity monitoring algorithm. Section IV and Section V 
construct the simulation analysis and experimental 
evaluation which verifies the correctness of positioning 
theory. Section VI is discussion and conclusions. 

II. RELATED WORK 

In an outdoor environment, different GNSS integrity 
indicators have been developed to meet various application 
requirements. The International Civil Aviation 
Organization(ICAO) sets a multi-level integrity limit for 
aircraft from remote ocean areas to precise approach phases. 
The vertical alarm limit is 40 meters during a precision 
approach and the horizontal alarm limit is 15 meters, with an 
alarm time of fewer than six seconds [36]; The Galileo 
system sets requirements for life safety and public control 
services based on the integrity risk value [37]. The Galileo 
system judges the integrity content by monitoring the Signal 
in Space Error (SISE), Signal in Space Accuracy (SISA), 
Signal in Space Monitoring Accuracy (SISMA), and sends 
the monitoring results to users. Besides, the Galileo system 
provides five types of services face to global: Open Services, 
Safety of Life, Commercial Service, Public Regulation 
Services, Search and Rescue. These services are all related 
to the integrity monitoring of the Galileo system.  

Among research on integrity monitoring related to 
GNSS applications, the Receiver Autonomous Integrity 
Monitoring (RAIM) algorithm is widely used. This integrity 
monitoring algorithm on the client-side has many 
advantages, such as independence from external devices, 
low cost, and easy to implement. The classical integrity 
monitoring algorithms include pseudo-range comparison, 
parity vector and least-squares residuals [38].  

The indoor environment is usually much complex than the 
outdoors with severe multipath propagation, and wireless 
signal interruption, which makes the GNSS integrity 
monitoring algorithm not fully applicable in indoors 
scenarios. However, the concept of integrity as proposed in 
the context of GNSS is still applicable to the performance 

evaluation of indoor positioning systems.   
Unlike GNSS, research in indoor positioning currently 

main focus on positioning accuracy rather than advanced 
system performance such as integrity monitoring. Only few 
researches on indoor positioning integrity monitoring 
algorithms have been reported. Sri.Phani. Yerubandi [5] 
proposed an integrity monitoring algorithm to assess the 
continuous availability of WLAN access points (APs), 
which can identify and isolate rogue APs to improve 
positioning accuracy, by taking account of integrity 
monitoring, the performance and robustness of the indoor 
positioning system were improved. Similarly, in [6], a 
mobile device WLAN indoor positioning algorithm based on 
integrity monitoring was proposed, this integrity monitoring 
algorithm utilizes redundancy at the APs and isolates APs 
with the damaged features, which improves the robustness 
of the system. Ascher C et al. [7] investigated a UWB/INS 
positioning system and proposed an integrity monitoring 
algorithm based on innovation of extended Kalman filter, 
which can effectively detect and isolate the TDOA 
observation outliers to further improve positioning accuracy. 
Yuqin Wang et al. [8] proposed a method of using the short-
time reliability of PDR to aid in visual integrity monitoring 
and to reduce positioning error. Yinzhi Zhao et al. [9] aimed 
at indoor high-precision engineering application proposed 
carrier phase-based integrity monitoring (CRAIM) 
algorithm to identify and exclude potential faults of the 
pseudolites, the CRAIM ensured the accuracy and reliability 
of positioning results and achieved accuracies at the 
centimeter level for dynamic experiments and millimeter 
levels for static ones. In [39], specific thresholds of integrity 
monitoring were proposed to the prevention of theft and 
criminal surveillance, etc., including the alarm time (TTA, 
Time to Alarm) and the Horizontal Alarm Limit (HAL). A 
partial list of specific indicators is shown in Table 1. 
However, the study did not carry out specific integrity 
monitoring algorithms.  

TABLE 1. Part of indoor positioning service integrity indicators 

Service 
Integrity indicators 
TTA HAL 

increasing the risk for 
criminals of being caught ,  

1s 2m-20m 

surveillance Instantaneous  
detection of theft or burglary,  

1s 1m-2m 

locating and recovery of  
stolen products. 

60s 5m-10m 

In [5-9], the proposed integrity monitoring algorithms 
only focus on a single fault (single gross error), and all lack 
an alert mechanism for cases when positioning accuracy 
completely dissatisfies user requirements. 

III. METHODOLOGY 

  This section first presents the BLE RSSI ranging model 
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for distance estimation, which is followed by trilateration 
and LSBT for positioning estimation. Next, the details of the 
IM algorithm are described to remove gross errors and 
improve the performance of an indoor positioning system. 
Finally, the availability of the IM algorithm is evaluated to 
determine whether to alert users in time to avoid risk from 
positioning accuracy no longer meet user’s requirements. 

A. BLE RSSI RANGING MODEL 

Numerous theoretical derivation and empirical 
formulas [12,35,40] show that there is a definite relationship 
between the RSSI and range. In this paper, we analyze the 
relationship between BLE RSSI and transmission distance 
based on the logarithmic attenuation model in [12,35,40] as 
shown in (1). 𝑃𝑃(𝑑𝑑) = 𝑃𝑃(𝑑𝑑0) − 10𝑛𝑛 log10 � 𝑑𝑑𝑑𝑑0�+ 𝜀𝜀      (1) 

where 𝑃𝑃(𝑑𝑑) represents the RSS at the distance 𝑑𝑑 between 
the transmitting end and the receiving end; 𝑃𝑃(𝑑𝑑0) 
represents the RSS at the reference distance 𝑑𝑑0; 𝑛𝑛 is the 
path-loss exponent; 𝜀𝜀  represents a Gaussian random 
variable, with zero means, caused by shadow fading[40].  

B. INDOOR POSITIONING ALGORITHM BASED ON 

RANGING 

  In our research, the initial value of the BLE positioning 
point to be measured is calculated by the trilateration method, 
and the BLE positioning is realized by the LSBT.  

The position of a point can be calculated using the 
trilateration method [41]. Given the known coordinates of at 
least three non-linear BLE beacons and the corresponding 
distances between the BLE beacons and the point, as shown 
in Fig.1. The coordinates (𝑥𝑥, 𝑦𝑦) of a point to be measured 
can be solved by the following expression:             

⎩⎨
⎧(𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 = 𝑑𝑑12

(𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 = 𝑑𝑑22⋮
(𝑥𝑥 − 𝑥𝑥𝑛𝑛)2 + (𝑦𝑦 − 𝑦𝑦𝑛𝑛)2 = 𝑑𝑑𝑛𝑛2         (2) 

where (𝑥𝑥1,𝑦𝑦1) , (𝑥𝑥2,𝑦𝑦2)  … (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)  are the 
coordinates of BLE beacons, 𝑑𝑑1 , 𝑑𝑑2  … 𝑑𝑑𝑛𝑛  denote the 
distances between the beacons and the target node. 
linearizing the Equation (2) based on the Taylor formula (i.e. 
using LSBT) at the initial value (𝑥𝑥0,𝑦𝑦0), one can get:  

 

FIGURE 1. Diagram of BLE beacons positioning.                        

𝒍𝒍 = 𝐁𝐁∆𝒙𝒙+ 𝜺𝜺                 (3) 

𝐁𝐁 = ⎣⎢⎢
⎢⎢⎡𝑥𝑥

0 − 𝑥𝑥1𝑑𝑑10⋮𝑥𝑥0 − 𝑥𝑥𝑛𝑛𝑑𝑑𝑛𝑛0
𝑦𝑦0 − 𝑦𝑦1𝑑𝑑10⋮𝑦𝑦0 − 𝑦𝑦𝑛𝑛𝑑𝑑𝑛𝑛0 ⎦⎥⎥

⎥⎥⎤, 
𝑑𝑑𝑖𝑖0 = �(𝑥𝑥0 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦0 − 𝑦𝑦𝑖𝑖)2 (𝑖𝑖 = 1,2, … , 𝑛𝑛)     (4)            ∆𝒙𝒙 = 𝑿𝑿� − 𝑿𝑿𝟎𝟎 = �𝑥𝑥�𝑦𝑦�� − �𝑥𝑥0𝑦𝑦0�             (5) 𝒍𝒍 = 𝒅𝒅 − 𝒅𝒅𝟎𝟎                  (6) 

where (𝑥𝑥�, 𝑦𝑦�)  is the coordinate estimation, 𝒅𝒅  is the 
distance observation vector, 𝒅𝒅𝟎𝟎  is the distance vector 
calculated based on the initial coordinate value of the point 
to be measured, 𝐁𝐁 denotes the design matrix, 𝜺𝜺 represents 
the random error vector where 𝜺𝜺~𝑁𝑁(0,𝜎𝜎2𝐼𝐼𝑛𝑛×𝑛𝑛) , 𝑿𝑿� 
represents the estimated coordinate value of the point to be 
measure, 𝑿𝑿𝟎𝟎  represents the initial coordinate value, the 
initial coordinate value (𝑥𝑥0, 𝑦𝑦0) of the point to be measured 
can be obtained by the trilateration method given three non-
linear BLE beacons and corresponding distances.  
The estimated value ∆𝒙𝒙�   of correction ∆𝒙𝒙  can be 
calculated based on the least-squares residual squared sum 
minimum criterion as: ∆𝒙𝒙� = (𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇𝒍𝒍               (7) 
bring the ∆𝒙𝒙�  into equation (3) to calculate residual vector 𝒗𝒗 as: 𝒗𝒗 = 𝒍𝒍 − 𝐁𝐁∆𝒙𝒙� = [𝐈𝐈 − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇]𝒍𝒍 

= [𝐈𝐈 − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇]�𝐁𝐁∆𝒙𝒙� + 𝜺𝜺� 
= 𝐁𝐁∆𝒙𝒙� −𝐁𝐁𝐁𝐁−1(𝐁𝐁𝑇𝑇)−1𝐁𝐁𝑇𝑇𝐁𝐁∆𝒙𝒙� + [𝐈𝐈 − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇]𝜺𝜺 

= [𝐈𝐈 − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇]𝜺𝜺= 𝐒𝐒𝜺𝜺           (8) 

where, 𝐁𝐁𝐁𝐁−1(𝐁𝐁𝑇𝑇)−1𝐁𝐁𝑇𝑇 = 𝐈𝐈 ,the 𝐒𝐒  matrix is the residual 
sensitivity matrix  𝐒𝐒 = 𝐈𝐈 − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇  and is the 
idempotent matrix (𝐒𝐒2 = 𝐒𝐒) [42]. The estimated coordinate 
value 𝑿𝑿� can be obtained by adding the ∆𝒙𝒙�  and the initial 
value 𝑿𝑿𝟎𝟎, and then take the obtained coordinate value as the 
new initial value for iterative calculation. When the absolute 
value of ∆𝒙𝒙�   is less than a certain threshold, iteration is 
stopped and the final solution is obtained.  

C. INTEGRITY MONITORING ALGORITHM 

  Since indoor environments are very complicated, which 
will result in BLE radio signals form NLOS propagation and 
multipath effects. Consequently, multiple gross errors occur 
frequently during indoor positioning lead to the positioning 
accuracy relatively low realized by the trilateration and the 
LSBT. To further improve positioning accuracy and 
robustness of the positioning system, a new integrity 
monitoring algorithm based on the parity vector for single 
fault (gross error) detection is proposed in this section. This 
algorithm can simultaneously identify and eliminate two 
gross errors. The algorithm can also alert the user in time 
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when the positioning accuracy does not meet the user 
requirements. 
1)  PARITY VECTOR 

The parity vector method is a chi-square test based on a 
single gross error hypothesis, as proposed by M.A. Sturza in 
1988 [42]. The process is given below.  

Assume that all observations have the same observation 
accuracy, and the observation equation is as shown in 
Equation (3). QR decomposition of the design matrix 𝐁𝐁 is 
obtained: 𝐁𝐁 = [𝐐𝐐𝑛𝑛×𝑢𝑢 𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)] �𝐑𝐑𝑢𝑢×𝑢𝑢

0
�         (9)  𝐐𝐐𝐩𝐩 = 𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)

𝑇𝑇               (10) 
where 𝑛𝑛  represents the aggregate of BLE beacons 
observations participating in the positioning at the current 
time, and 𝑢𝑢  is the necessary number of BLE beacons 
observations for calculating the coordinate estimation value,  𝐐𝐐 is an identity orthogonal matrix of order 𝑛𝑛 × 𝑛𝑛, and 𝐑𝐑 is 
(𝑛𝑛 × 𝑢𝑢) an upper triangular matrix, and 𝐐𝐐𝐩𝐩 represents the 
parity transformation matrix, whose rows are mutually 
orthogonal, unitary in magnitude, and orthogonal to the 
columns of 𝐁𝐁 , and 𝐐𝐐𝐩𝐩𝐁𝐁 = 0  and 𝐐𝐐𝐩𝐩𝑇𝑇𝐐𝐐𝐩𝐩 = 𝐒𝐒 .The two 
equations are derived in Appendix. 

Projecting the observation error into the parity space, we 
can get the parity vector 𝒑𝒑 as: 

   𝒑𝒑 = 𝐐𝐐𝐩𝐩𝒗𝒗 = 𝐐𝐐𝐩𝐩𝜺𝜺            (11) 
since parity vector 𝒑𝒑  reflects the observation error 
information, test statistics can be constructed based on it to 
carry out fault detection and identification. The fault test 
statistics using the parity vector construction is as follows: 𝑇𝑇 =

𝒑𝒑𝑇𝑇𝒑𝒑𝜎𝜎2                    (12) 

where 𝜎𝜎 is the standard deviation of the observations.   
   During the positioning process, when the observation 
error 𝜀𝜀  only contains an random error, 
namely  𝜀𝜀~𝑁𝑁(0, 𝜎𝜎2𝐼𝐼𝑛𝑛×𝑛𝑛) , the test statistics 𝑇𝑇  obeys the 
center χ2 distribution with a degree of freedom (DOF) of 𝑛𝑛 − 𝑢𝑢 [42]: 𝑇𝑇~χ2(𝑛𝑛 − 𝑢𝑢)               (13) 

When the observation error 𝜀𝜀𝑖𝑖  contains the gross error ∇𝑏𝑏𝑖𝑖  , the test statistics 𝑇𝑇  obeys the non-central χ2 
distribution with a DOF of 𝑛𝑛 − 𝑢𝑢: 𝑇𝑇~𝜒𝜒2(𝑛𝑛 − 𝑢𝑢, 𝜆𝜆)              (14) 
where 𝜆𝜆 is a non-central parameter. According to the idea of 
hypothesis testing, a fault detection threshold 𝑇𝑇𝐶𝐶  can be 
calculated from the cumulative probability density function 
of the center χ2  distribution when the probability of false 
alarm 𝑃𝑃𝐹𝐹𝐹𝐹 and DOF are given. The non-central parameter 𝜆𝜆 can be obtained from the cumulative probability density 
function of the non-central χ2  distribution when the 
probability of missed detection 𝑃𝑃𝑀𝑀𝑀𝑀  and DOF are given, as 
follows: 𝑃𝑃𝐹𝐹𝐹𝐹 = ∫ 𝑓𝑓𝜒𝜒2(𝑛𝑛−𝑢𝑢)(𝑥𝑥)𝑑𝑑𝑥𝑥+∞𝑇𝑇𝐶𝐶           (15) 𝑃𝑃𝑀𝑀𝑀𝑀  = ∫ 𝑓𝑓𝜒𝜒2(𝑛𝑛−𝑢𝑢,𝜆𝜆)(𝑥𝑥)𝑑𝑑𝑥𝑥𝑇𝑇𝐶𝐶0          (16) 

Taking the chi-square distribution with a DOF of 2 as an 
example, the relationship between 𝑃𝑃𝐹𝐹𝐹𝐹, 𝑃𝑃𝑀𝑀𝑀𝑀, and 𝑇𝑇𝐶𝐶  is as 
shown in Fig. 2. According to the Fig. 2, the 𝑃𝑃𝐹𝐹𝐹𝐹 and 𝑃𝑃𝑀𝑀𝑀𝑀  
are correlated, i.e., the lager the 𝑃𝑃𝐹𝐹𝐹𝐹, the smaller the 𝑃𝑃𝑀𝑀𝑀𝑀 
and the 𝑇𝑇𝐶𝐶  are. According to the relationship between the 
non-center parameter 𝜆𝜆  and the random variable 
expectation[43], the non-central parameter 𝜆𝜆  also can be 
expressed as follows: 𝜆𝜆 = ∑ 𝜇𝜇𝑖𝑖2𝑛𝑛𝑖𝑖=1 =

𝐸𝐸�𝒑𝒑𝑇𝑇�𝐸𝐸(𝒑𝒑)𝜎𝜎2 =
𝐸𝐸�𝒗𝒗𝑇𝑇�𝑸𝑸𝑷𝑷𝑇𝑇𝑸𝑸𝑷𝑷𝐸𝐸(𝒗𝒗)𝜎𝜎2 =

𝐸𝐸�𝒗𝒗𝑇𝑇�𝐒𝐒𝐸𝐸(𝒗𝒗)𝜎𝜎2     

(17) 

 
FIGURE 2. Chi-square density functions with two degrees of freedom. 

where 𝜇𝜇 is the expectation of the random variable (i.e. the 
test statistics 𝑇𝑇), 𝐒𝐒 matrix is an idempotent matrix, as can 
be seen from Section III.C.1). The expected 𝐸𝐸(𝒗𝒗)  of the 
residual 𝒗𝒗  is zero when the observation error vector 𝜺𝜺 
contains only random errors; The expectation of 𝒗𝒗 is 𝐸𝐸(𝒗𝒗) 
= 𝐒𝐒𝐒𝐒𝒃𝒃 when the observed error vector 𝜺𝜺 contains both the 
random error and the gross error vector 𝐒𝐒𝒃𝒃 . Therefore, 
when the i-th row element ∇𝑏𝑏𝑖𝑖  in the gross error vector 𝐒𝐒𝒃𝒃 is not zero, the relationship between the 𝜆𝜆 and the 𝐒𝐒𝒃𝒃 
can be expressed: 𝜆𝜆 = (

∇𝑏𝑏𝑖𝑖�𝑆𝑆𝑖𝑖𝑖𝑖𝜎𝜎 )2                (18) 

where 𝜎𝜎 denotes the standard deviation of observations，𝑆𝑆𝑖𝑖𝑖𝑖 is the i-th diagonal element of 𝐒𝐒. The lower bound of 
the gross error detection of the parity vector method under 
the single alternative hypothesis can be written as the 
formula (19) through the equation (18):                               

|∇𝑏𝑏|𝑀𝑀𝑖𝑖𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛(|∇𝑏𝑏𝑖𝑖|) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛(
√𝜆𝜆𝜎𝜎�𝑆𝑆𝑖𝑖𝑖𝑖)   (19) 

   According to the formula (19), the lower bound of the 
gross error detection is affected by three factors: 1) The 
accuracy of observations represented by the standard 
deviation 𝜎𝜎  of observations. 2) The geometry of sensor 
networks in the current time positioning environment, which 
affects positioning performance and 3) The probability of 
false alarm 𝑃𝑃𝐹𝐹𝐹𝐹  and the probability of missed detection 𝑃𝑃𝑀𝑀𝑀𝑀 , which together determine the non-center 𝜆𝜆.   
   The fault test statistic 𝑇𝑇  is calculated during the 
positioning process, the gross error is considered to exist 
when the 𝑇𝑇 is greater than the fault detected threshold 𝑇𝑇𝐶𝐶 . 
Further, it is necessary to identify which observations of the 
gross error occurred. Considering that the number of 
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observations 𝑛𝑛 is 5, the necessary number of observations 𝑢𝑢 is 3, the impact of gross error on the parity vector 𝒑𝒑 can 
be obtained according to the equation (11): 𝒑𝒑 = �𝑄𝑄𝑃𝑃1𝑖𝑖𝑄𝑄𝑃𝑃2𝑖𝑖� ∇𝑏𝑏𝑖𝑖 (𝑖𝑖 = 1,2, … ,5)         (20) 

when the gross error occurs in the observation 𝑑𝑑𝑖𝑖  , the 
projection length of the parity vector 𝒑𝒑 on the i-th column 
of the parity matrix 𝑸𝑸𝐩𝐩 should be the maximum, so that the 
observation including the gross error can be identified and 
then eliminated, and the coordinate values of the point to be 
measured can be estimated again using the LSBT method. 

2)  MAXIMUM LIKELIHOOD ESTIMATION GROSS 
ERROR TEST 

The parity vector is a kind of chi-square test method for 
single gross error detection. If the gross error is regarded as 
a result of a small probability event in the positioning 
process, the event within two gross errors simultaneously 
can satisfy most of the scenarios. Based on this, a detection 
method for simultaneously detecting two gross errors is 
proposed in this article.  

When there are two gross errors at the same time in the 
positioning process, the test statistic 𝑇𝑇 in Section III.C.1) 
also obeys the non-central χ2 distribution. When there are 
two gross errors, the relationship between the non-central 
parameter 𝜆𝜆 and the gross error 𝐒𝐒𝒃𝒃 is: 𝜆𝜆 = (

∇𝑏𝑏𝑖𝑖�𝑆𝑆𝑖𝑖𝑖𝑖𝜎𝜎 )2 + (
∇𝑏𝑏𝑗𝑗�𝑆𝑆𝑗𝑗𝑗𝑗𝜎𝜎 )2           (21) 

where 𝑆𝑆𝑖𝑖𝑖𝑖 and 𝑆𝑆𝑗𝑗𝑗𝑗  are the i-th and 𝑗𝑗-th diagonal element 
of 𝐒𝐒, and 𝑖𝑖 ≠ 𝑗𝑗. 

When the number of gross errors is unknown, the parity 
vector method is employed to detect and identify single gross 
error firstly. if the test statistic 𝑇𝑇 greater than test threshold 𝑇𝑇𝐶𝐶 , the observation value 𝑑𝑑𝑖𝑖 can be regarded as containing 
the gross error, the value 𝑑𝑑𝑖𝑖 is removed and the LSBT is 
performed again, and then the 𝑇𝑇 is calculated once again. If 
the 𝑇𝑇  is still greater than 𝑇𝑇𝐶𝐶  , which means the first time 
detect and identify for gross error is incorrect, that is, there 
is existing an incorrect gross error identification so that not 
eliminate the real gross error. It is considered as probably 
containing two gross errors. Then the parity vector 𝒑𝒑 can 
be written as: 

𝒑𝒑 = ⎣⎢⎢⎢
⎡ 𝑄𝑄𝑃𝑃1𝑖𝑖𝑄𝑄𝑃𝑃2𝑖𝑖⋮𝑄𝑄𝑃𝑃(𝑛𝑛−𝑢𝑢)𝑖𝑖

𝑄𝑄𝑃𝑃1𝑗𝑗𝑄𝑄𝑃𝑃2𝑗𝑗⋮𝑄𝑄𝑃𝑃(𝑛𝑛−𝑢𝑢)𝑗𝑗⎦⎥⎥⎥
⎤ �∇𝑏𝑏𝑖𝑖∇𝑏𝑏𝑗𝑗�+𝐐𝐐𝐏𝐏𝜺𝜺 = 𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃+ 𝜺𝜺�      

     (22) 
where 𝑖𝑖 = 1,2, … ,𝑛𝑛; 𝑗𝑗 = 1,2, … , 𝑛𝑛 . The random error 𝜺𝜺�~𝑁𝑁(0, 𝜎𝜎2𝐼𝐼𝑛𝑛×𝑛𝑛) . Therefore, according to the idea of 
maximum likelihood estimation, the likelihood equation is: 𝑙𝑙𝑛𝑛𝑙𝑙(𝐒𝐒𝒃𝒃,𝒑𝒑) = −ln 2𝜋𝜋𝑛𝑛/2𝜎𝜎𝑛𝑛 − 12𝜎𝜎2 (𝒑𝒑 − 𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃)𝑇𝑇(𝑝𝑝 − 𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃)                      (23) 
when (𝒑𝒑 − 𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃)𝑇𝑇(𝒑𝒑 − 𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃)  is the smallest, the 
likelihood function value is the largest. Therefore, the 
estimated value 𝐒𝐒𝒃𝒃�  of 𝐒𝐒𝒃𝒃 can be obtained as: 

𝒑𝒑 − 𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃 = 0              (24) 𝐒𝐒𝒃𝒃� = �𝐐𝐐𝐏𝐏′𝑇𝑇𝐐𝐐𝐏𝐏′�−1𝐐𝐐𝐏𝐏′𝑇𝑇𝒑𝒑           (25) 

bring 𝐒𝐒𝒃𝒃�  into equation (22) to calculate the estimated value 𝒑𝒑� of the parity vector 𝑝𝑝 as: 𝒑𝒑� = 𝐐𝐐𝐏𝐏′ �𝐐𝐐𝐏𝐏′𝑇𝑇𝐐𝐐𝐏𝐏′�−1𝐐𝐐𝐏𝐏′𝑇𝑇𝒑𝒑         (26) 

the likelihood equation (23) can be rewritten as: 𝑙𝑙𝑛𝑛𝑙𝑙�𝐒𝐒𝒃𝒃� ,𝒑𝒑� = −ln 2𝜋𝜋𝑛𝑛/2𝜎𝜎𝑛𝑛 − 12𝜎𝜎2 �𝒑𝒑 − 𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃��𝑇𝑇�𝒑𝒑−𝐐𝐐𝐏𝐏′𝐒𝐒𝒃𝒃�� = −ln 2𝜋𝜋𝑛𝑛2𝜎𝜎𝑛𝑛 − 12𝜎𝜎2 (𝒑𝒑𝑇𝑇𝒑𝒑− 𝒑𝒑𝑇𝑇𝒑𝒑�)         (27) 

calculate all the gross error combinations ∇𝑏𝑏𝑖𝑖,∇𝑏𝑏𝑗𝑗, and the 
number of combinations is 𝐶𝐶𝑛𝑛2.  when 𝑝𝑝𝑇𝑇�̂�𝑝 = max(𝑝𝑝𝑇𝑇�̂�𝑝) , 𝑑𝑑𝑖𝑖  and 𝑑𝑑𝑗𝑗   are observations with gross errors, and 
eliminated, The LSBT is performed again. In particular, 
when the number of gross errors is one, this criterion is 
equivalent to the parity vector method. 
   The proposed IM algorithm is only available when 
certain conditions are met. Section III.D evaluate its 
availability judgment.  

D. INTEGRITY MONITORING AVAILABILITY 

JUDGEMENT 

   The IM availability assessment is divided into two steps: 
the first step determines whether the total number n of BLE 
beacons meet the requirement, and the second step 
determines whether the IM algorithm is valid according to 
the Horizontal Alarm Limit(HAL). The parity vector method 
can be used for fault detection only when the observations 
are redundant. In this study, the indoor positioning focus on 
the two-dimensional planar positioning, so the number of 
necessary BLE beacons observations is three. Therefore, to 
make observations redundant, the number of available BLE 
beacons is at least four. 
   In the first step, as long as the necessary number of BLE 
beacons participating in positioning is u = 3, and n – u = 1, 
it is possible to detect whether a gross error occurs in the 
positioning result. when n – u > 1, the positioning results of 
the gross error can be identified. Therefore, when the n > u 
+ 1, the second step can be executed; otherwise, the IM is 
directly considered as unavailable. The specific process is 
shown in Fig.3.The Fig.3 depicts the detailed IM availability 
evaluation process. First, the observations redundancy is 
evaluated. The Horizontal Protection Level (HPL) is 
calculate and compared to the HAL. If HPL is greater than 
HAL, the IM unavailability, the positioning system should 
be alerted to the user in time for reduce the risk from 
positioning accuracy no longer meet user requirements. 
Otherwise, the IM is available. Finally, by constructing test 
statistics to determine whether there is a fault (gross error).  
   For each currently observed BLE beacons during 
positioning process, there is a corresponding characteristic 
slope line, which is the function of the design matrix B. 
When the user moves within the positioning area, the BLE 
beacons characteristic slope 𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸(𝑖𝑖) can be written as: 
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𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸(𝑖𝑖) = �𝐴𝐴1𝑖𝑖2 + 𝐴𝐴2𝑖𝑖2/�𝑆𝑆𝑖𝑖𝑖𝑖 , (𝑖𝑖 = 1,2,⋯𝑛𝑛)  (29) 

where 𝐀𝐀 = (𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇，𝐒𝐒 = I − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇. For a given 
horizontal radial error (HRE), the BLE beacon with the 
maximum characteristic slope 𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 , which has the 
minimum test statistic, and also it is the most difficult to be 
detected. The HRE can be calculated as following [44]: 𝐻𝐻𝐻𝐻𝐸𝐸 = �𝐴𝐴1𝑖𝑖2 + 𝐴𝐴2𝑖𝑖2 ∙ |∇𝑏𝑏𝑖𝑖|          (30) 

 

 
FIGURE 3. Flow chart of IM availability judgment. 

Fig.4 describes the data cloud using the oval-shaped scatter, 
whose center that represents the deterministic bias plot 
without noise will be on the line of 𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 if the bias 
occurs on the BLE beacon with the maximum characteristic 
slope. 
 

 
FIGURE 4. Possible Scatter Plot with the critical deterministic bias on 
the BLE beacon with the maximum characteristic slope. 

  The brown-yellow dotted line on the right side in Fig.4 
corresponds to the minimum detected bias 𝑝𝑝𝑏𝑏𝑖𝑖𝑎𝑎𝑝𝑝 in the case 
of the probability of false alarm and probability of missed 
detection in the parity space. The 𝑝𝑝𝑏𝑏𝑖𝑖𝑎𝑎𝑝𝑝 is related to the 
Gaussian distribution observation error  𝜀𝜀~𝑁𝑁(0, 𝜎𝜎2𝐼𝐼𝑛𝑛×𝑛𝑛) , 
the geometry of sensor networks, and the probability of false 

alarm and probability of missed detection associated with the 
application scenario, the 𝑝𝑝𝑏𝑏𝑖𝑖𝑎𝑎𝑝𝑝  can be written as follows 
[44]: 𝑝𝑝𝑏𝑏𝑖𝑖𝑎𝑎𝑝𝑝 = σ ∗ √𝜆𝜆           (31) 
The HRE corresponding to the intersection point of 𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 line and the 𝑝𝑝𝑏𝑏𝑖𝑖𝑎𝑎𝑝𝑝 is the HPL (red dotted line 
in Fig.4). The calculation formula for HPL can be written as: 𝐻𝐻𝑃𝑃𝑙𝑙 = 𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑝𝑝𝑏𝑏𝑖𝑖𝑎𝑎𝑝𝑝       (32) 
As shown in Fig.4, the 𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸(𝑖𝑖)  of each BLE beacons 
correspond to its HPL, but the line with 𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum HPL of all BLE beacons at the current time. 

The HAL is given according to the actual application 
requirements，therefore, whether IM is available or not can 
be judged according to the following criteria: �HPL < HAL: Available

HPL ≥ HAL: Unavailable
         (33) 

when the HPL is greater than or equal to the HAL, the IM 
algorithm is unavailable and the user should be alarmed in 
time. 

IV. SIMULATION ANALYSIS 

   In this section, The MLEGET was used as the IM 
algorithm in the simulation experiment. First, the simulation 
analyzed the impact of Horizontal Dilution of Precision 
(HDOP) [45] on HPL. Then, the impact of HDOP on the 
gross error detection performance of the algorithm proposed 
was analyzed. Finally, we verified the effectiveness of the 
gross error detection performance of the IM algorithm by 
setting different gross error magnitude. The simulation 
environment was a rectangular indoor area with 100m × 
50m. The simulated parameters were used from the 
parameters for the integrity of a precise approach, which set 
by the ICAO. False alarm rate PFA = 0.333×10-6 , missed 
detection rate PMD = 0.001 , observation error, 
ε ~ N(0,σ2 In×n), σ = 0.5m. 

A. THE IMPACT OF HDOP ON HPL 

According to the analysis of the HPL presented in 
Section III.D., the positioning performance is affected by the 
geometry of sensor networks. The plane precision factor can 
be expressed by the HDOP [45]:  𝐻𝐻𝐻𝐻𝑆𝑆𝑃𝑃 = �tr((BT

B)
-1

)             (34) 

where tr  refers to the track of the matrix. In theory, the 
product of HDOP and the ranging accuracy σ express the 
estimation accuracy of the plane coordinate of the target 
node [45]. A smaller HDOP value means a more optimal the 
geometry of sensor networks for positioning. As the number 
of BLE beacons n increases, the average HDOP in the 
measurement range decreases, the BLE beacons networks 
geometry is more beneficial for obtaining higher horizontal 
positioning accuracy [45]. The HPL values were calculated 
for the simulation environment with n = 4,6,8,10. The results 
are shown in Fig.5 and Table 2. 
As can be seen from Fig.5, when BLE beacons are evenly 
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FIGURE 5. HPL distribution values under different number n of BLE 
beacons (red triangle indicates the location of the BLE beacons). (a) n = 
4; (b) n = 6; (c) n = 8; (d) n = 10.  

Table 2. HPL distribution value statistics 

The number of 
BLE beacons 

4 6 8 10 

HPL average 6.28 2.83 1.88 1.43 
HPL maximum 12.11 5.50 3.61 2.72 

 
evenly deployed, the HPL values gradually increased from 
the middle area to the surroundings. According to table 2, the 
maximum value of HPL was approximately twice the 
average value of HPL. The average value and maximum 
value of the HPL gradually decreased as the number of 
visible BLE beacons increased in the positioning area. IM 
needs to be 100% available to simulate IM gross error 
detection performance. Therefore, we selected a moderate 
number of BLE beacons n = 6 for the next simulation 
experiments. 

B. THE IMPACT OF HDOP ON GROSS ERRORS 

DETECTION PERFORMANCE 

   The lower bound for gross error detection and 
identification are related to the BLE beacons network 
geometry, according to the Section III.C.1). The relationship 
between the HDOP and gross error detection performance 
was analyzed through a simulation in this section. Two 
indicators were selected here to evaluate gross error 
detection performance: the gross error detection rate and 
gross error identification rate. The gross error detection rate 
refers to the probability that the positioning system detects 
all gross errors when IM is available. The gross error 
identification rate is the probability of correctly identifying 
all gross errors during the positioning process when gross 
errors are detected. The HDOP values distribution when the 
numbers n of BLE beacons equal 4, 6, 8 and 10 are shown in 
Fig.6. 
   In this simulation experiment, the number of BLE 
beacons was set to six, thus, the HDOP distribution values 
of the experimental area as shown in Fig.6 (b). As can be   

 
FIGURE 6. HDOP values distribution under different numbers n of BLE 
beacons (red triangle indicates the location of the BLE beacons). (a) n = 
4; (b) n = 6; (c) n = 8; (d) n = 10.   

 

FIGURE 7. The impact of HDOP on single gross error detection 
performance. 

 
FIGURE 8. The impact of HDOP on two gross errors detection 
performance. 

seen from Fig.6 (b), when the target node moved along the 
center to the four corners, the HDOP value gradually 
increased. Therefore, from the center point to the BLE 
beacons in the lower-left corner, 50 sample points were 
systematically selected; 50 points were collected on the 
diagonal from the center of the rectangle to the lower-left 
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corner, and each point was simulated 1000 times. The gross 
error was set to 5 meters. The probability of gross error 
appearing in each observation was the same. A single gross 
error and two gross errors solutions were selected for this 
simulation. The relationship between HDOP and gross errors 
detection rate and gross errors identification rate are shown 
in Fig.7 and Fig.8 respectively. 

According to Fig.7 and Fig.8, and the simulation 
experimental statistical results, it found that the minimum of 
single gross error detection rate was 97.4%, and the average 
value of single gross error detection rate was 98.9%. The 
gross error detection rate decreased as HDOP increased and 
the gross error identification rate is close to 100%; The 
minimum of the two gross errors detection rate was 77.7%, 
and the average value of the two gross errors detection rate 
was 85.9%. The two gross error detection rate also decreased 
as HDOP increased; The gross error identification rate 
increases with HDOP increased, and remained stable, with 
an average identification rate of 96.8%. Therefore, as HDOP 
increased, that is, the observation geometric conditions 
became deteriorated, the gross error detection rate gradually 
decreased, and the identification rate of gross error gradually 
increased and remained stable. 

C. THE IMPACT OF THE DIFFERENT MAGNITUDE OF A 

GROSS ERROR ON GROSS ERRORS DETECTION 

PERFORMANCE  

This section assesses the impact of different magnitudes 
of gross error on the detection performance, given the target 
node was fixed. The coordinate of target node was set to 
(30,20) in Fig.6 (b), the magnitude of gross error varied from 
1 to 10 m, and the interval of the magnitude was 0.2 m. The 
other simulation variables remained the same as those in 
Section IV.B, each magnitude of the gross error was 
simulated 10,000 times. The simulation results are shown in 
Fig.9 and Fig.10. 

 
FIGURE 9. Comparison between gross error magnitude and single 
gross error detection rate and identification rate. 

According to the Fig.9, the average identification rate 
of IM for a single gross error was 99.76%, and the minimum 
identification rate was 96.11%. The function of the IM 
algorithm about gross error detection came into play when 
the gross error magnitude was 1.6m. As for gross error 

detection rate, it exceeded 50% when gross error magnitude 
was 3.4 m, and it reached 100% when the gross error 
magnitude was 5 m. Therefore, the gross error detection 
performance is greatly affected by the magnitude of gross 
error, and the lower bound of gross error detection depends 
on the false alarm rate 𝑃𝑃𝐹𝐹𝐹𝐹, the ranging accuracy σ, and the 
geometry of sensors network layout. Thus, improving the 
ranging accuracy σ, and the geometry of sensors network 
layout can effectively improve gross error detection 
performance under guaranteeing the favorable 𝑃𝑃𝐹𝐹𝐹𝐹. 

The Mean Absolute Error (MAE) and Mean Square Error 
(MSE) were employed as the indexes to evaluate positioning 
accuracy. MAE and MSE can be formulated as follows: 

 𝑀𝑀𝐴𝐴𝐸𝐸 =
∑�(𝑚𝑚�−𝑚𝑚�)2+(𝑦𝑦�−𝑦𝑦�)2𝑁𝑁           (35) 𝑀𝑀𝑆𝑆𝐸𝐸 =
∑�(𝑚𝑚�−𝑚𝑚�)2+(𝑦𝑦�−𝑦𝑦�)2�𝑁𝑁           (36) 

where (𝑥𝑥�,𝑦𝑦�) is the estimated coordinate of target node, the 
(𝑥𝑥�, 𝑦𝑦� ) is the true coordinate of target node, N is the total 
number of epoch. 

 

FIGURE 10. Comparison between the magnitude of gross error and IM 
positioning accuracy improvement. 

Fig.10 shows the correlation that the IM eliminated the 
detected single gross error and improved positioning 
accuracy. According to Fig.10 that when the gross error 
magnitude exceeding 3 meters, IM made a significant 
improvement of original positioning accuracy, and as the 
gross error magnitude increased, the amount of positioning 
accuracy gradually increased. The MAE improvement was 
3.044 m, and the MSE improvement was 12.06 m2 when the 
gross error magnitude was 10 m. 

Next, we analyzed the performance of IM for two gross 
error detection in a simulation experiment. Its simulation 
condition is the same as the single gross error detection. The 
values of two gross errors were set equal during the 
simulated experiment process, and the probability of gross 
errors in each observation was equal. The simulation results 
are shown in Fig.11 and Fig.12.  

According to Fig.11 that when the gross error magnitude 
was 2.6 m, IM started to detect gross errors, the detection 
rate reached 50% when gross error was 4.2 m, and the gross 
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error detection rate reached 100 % when the gross error was 
8 m. Compared with IM detection of single gross error, the 
lower bound of two gross errors detection was increased to 
some extent. In terms of gross identification rate, the 
minimum identification rate of the IM was 92.67%, the 
average identification rate of the IM was 98.21%, and the 
identification performance was slightly reduced relative to 
single gross error. Fig.12 shows that IM eliminated the 
detected two gross errors and improved positioning accuracy. 

 

 
FIGURE 11. Comparison between gross error magnitude and two gross 
error detection rate and identification rate. 

 
FIGURE 12. Comparison between the magnitude of gross errors and IM 
positioning accuracy improvement. 

   By analyzing the positioning accuracy improvement of 
IM as in Fig.12, it is found that when gross error was 2 to 4.6 
m, the positioning accuracy was reduced since geometry of 
sensors network deteriorated. The maximum MAE reduction 
was 0.26576 m and the maximum MSE reduction was 
1.1633 m2. IM greatly improved the accuracy of positioning 
results when the gross error exceeding 4.6 m. When the gross 
error was 10 m, the MSE improvement reached 22.7097 m2, 
and the MAE improvement reached 3.8044 m. 

V. EXPERIMENTAL EVALUATION 

   In this section, a series of field experiments included 

groups of single point positioning and continuous 
positioning tests were performed to evaluate the 
performance of the algorithm proposed. 

A. EXPERIMENTAL SETUP 

The experimental scene was an underground parking lot 
of the information department of Wuhan University, whose 
total area is 2689 m2. The underground parking lot as shown 
in Fig.13. The red rectangles mark the BLE beacons in 
Fig.13. We can see many bearing columns in this Figure, its 
height is 2.8m. The intervals among the BLE beacons were 
properly set in terms of the construction layout and road 
status of the parking lot. The BLE beacons were installed in 
the vertical direction on the top of the parking lot at the same 
height (approximately 3 m). 

 

 
FIGURE 13. Underground parking lot. 

  To clearly illustrate the experiment scene, a digital map of 
experimental scene was made by the author, as shown in 
Fig.14.  
 

 
 FIGURE 14. Experimental scene digital map.  

   The red stars represent the BLE beacons location in 
Fig.14, the total number of BLE beacons was 65. We 
developed an Android application for collecting positioning 
data and analyzing data with MATLAB (R2019a, The Math 
Works, Nitick, MA, USA). The device involved in the 
experiments was a smartphone running on the Android 8.0 
operating system. The phone model was a HUAWEI Honor8 
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(4GB Ram/64 GB Rom) (Shenzhen, China). 
The BLE beacons used in the experiments are the 

SEEKCY SIU iBeacon (Suzhou, China), with a coverage 
range of up to 80m, a battery life of about 4.3 years, and a 
device support to Bluetooth BLE4.0. The diameter and the 
thickness of BLE beacons are 46 mm and 25 mm, 
respectively. Generally, BLE beacons can be deployed 
evenly and non-evenly. According to the simulation analysis 
in Section IV, the HDOP average value will be minimized 
when the BLE beacons are evenly deployed, and the 
positioning accuracy is higher in the same range accuracy. 
Therefore, an evenly BLE beacon deployment was selected 
in this work.     
   The advantages of this deployment are twofold: first, 
indoor positioning generally only considers the two-
dimension plane coordinates, the distance in the vertical 
direction can be seen a constant when the indoor height was 
known; secondly, the BLE beacons signals propagation is 
extremely susceptible to obstacles, the ranging value of the 
receiving end is usually affected by NLOS errors when 
moving objects and fixed facilities are in the propagation 
direction, resulting in a decrease in positioning accuracy. The 
BLE beacons are placed on the top of the room can to ensure 
the maximum signal propagation in the line-of-sight 
direction.   

B. RSSI RANGING MODEL FITTING 

The RSSI collection experimental scenario is shown in 
Fig.15. The vertical distance between the smartphone end 
and the Bluetooth node was maintained about 1.805 meters. 
In the experiment, the horizontal distance between the 
smartphone and the BLE beacon was varying, and 20 
sampling points were set at 0.5-meter intervals from 0 to 9.5 
meters. Each sampling point collected 50 sets of RSSI 
values.  

 
FIGURE 15. RSSI sampling scenario. 

The variation of RSSI at a single sampling point was 
analyzed. Taking the first sampling point with a horizontal 
distance of 0 m as an example, its RSSI change curve is 
shown in Fig.16. As can be seen from Fig.16, between 1~50 
sampling epochs, RSSI is fluctuating between -49db ~ -57db, 
with no significant rules. The BLE beacon will send multiple 
RSSI data within a certain sampling time interval, so it is 

 

FIGURE 16. Variation curve of RSSI value at the sampling point. 

necessary to average the RSSI data to obtain the ranging 
value. Therefore, the mean RSSI of each sampling point 
should be counted while fitting one curve, ranging model so 
that the model parameters can be calculated. The statistical 
results of the mean RSSI of the sampling points are shown 
in table 3. According to Table 3 that as the slant distance 
increased, the average RSSI decreased overall. Using the 
logarithmic model in Section III.A for distance-RSSI curve 
fitting, the logarithmic attenuation model can simplify as 
shown the formula (37) when the reference distance 𝑑𝑑0 is 
equal to 1 m. 𝐻𝐻𝑆𝑆𝑆𝑆𝐼𝐼 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎(𝑑𝑑) + 𝑏𝑏           (37) 

The sampling average results and the data fitting results are 
visualized in Fig.17. According to Fig.17 that with an 
increase in the measurement distance, the RSSI value  

 
FIGURE 17. RSSI measured mean and log fitting model. 

generally shows a downward trend. Between the 
experimental distance of 1.805 meters and 9.700 meters, the 
Bluetooth signal strength was attenuated by a total of 26.1 
dB, and the attenuation trend conformed to a logarithmic 
model. After calculation, the unknown parameters a = -
31.1811, b = -50.0608, in the formula (37). 

C. PERFORMANCE FOR THE INTEGRITY MONITORING 

ALGORITHM  

A number of single point positioning and continuous 
positioning experiments were conducted to evaluate the 
performance of the IM algorithm in this section. The 
experimental parameters such as the false rate 𝑃𝑃𝐹𝐹𝐹𝐹 =
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0.333 × 10−6 , missed detected rate 𝑃𝑃𝑀𝑀𝑀𝑀 = 0.001, and the 
sampling frequency is 0.5Hz. The experimenter kept the 
vertical height of the smartphone at approximately 1 meter 

above the ground when collecting positioning data during 
the positioning process. The detailed process of the 
experiments is given as follows.  

 

TABLE 3. Mean RSSI statistics of sampling points 

Slant 
distance/m 

1.805 1.873 2.063 2.347 2.694 3.084 3.501 3.938 4.388 4.849 

RSSI average -54.4 -57.9 -55.6 -63.2 -64.6 -64.8 -71.3 -73.3 -70.9 -74.8 

Slant 
distance/m 

5.316 5.789 6.266 6.746 7.229 7.714 8.201 8.689 9.179 9.700 

RSSI average -72.8 -78.2 -73.1 -73.5 -75.9 -76.2 -75.1 -77.5 -81.2 -80.5 

1)   SINGLE POINT POSITIONING RESULTS ANALYSIS 

 
1) Single point positioning IM analysis with a 

different number of BLE beacons 
The location of target point A and the layout of the 

surrounding sensors are shown in Fig.18. 
 

 
FIGURE 18 Single-point positioning test point A. 

In our research, a two-dimensional plane Cartesian 
coordinate system was selected. Its origin is the intersection 
of BLE beacons (outermost) deployed from south to north 
and the bottom of the parking space (outermost) west to east 
in Fig.18. The south to north direction is the y-axis and the 
west to east direction is the x-axis. The real coordinate of the 
target point A was (19.3689, 27.2417), indicated in Fig. 18, 

by the black triangle. The BLE beacons were deployed on 
both sides of the road systematically along the x-axis. 
Vehicles and pillars have little influence on the Bluetooth 
signal occlusion. The simulation experiment in Section IV 
has shown that the number of BLE beacons, n, will affect the 
IM performance. Therefore, in the field experiment, the 
number of BLE beacons, n, involved in calculation were set 
to 8, 10, 12, and 100 sets of positioning data were collected 
for each n. Scatter diagrams of the positioning results are 
shown in Fig.19. Black dots denote the positioning results 
solved only by LSBT without performing IM; Green dots are 
the positioning results with IM, after MLEGET based on the 
LSBT, a with recalculated positioning coordinates. It can be 
seen from the scatter plot of positioning results that the 
positioning results after performing the IM are densely 
distributed around the true value point, while the distribution 
of positioning results before IM was relatively discrete. As 
the number of BLE beacons, n, increased, the coincident 
points of the positioning results before and after performing 
the IM became fewer, that is, the number of increasingly 
detected gross errors. In addition, the initial positioning 
results were more discrete, and the improvement of the 
positioning accuracy of the IM was more apparent. 

The absolute positioning error was calculated according 
to the following formula: 𝑒𝑒 = �(𝑥𝑥� − 𝑥𝑥�)2 + (𝑦𝑦� − 𝑦𝑦�)2         (38) 
where (𝑥𝑥�,𝑦𝑦�) is the estimated coordinate of the target node, 
the (𝑥𝑥�,𝑦𝑦�) is the true coordinate of the target node.

 
FIGURE 19. Single positioning results. (a) n is 8; (b) n is 10; (c) n is 12.
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The change curve of absolute positioning error before 
and after the IM is shown in Fig.20. It is can be seen from 
the variate curve of the absolute positioning error in Fig.20 
that the positioning error range fluctuates widely before 
implementing the IM. The range of fluctuation was more 
than 5 m, which manifests extreme instability in the signal 
from the BLE beacons. The fluctuations in the absolute 
positioning error were smaller after performing the IM, 
within a range of 3 m. The absolute positioning error curve 
after performing the IM was below the absolute positioning 
error curve before the IM, indicating the IM effectively 
improved positioning accuracy. The cumulative distribution 
function (CDFs) of the test point A in the case of a different 
number of BLE beacons are plotted in Fig.21. 

 

 
FIGURE 20. Absolute positioning error. (a) n is 8; (b) n is 10; (c) n is 12.    

According to Fig.21, the positioning accuracy of the 
LSBT+IM is higher than only LSBT used. The 90% errors 
of the LSBT-A8+IM, LSBT-A10+IM, and LSBT-A12+IM 
were 1.9m, 1.8m, and 1.4m, the 90% errors of the LSBT-A8, 
LSBT-A10 and LSBT-A12 were 2m, 4.1m, and 4.6m, which 
are reduced by 5%, 56.1%, 60.87% after employing the IM 
proposed. Also, from Fig.21 it is seen that when the number 
of BLE beacons is more, the higher the IM performance. 

 

 
FIGURE 21. CDFs of the test point A in the case of a different number of 
BLE beacons. (the An denotes the number of the BLE beacons in test 
A). (a) only LSBT performed; (b)LSBT and IM are performed. 

TABLE 4. Gross error detection rate 

Number of BLE 
beacons 

8 10 12 

GEDR 52% 86% 95% 
The statistical results using the same evaluation criterion 

as in Section IV simulation, for test point A are shown in 
Table 4 and Fig.22. These were MAE, the MSE, and the 
gross error detection rate(GEDR). Table 4 shows the GEDR 
by the number of beacons. 

It can be seen from Table 4 that as the number n of BLE 
beacons increased, the GEDR gradually increased (where 
the GEDR indicated the percentage of gross errors detected 
in 100 data sets). The GEDR reached 95% when n = 12. The 
RSSI values were sorted in descending order first, and the 
nearest BLE beacons were selected to participate in 
calculation. Therefore, the gradual increase in the GEDR 
also reflects that larger range value, hence the BLE signal is 
more unstable. 

 

 
 FIGURE 22. The positioning error statistic results of test point A in 
case of different numbers of BLE beacons (a) MAE; (b)MSE.      

According to the Fig.22, the LBST + IM positioning 
result is optimal when n = 12, where MAE was 0.90309 m, 
MAE improvement was 2.280 m, MSE is 0.991 m2, and 
MSE improvement was 11.354 m2. 

The availability of the IM will determine whether to 
alert the users. Thus, the IM availability was analyzed further 
to verify the alert mechanism of the IM algorithm in case 
positioning accuracy no longer meet users’ requirement. The 
HPL represents the maximum positioning error that may be 
caused by a single gross error that does not reach the specific 
missed detection rate during the positioning process. Here, 
the statistical HPL data is compared with the absolute 
positioning error after performing IM, and the results are 
plotted in Fig.23, and the statistical results are shown in 
Table 5. 

It can be seen from Fig.23 that when the n is 8, 10, and 
12 respectively, the HPL curve can be kept above the 
positioning error curve. Therefore, the HPL can play a role 
in protecting the positioning error of BLE RSSI ranging. 
Comparing HPL to a horizontal alarm level (HAL) can 
determine whether an alarm is required. Take HAL = 4 m as 
an example, if the HPL ≥ HAL = 4, the user will be alerted 
in time. 
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FIGURE 23. HPL changing curve. (a) n is 8; (b) n is 10; (c) n is 12. 

TABLE 5. HPL average 

Number of 
BLE beacons 

8 10 12 

HPL average 2.8128 2.1501 1.9453 

When the number n of BLE beacons increased from 8 to 
12, then the average HPL decreased from 2.8128 to 1.9453; 
thus, the maximum positioning error that can be generated 
by the gross error which does not reach the missed detection 
rate will decrease as the number n of BLE beacons increased. 

2) Single point positioning IM analysis in case of 
different location points 

  The locations of measure points B, C, D, and E are shown 
in Fig. 24.  
 

 
FIGURE 24. measure points B, C, D, E in deferent locations. 

Since the BLE beacons are evenly deployed along the 
parallel lines on both sides of the road, each section of the 
road can be regarded as a positioning scene. As the measured 
points moved from the center of the positioning scene from 

point B to point E, the observation geometric conditions 
deteriorated. Thus, the effect of the load-bearing column 
(West of point E) in the parking lot on the Bluetooth signal 
occlusion became stronger. Therefore, to verify the effect of 
the IM in case of different locations, we set the measure 
points in different locations as indicated in Fig.24, as B 
(10.1451,27.2417), C (10.1451,26.2417), D 
(10.1451,25.2417), and E (10.1451,24.2417) in Fig.24. 
   The intervals are 1 meter among these the points in the 
y-axis direction, as the west side of the E is close to the load-
bearing column. When collecting positioning data, the 
number of BLE beacons was set to 8. At each of these points 
100 sets of data were collected. The distribution of 
positioning results is shown in Fig.25: 
 

 
FIGURE 25. Single point positioning results. (a) B point; (b) C point; (c) 
D point; (d) E point. 

According to Fig.25, we analyzed the improvement 
effect of the IM on the positioning results. The point B near 
the center of the road displayed large deviations with the 
most pronounced improvement of positioning results, since 
the geometry of BLE beacons network was optimal in point 
B. The initial positioning results of C and D points are close 
to the positioning results after performing the IM. The 
positioning results of the E point located at the edge of the 
positioning scene were severely blocked and discretized to 
some extent. The statistical results of the points to be 
measured and the absolute positioning error change curve 
are shown in Fig.26 and 27. 

According to the results displayed in Fig.26, the 
positioning accuracy was improved after performing the IM 
to some extent, in case of points B, C, and D. The positioning 
accuracy slightly decreased in the point E due to the poor 
geometry of BLE beacons networks. The overall positioning 
accuracy has been improved substantially after performing 
the IM in these test points experiments as can be seen from 
Fig.27. 
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FIGURE 26. The positioning error statistics of test points (a) MAE; 
(b)MSE. 

 
FIGURE 27. Absolute positioning error. (a) Point B; (b) Point C; (c) Point 
D;(d) Point E. 

The CDFs of positioning error of test points B, C, D, E 
are plotted in the figure28. According to Fig.28 that when 
only the LSBT method was performed, the maximum value 
of positioning results was close to 6m, but when LSBT+IM 
was performed, the maximum value of the positioning result 
not exceeding 4m. The error at a 95% confidence level 
LSBT+IM-B, was 2.2m, for LSBT+IM-C the error was 1.8m, 
for LSBT+IM-D the error was 2.0m, and for LSBT+IM-E 
the error was 2.3m. The errors at a 95% confidence level for 
LSBT-B was 2.8m and 2.5m for LSBT-C. For LSBT-D the 
error was2.5m, and for LSBT-E the error was 1.9m, which 
were reduced by 21.43%, 28.0%, 20%, and -21.5% after 
performing the IM proposed. 

 

 
FIGURE 28.  CDFs of test points B, C, D, E. (a) only LSBT performed; 
(b)LSBT and IM are performed. 

  

 
FIGURE 29. HPL change curve. (a) B point; (b) C point; (c) D point; (d) E 
point. 

  The HPL of measured points and the absolute positioning 
error after performing the IM are shown in Fig.29. It can be 
seen from the HPL changing graph that changing the 
position of measure points and the degree of occlusion, very 
few positioning errors are greater than HPL due to random 
fluctuations in signal strength or gross error mistake 
identification. HPL can still guarantee positioning in most of 
the time above the error line, it illustrates the HPL can 
protect the positioning results. 

2)  CONTINUOUS POSITIONING RESULTS ANALYSIS 

   To further verify the performance of the proposed IM 
during the continuous positioning process, we conducted 4 
groups continuous positioning test experiments. The true 
path in continuous positioning is depicted in Fig.30 during 
the experiment. The total length of the true path is 42 m, the 
lengths across y-axis and x-axis directions are 19 m and 23 
m respectively. 
 

 
FIGURE 30. The true path of the continuous positioning.  

The experimenter held the smartphone to capture a 
certain degree of signal occlusion so that the observations 
containing gross errors. A speed of movement was constant 
during the experiment at about 0.75 m per second. During 
the experiment, four test datasets were collected in the 
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forward and reverse directions along the true path. Each 
dataset contained 45 samples. The trajectories of the 
collected data points are shown as a plot in Fig. 31. 

The proposed IM algorithm significantly improved 
continuous positioning accuracy. It can be seen from Fig.31 
that four sets of LBST test experiments have large 
positioning errors due to the effect of RSSI value 
fluctuations. The points that deviate from the true path 
mostly appeared while traveling along the x-axis direction. 
In test experiment A, IM optimized the LBST trajectory 
slightly. In test experiments, B, C, and D, discrete points that 
deviate from the true path were effectively corrected after 
performing IM. The positioning points after performing the 
IM were within 3 meters of the true path, thus test route was 
closer to the real route, and the maximum of the LBST was 
6m. 

 

 
FIGURE 31. The trajectories of continuous positioning. (a)Test 
experiment A;(b) Test experiment B; (c) Test experiment C; (d) Test 
experiment D  

VI. DISCUSSION AND CONCLUSIONS 

   Innovatively, this paper has proposed an integrity 
monitoring (IM) algorithm based on the parity vector and 
Maximum Likelihood Estimation Gross Error test (MLEGE) 
for indoor positioning using Bluetooth Low Energy (BLE) 
beacons. The proposed IM algorithm has achieved 
significant improvements on the BLE positioning accuracy 
and positioning robustness. This IM algorithm can identify 
and eliminate two gross errors simultaneously to improve 
positioning accuracy during the positioning process; most 
important of thing, the IM provides one technique of timely 
alert when the positioning system is unavailable due to the 
positioning accuracy no long satisfies user requirement. A 
series of simulation and field experiments were conducted to 
evaluate the performance of the IM algorithm. The 
discussion and conclusions about simulation analysis and 
field experiments as follows. 

A. SIMULATION RESULTS AND ANALYSIS 

   According to the simulation analysis for the impact of 

Horizontal Dilution of Precision (HDOP) on Horizontal 
Protection Level (HPL), the impact of HDOP on gross errors 
detection performance and the impact of the different 
magnitudes of gross errors detection performance in the 
Section IV, we can conclude that the gross errors detection 
performance of proposed IM algorithm mainly affected by 
geometry of BLE network, magnitude of gross errors, false 
alarm rate and ranging accuracy.  

When the BLE beacons were evenly deployed, the HPL 
gradually decreased as the number of BLE beacons 
increased, which meant the positioning accuracy will be 
improved in case of the number of BLE beacons increased 
during the positioning process. 
   In 1000 times of simulation experiment, the average 
value of gross error detection rate for single gross error and 
the two gross errors were 98.9% and 85.9% respectively in 
case of the number of BLE beacons was 6 and magnitude of 
the gross error was 5 meters. It’s illustrated that the IM can 
effectively detect and identify gross errors. According to the 
analysis for the impact of HDOP on gross errors detection 
performance can be concluded that as the HDOP increased, 
the gross error detection rate gradually decreased, and the 
identification rate of gross error gradually increased.  
   According to analysis for the Section IV.C, the gross 
error detection performance is greatly affected by the 
magnitude of gross error, and the detection performance on 
single gross error was slightly higher than that on two gross 
errors. For single gross error, the IM algorithm gross error 
detection came into play when the gross error magnitude was 
1.6m. The gross error detection rate reached 100% when the 
gross error magnitude was 5 m; For two gross errors, IM 
started to detect gross errors when gross errors magnitude 
was 2.6 meters, and the gross error detection rate reached 
100 % when the gross error magnitude was 8.0 meters.  
   When the gross error exceeding 3 m, the proposed IM 
can effectively improve the positioning accuracy, and as the 
gross error magnitude increased, the amount of positioning 
accuracy improvement also gradually increased.  

In a short, the proposed IM algorithm for gross errors 
detection is working effectively.    

B. FIELD EXPERIMENT RESULT AND ANALYSIS 

   Point positioning and continuous positioning field 
experiments were conducted to verify the performance for 
the proposed IM, Field experiments showed that the IM 
algorithm supports the positioning accuracies of <1.9143 m 
at 90% of time (average of 7 groups single points), which 
performed better than <2.9143 m of the least square based 
on Taylor expansion (LSBT); For the continuous positioning 
(4 groups test experiments), the maximum error of the IM 
not exceeded 3 m, which performed better than 6 m of the 
LSBT method.  

In the single points positioning experiments with a 
different number of BLE beacons (i.e. in test point A). The 
90% errors of the LSBT-A8+IM, LSBT-A10+IM, and 
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LSBT-A12+IM were 1.9m, 1.8m, and 1.4m, the 90% errors 
of the LSBT-A8, LSBT-A10 and LSBT-A12 were 2m, 4.1m, 
and 4.6m, which are reduced by 5%, 56.1%, 60.87% after 
employing the IM proposed. Therefore, we can conclude that 
as the number of BLE beacons is more, the higher the IM 
performance.  

According to the single points positioning experiments in 
case of different location points (i.e. in test points B, C, D, 
E), we can conclude that the positioning accuracy after 
performing the IM was most higher in test point B while the 
positioning accuracy after performing the IM was most 
lower in the test point E. Since the geometry of BLE beacons 
network was optimal in point B which near the center of the 
road. By contrast, the geometry of BLE beacons networks 
was poor in point E due to the effect of the load-bearing 
column in the parking lot on the Bluetooth signal occlusion 
became stronger. Thus, the geometry of BLE beacons 
network would be affected the performance of the IM, the 
geometry of BLE beacons network more optimal, the higher 
the IM performance. 
   In case of positioning accuracy, no longer matches users’ 
expectation, the alert technique of the IM algorithm was 
further verified. The experimental results showed that the 
users will be alerted in time to avoid risk from positioning 
accuracy no longer satisfying the user demand. This is an 
indispensable function of the positioning system, 
particularly in firefighting services, peacekeeping missions, 
emergency safety, disaster relief, mobile health, and 
intelligent robot applications. 

APPENDIX 

A. THE DERIVATION DETAILS PROCESS FOR PARITY 

VECTOR 

 
Assuming no observations error during positioning process, 
the formula (3) is written as 𝒍𝒍 = 𝐁𝐁∆𝒙𝒙                  (A-1) 

QR decomposition for the design matrix 𝐁𝐁 is obtained: 𝐁𝐁 = 𝐐𝐐𝐑𝐑 = �𝐐𝐐𝒏𝒏×𝒖𝒖 𝐐𝐐𝒏𝒏×(𝒏𝒏−𝒖𝒖)� � 𝐑𝐑𝒖𝒖×𝒖𝒖𝟎𝟎(𝒏𝒏−𝒖𝒖)×𝒖𝒖�   (A-2) 

where 𝑛𝑛  represents the aggregate of BLE beacons 
observations participating in the positioning at the current 
time, and 𝑢𝑢  is the necessary number of BLE beacons 
observations for calculating the coordinate estimation value, 𝐐𝐐 is an identity orthogonal matrix of order 𝑛𝑛 × 𝑛𝑛, and 𝐑𝐑 is 
(𝑛𝑛 × 𝑢𝑢) an upper triangular matrix. 

Bring (A-2) into equation (A-1) and left multiply both 
sides by 𝐐𝐐𝑇𝑇 can be obtained: 𝐐𝐐𝑻𝑻𝒍𝒍 = 𝐑𝐑∆𝒙𝒙               (A-3) 

Furthermore, the equation (A-3) is formatted as 

� 𝐐𝐐𝑛𝑛×𝑢𝑢𝑇𝑇𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)
𝑇𝑇 � 𝒍𝒍 = � 𝐑𝐑𝑢𝑢×𝑢𝑢𝟎𝟎(𝑛𝑛−𝑢𝑢)×𝑢𝑢�∆𝒙𝒙      (A-4) 

Given𝐐𝐐𝐩𝐩 = 𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)
𝑇𝑇 , here 𝐐𝐐𝐩𝐩 is the parity transformation 

matrix, it works out that  𝐐𝐐𝐩𝐩𝒍𝒍 = 𝟎𝟎                  (A-5) 
Substituting equation (A-1) into (A-5) leads to 𝐐𝐐𝐩𝐩𝐁𝐁∆𝒙𝒙 = 𝟎𝟎                (A-6) 
Therefore 𝐐𝐐𝐩𝐩𝐁𝐁 = 𝟎𝟎                 (A-7) 
If the observations contain random error 𝜺𝜺, the equation 
(A-1) can be rewritten as 𝒍𝒍 = 𝐁𝐁∆𝒙𝒙+ 𝜺𝜺               (A-8) 
According to the equations (A-6) and (A-8), one can get: 𝐐𝐐𝐩𝐩𝒍𝒍 = 𝐐𝐐𝐩𝐩(𝐁𝐁∆𝒙𝒙+ 𝜺𝜺) = 𝐐𝐐𝐩𝐩𝐁𝐁∆𝒙𝒙+𝐐𝐐𝐩𝐩𝜺𝜺    (A-9) 
Substituting equation (A-7) into (A-9) leads to  𝐐𝐐𝐩𝐩𝒍𝒍 = 𝐐𝐐𝐩𝐩𝜺𝜺 = 𝒑𝒑(𝑛𝑛−𝑢𝑢)×1         (A-10) 

The vector 𝒑𝒑(𝑛𝑛−𝑢𝑢)×1 named parity vector. 

B. THE DERIVATION DETAILS PROCESS FOR 𝑸𝑸𝒑𝒑𝑻𝑻𝑸𝑸𝒑𝒑 = 𝑺𝑺 

Doing singular value decomposition for the design matrix 𝐁𝐁 in equations (A-1) one can get: 𝐁𝐁 = 𝐔𝐔𝐔𝐔𝐔𝐔                (B-1) 

where 𝐔𝐔  is an (𝑛𝑛 × 𝑛𝑛)  identity orthogonal matrix, the 𝐔𝐔 
is a (𝑛𝑛 × 𝑢𝑢) matrix, 𝐔𝐔 is an (𝑢𝑢 × 𝑢𝑢) identity orthogonal 
matrix. 𝐔𝐔 = �𝐀𝐀𝑶𝑶�                (B-2) 

the 𝐀𝐀  is a diagonal matrix of order 𝑢𝑢 × 𝑢𝑢 , 𝑶𝑶  represents 
the zero matrix. 
According to the equation (B-1), the residual sensitivity 
matrix 𝐒𝐒 = 𝐈𝐈 − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇 can be expressed as 𝐒𝐒 = 𝐈𝐈 − 𝐁𝐁(𝐁𝐁𝑇𝑇𝐁𝐁)−1𝐁𝐁𝑇𝑇 

=  𝐈𝐈 − 𝐔𝐔𝐔𝐔𝐔𝐔(𝐔𝐔𝑇𝑇𝐔𝐔𝑇𝑇𝐔𝐔𝑇𝑇𝐔𝐔𝐔𝐔𝐔𝐔)−1𝐔𝐔𝑇𝑇𝐔𝐔𝑇𝑇𝐔𝐔𝑇𝑇 

         =  𝐈𝐈 − 𝐔𝐔𝐔𝐔(𝐔𝐔𝑇𝑇𝐔𝐔)−1𝐔𝐔𝑇𝑇𝐔𝐔𝑇𝑇          (B-3) 

For convenience, matrix 𝐌𝐌 is defined as  𝐌𝐌 = 𝐔𝐔(𝐔𝐔𝑇𝑇𝐔𝐔)−1𝐔𝐔𝑇𝑇             (B-4) 

Substituting equation (B-2) into (B-4) leads to 𝐌𝐌 = 𝐔𝐔(𝐔𝐔𝑇𝑇𝐔𝐔)−1𝐔𝐔𝑇𝑇 = �𝐀𝐀𝑶𝑶� (𝐀𝐀2)−1[𝐀𝐀 𝑶𝑶] = �𝐄𝐄 𝑶𝑶𝑶𝑶 𝑶𝑶� (B-5) 

where 𝐄𝐄  is an (𝑢𝑢 × 𝑢𝑢)  identity matrix. Therefore, the 
equation (B-3) can be renewed as follows 𝐒𝐒 =  𝐈𝐈 − 𝐔𝐔𝐔𝐔(𝐔𝐔𝑇𝑇𝐔𝐔)−1𝐔𝐔𝑇𝑇𝐔𝐔𝑇𝑇  

= 𝐔𝐔𝐔𝐔𝑇𝑇 − 𝐔𝐔 �𝐄𝐄 𝑶𝑶𝑶𝑶 𝑶𝑶�𝐔𝐔𝑇𝑇 =  𝐔𝐔�𝑶𝑶 𝑶𝑶𝑶𝑶 𝐃𝐃�𝐔𝐔𝑇𝑇    (B-6) 
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where 𝐃𝐃 is an (n − 𝑢𝑢) × (𝑛𝑛 − 𝑢𝑢) identity matrix. For 
brevity, matrix 𝐙𝐙 is defined as 𝐙𝐙 = 𝐔𝐔 �𝑶𝑶 𝑶𝑶𝑶𝑶 𝐃𝐃�               (B-7) 

Therefore, the equation (B-6) can be expressed by the 𝐙𝐙 as 
follows 𝐒𝐒 =  𝐔𝐔 �𝑶𝑶 𝑶𝑶𝑶𝑶 𝐃𝐃�𝐔𝐔𝑇𝑇 = 𝐔𝐔 �𝑶𝑶 𝑶𝑶𝑶𝑶 𝐃𝐃� �𝑶𝑶 𝑶𝑶𝑶𝑶 𝐃𝐃�𝑇𝑇 𝐔𝐔𝑇𝑇 = 𝐙𝐙𝐙𝐙𝑇𝑇        

(B-8) 

According to the derivation for parity vector in appendix A, 
the design matrix 𝐁𝐁 is can be expressed by equation (A-2), 
so the equation (B-1) can be written as follows 𝐁𝐁 = 𝐔𝐔𝐔𝐔𝐔𝐔 = 𝐐𝐐𝐑𝐑           (B-9) 

where 𝐔𝐔 = 𝐐𝐐  an (𝑛𝑛 × 𝑛𝑛)  identity orthogonal matrix, 𝐑𝐑 = 𝐔𝐔𝐔𝐔 is (𝑛𝑛 × 𝑢𝑢) an upper triangular matrix. 
According to formula (A-2), the 𝐐𝐐 matrix can be expressed 
as follows 𝐐𝐐 = 𝐔𝐔 = �𝐐𝐐𝑛𝑛×𝑢𝑢  𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)�     (B-10) 

Bring the equation (B-10) into (B-7), the equation (B-7) can 
be represented as 𝐙𝐙 = 𝐔𝐔 �𝑶𝑶 𝑶𝑶𝑶𝑶 𝐃𝐃� = �𝐐𝐐𝑛𝑛×𝑢𝑢 𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)� �𝑶𝑶 𝑶𝑶𝑶𝑶 𝐃𝐃� 

= �𝑶𝑶 𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)�            (B-11) 

So 𝐙𝐙𝐙𝐙𝑇𝑇   = 𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)
𝑇𝑇  . Defining 𝐐𝐐𝐩𝐩 =  𝐐𝐐𝑛𝑛×(𝑛𝑛−𝑢𝑢)

𝑇𝑇  , 𝐐𝐐𝐩𝐩 denotes the parity transformation matrix. 
Hence 𝐒𝐒 = 𝐙𝐙𝐙𝐙𝑇𝑇 = 𝐐𝐐𝐩𝐩𝑇𝑇𝐐𝐐𝐩𝐩               (B-12) 
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