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ABSTRACT

Global Navigation Satellite Systems �GNSS� have
the ability to ful
ll the navigation accuracy require�
ments of most applications� The systems do how�
ever lack continuity and integrity to meet the re�
quirements of high precision navigation applications�
The use of a combination of Inertial Navigation Sys�
tems �INS� and GNSS information do however show
promising results in ful
lling these requirements�
Methods for monitoring the integrity of integrated
INS�GNSS systems are investigated�

Integration of INS and GNSS is usually accom�
plished using a Kalman 
lter for recursive estima�
tion of the parameters of interest� The residual used
for integrity monitoring is the Kalman 
lter innova�
tion�

The innovation signatures of di�erent types of
faults are analyzed� Since two of the most likely
types of faults in an integrated solution are INS
sensor bias shifts and satellite range bias drifts or
jumps� these additive types of changes are studied
in more detail� Taking the approach of hypothesis
testing of the two hypotheses un�failed and failed
system� fault detection methods based on the likeli�
hood ratio are considered and the Generalized Like�
lihood Ratio �GLR� test is proposed to be used�
This method uses the innovations of the Kalman

lter to compute the maximum likelihood estimates
of the time and magnitude of an assumed change�
Using these estimates� it evaluates the log�likelihood
ratio of a change versus no change� The GLR test

uses a linearly in time increasing number of mat�
ched 
lters� Di�erent ways of decreasing this com�
putational burden are discussed� showing that fast
detection can be achieved even with a small and
constant number of matched 
lters�

A further advantage of the GLR test is that in
addition to detecting the occurrence of a fault� it
also estimates its magnitude� direction and time of
occurrence� making it possible to identify the source
of the fault� exclude faulty satellites and correct the
Kalman 
lter estimate without re�processing the af�
fected data�

INTRODUCTION

A combination of Global Navigation Satellite Sys�
tems �GNSS� and Inertial Navigation Systems �INS��
has shown promising results in solving the continu�
ity ��� and integrity ��� ��� demands of high preci�
sion navigation applications� The satellite system
information and the INS have dissimilar but com�
plementary characteristics that in many ways make
them ideal complements�

The advantage of an integrated solution over
stand alone systems regarding integrity is that the
additional information available can be used to check
for slowly drifting types of faults that can not be
detected without this redundancy� It is well known
that the proposed GPS RAIM algorithms� especially
when not augmented with WADGPS and LADGPS�
have problems detecting smaller range bias drift er�
rors ��� that still would cause the navigation solution
to drift o�� Furthermore the need for a minimum
number of satellites can be circumvented�

The integrity monitoring approach investigated
in this paper uses test statistics based on the Kalman

lter innovations and it can be used both in central�
ized and cascaded Kalman 
lter integration philoso�
phies� However� there will be no satellite exclu�
sion methodology for cascaded Kalman 
lter ap�
proaches where the output from the GNSS receiver�
with its own RAIM� will be monitored for non de�
tected faults�



While many proposed integrity monitoring meth�
ods are designed to detect all types of faults with one
test� there are important advantages to be gained
using speci
c tests for each type of considered fault�
Even if the most likely types of faults are known
there will always be other types� not known or con�
sidered� Hence these two approaches should be used
in combination�

After introducing the notation of the Kalman

lter� the innovation signatures of di�erent types
of additive faults in the state space model of the
system will be analyzed�

Since two of the most likely types of faults in an
integrated solution are INS sensor bias shifts and
satellite range bias drifts and jumps these additive
types of changes are studied in more detail�

The next two sections describe how di�erent level
of knowledge can be used to detect changes in the
mean of a Gaussian sequence� the use of the Like�
lihood Ratio �LR� for hypothesis testing is intro�
duced� and the Generalized Likelihood Ratio �GLR�
test is studied in more detail�

Since a good integrity monitoring approach con�
sists of detection� identi�cation and adaptation the
two further sections discuss how the test statistics
can be changed to look for more speci
c faults and
how the Kalman 
lter state estimates can easily be
adapted to changes in the states or the measure�
ments without re�processing the a�ected data�

Furthermore� on�line implementations are con�
sidered showing how the computational complexity
can be decreased�

Finally the performance of the GLR test method
is compared with some other types of integrity mon�
itoring algorithms�

KALMAN FILTERING

An integrated navigation system uses a Kalman 
l�
ter for recursive estimation of the parameters of in�
terest� This 
lter uses a discrete time model of the
underlying system of the form�

xt�� � F txt �Gtut �wt

yt �Htxt � et�
���

where xt is the state vector� yt is the measurement�
ut known inputs� F t� Gt and Ht are matrices that
are known at time t� The noises wt and et are as�
sumed to be independent and Gaussian with covari�
ances Qt and Rt� respectively� The Kalman 
lter
for recursive estimation of the state vector xt reads
as follows�

�xt��jt � F t�xtjt �Gtut

�xtjt � �xtjt�� �Kt�t�
���

where the indices tjt and t � �jt denotes the pa�
rameter at time t and t � � respectively� based on

measurement up to time t� The innovations �t are
given by

�t � yt �Ht�xtjt��� ���

The state estimate error covariance matrices P t��jt

and P tjt� and Kalman gain matrixKt are given by�

P t��jt � F tP tjtF
T
t �Qt

P tjt � �I �KtHt�P tjt��

Kt � P tjt��H
T
t S

��
t

St �HtP tjt��H
T
t �Rt�

�
�

If the Gauss�Markov model holds and the noise se�
quences are white and Gaussian the innovations� �t�
will be independent� Gaussian distributed as
N ���St��

Even though a reduced order model of the real
navigation system and an extended Kalman 
lter
are used� causing the innovations not to be truly
white and Gaussian� it is still appropriate to develop
the theory as if they were� The innovations f�tg are
the appropriate parameter to study for detection
of faults� in the state space system� or in the mea�
surements� The parameters forming the innovations
are based on all past and present measurements to�
gether with a model of the system� Hence the inno�
vations will contain all the information needed for
integrity monitoring� as will be seen in the next sec�
tion�

INNOVATION SIGNATURE

In this section it will be shown that the innovations
will be biased and distributed as�

�t�k� � N ��t�k��St�

after an additive change�
Consider the discrete time description of the sys�

tem ��� under general additive changes yielding�

xt�� � F txt �Gtut �wt �Cx�x�t� k�

yt �Htxt � et �Cy�y�t� k�� ���

where Cx and Cy are vectors of dimension n and r
representing change magnitudes and directions� and
�x�t� k� and �y�t� k� are scalars representing the dy�
namic pro
les of the assumed changes� The time
instant k denotes the change time� making �x�t� k�
and �y�t� k� identical to zero for t � k�

The dynamic signatures caused by these additive
changes can recursively be written as in ��� using the
following decomposition of the state� its estimate
and the innovation�

xt�k� � xt ��t�k�

�xtjt�k� � �xtjt � �t�k�

�t�k� � �t � �t�k��

�	�



where �k� denotes the parameter after a change� It
can be shown that this yields the following recur�
sions�

�t�k� � F t�t���k� �Cx�x�t� �� k�

�t�k� � F t���t���k� �Kt�t�k�

�t�k� �Ht��t�k�� F t���t���k�� �

Cy�y�t� k�� ���

From these general equations all kinds of speci
c
cases can be considered� We will here consider two
speci
c types of additive changes�

�� A Kalman 
lter state shift with change mag�
nitude Cx � �x and �y�t� k� � �� correspond�
ing to� e�g�� a jump in one of the INS sensor
biases�

�� A measurement variable bias drift or jump�
with scalar drift rate or magnitude Cy � �y
and �x�t� k� � �� corresponding to� e�g�� a
GNSS satellite range bias drift or jump�

The signature on the innovation caused by a state
bias shift at time k� corresponding to�

�x�t� k� � ��t� k�

i�e�� equal to one at t � k and zero elsewhere� can
be expressed recursively as a linear regression in the
change magnitude �x as�

�xtjt�k� � �xtjt � �t�k�

� �xtjt � �x�t�k��x

�t�k� � �t � �t�k�

� �t ��
T
x�t���k��x

�T
x�t���k� �Ht

�
tY

i�k

F i � F t�x�t�k�

�

�x�t���k� � F t�t�k� �Kt���
T
x�t���k��

���

A typical example of the innovation signature due
to a state change is shown in Figure ��

A GNSS satellite range bias drift corresponds to

�y�t� k� � �t� k���t � k��

yielding a drift with slope �y� starting at t � k� A
satellite range bias jump instead corresponds to�

�y�t� k� � ��t� k��

The signature on the innovation caused by a mea�
surement variable drift or jump can now be ex�
pressed recursively as a linear regression in �y as�

�xtjt�k� � �xtjt � �t�k�

� �xtjt � �y�t�k��y

�t�k� � �t � �t�k�

� �t ��
T
y�t���k��y

�T
y�t���k� � �y�t� k��HtF t�y�t�k�

�y�t���k� � F t�y�t�k� �Kt���
T
y�t���k��

���
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Fig� �� Dynamic pro
le of normalized innovations
after a state change at t�����
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Fig� �� Dynamic pro
le of normalized innovation
after a measurement variable bias drift
starting at t�����

A typical innovation signature due to a ramp in a
measurement variable is shown in Figure ��

The expressions for �x�t���k� and �x�t���k� in
��� and �y�t���k� and �y�t���k� in ��� di�ers� but
the same Greek letters are used in both cases since
the test statistic will be formed in the same way�
when deriving the GLR test�

It is possible to use Cx and Cy to constrain
the possible faults to a subset of the state space or
measurement variables� We will return to this in
connection with diagnosis�

Once again� note that the expressions for the
innovation signatures are linear regressions in the
change� A fact that will be used when detecting the
changes later on�

RECURSIVE DETECTION

It was shown in the last section that a change� not
described by ��� will cause the innovations ��� to be
biased� There are a number of approaches ��� for
change detection in a Gaussian sequence and in this
section some of them will be described�

The simplest approach for detecting changes in
the innovation sequence is to 
lter under the hy�



pothesis that there is no change and to check the
whiteness of the innovations� This can be achieved
by checking�

� Normalized innovations st � �t�
p
St

� Squared normalized innovations st � �Tt S
��
t �t�

The 
rst one should sum up to approximately zero
and the second one is the well�known ���test� which
also checks for changes in the variance� These statis�
tics have well�known statistical distributions and
the choice of thresholds becomes standard�

A more systematic approach is to consider di�er�
ent alternative hypotheses for the un�failed an the
failed systems� In this paper only additive changes
are considered and as was shown in the previous
section this will cause a time�varying change in the
mean of the innovation sequence� The two alterna�
tive hypotheses to consider are�

H� � �t � N ���St�� H� � �t � N ��t�k��St�

Where H� is the hypothesis that no change has oc�
cured and H� is the hypothesis that a change has
occured at time k resulting in a time�varying mean
�t�k� of the innovations� Following a statistical ap�
proach ��� the appropriate test is to look for a change
in mean of a Gaussian sequence�

Motivated by the Neyman�Pearson lemma �see�
e�g�� ����� saying that the likelihood ratio is the most
powerful test statistics for testing for a change in a
distribution� at a given time instant� the following
test statistics is considered�

lt��t�k�� � log
p��tjH���t�k���

p��tjH��
� ����

Here p��tjH�� is the likelihood for a given �t assum�
ing that there is no change and p��tjH���t�k��� is
the likelihood for �t assuming that its mean is �t�k��

The logarithm of the likelihood ratio is used to
simplify the test statistics for Gaussian distributed
variables�

The maximum likelihood estimate of the change
time for a change of magnitude �t�k� then is

�kML � argmax
k

lt��t�k�� ����

Example � Let us consider the particular case of
testing for a known change in the mean of a one
dimensional Gaussian distributed sequence�

yt � 	t � 
t

The problem is to estimate the unknown change time
k� when 	t changes from 	� to 	�� and the hypothe�
ses to consider are�

H� � yt � N �	�� �
��

H� � yt � N �	�� �
���

The probability density function for yt � N �	� ���
is�

p��yt� �
�

�
p
��

e�
�yt���

�

��� �

This yields the logarithmic likelihood ratio for test�
ing H� against H� as�

lt�k� � log

tY
i�k

p���yt�

p���yt�

�
	� � 	�

��

tX
i�k

�
yi � 	� � 	�

�

�

�
b

�

tX
i�k

�
yi � 	� � �

�

�
�

where � � 	� � 	� is the change magnitude and
b � �

�
is the signal�to�noise ratio� The estimated

change time is

�kML � argmax
k

lt�k��

If we instead want to check if a change has occured�
the stopping rule would be de�ned as�

ta � argmin
k

�lt�k� 
 h��

�

The case with a known change magnitude is a very
special case� but the example shows the relatively
simple test statistics resulting from the logarithmic
likelihood ratio� This method can also be inter�
preted as if � is the smallest change to detect�

There are a number of change detection algo�
rithms based on this approach and two of the most
important ones will be mentioned here showing their
appealing simplicity� The algorithms will also be
used for comparison with the GLR test later on�

The 
rst algorithm is the Geometric Moving Av�
erage �GMA� test ��� based on the following decision
function�

gt �

�X
i��

�i log
p��t�ijH��k��

p��t�ijH���

�

�X
i��

�ist�i

����

which is a weighted sum of logarithmic likelihood
ratios� The weights are chosen to be exponentially
decreasing� namely

�i � �i� � � � � ��

The decision function can then be written recur�
sively as�

gt � �gt�� � st� ����



and the stopping rule is de
ned by�

ta � argmin
t
�gt 
 h��

The second algorithm that will be mentioned
is the cumulative sum �CUSUM� algorithm ��� for
which the decision function and the stopping time
is de
ned as�

gt � max��� gt�� � st � ��

ta � argmin
t
�gt 
 h��

��
�

This can be interpreted as a cumulative sum of loga�
rithmic likelihood ratios with an adaptive threshold
or as a Repeated Sequential Probability Ratio test
�SPRT� ����� The decision function gt will remain
zero until there is a st 
 � and it will then grow
until st � � again or until gt 
 h�

Note that the test statistics st in both these
methods can be either the normalized or the squared
normalized innovations�

In the next section we will derive the appropriate
test for a time varying bias change� with unknown
magnitude� in a Gaussian sequence�

THE GLR TEST

The Generalized Likelihood Ratio �GLR� test was

rst proposed by Willsky and Jones in ���� and it
has been widely used in many di�erent applications�
In this section the test is derived and explained� The
GLR test is global in time and tests for changes at
any past time instant� but it will be shown that it
can be restricted to the last M time instants in the
next section�

In the previous section it was concluded that the
appropriate test statistics was the likelihood ratio as
in ���� and the estimated change time was given by
���� if the change magnitude was known� But since
the change magnitude is unknown it must be elim�
inated� This can be achieved by taking the maxi�
mum likelihood estimate yielding the GLR test or
by marginalization as in �
� yielding the MLR test�
The GLR test is thus given by double maximization
over � and k

���k� � argmax
�

log
p��tjk���
p��tjH��

����

�k � argmax
k

log
p��tjk� ���k��
p��tjH��

� ��	�

Now the jump candidate �k is accepted if

lt��k� ����k�� 
 h�

From the results of ��� and ��� we noted that the
original state space problem can be transformed into
a linear regression framework� Suppose that we are

using information up to time t� then the compact
quantities of the least�squares �LS� estimator for the
linear regression are given by�

f t�k� �

tX
i��

�i�k�S
��
i �i ����

Rt�k� �

tX
i��

�i�k�S
��
i �T

i �k�� ����

From this the maximum likelihood estimate of ��
given the jump instant at k� can be written as�

���k� � R��
t �k�f t�k�� ����

and the test statistics for each k is now given by�

lt�k� ���k�� � � log
p��tjk� ���k��
p��tjH��

�

tX
i�k��

�Ti S
��
i �i

� ��i ��T
i �k���i�k��

TS��i

� ��i ��T
i �k���i�k��

� fTt �k�R
��
t �k�f t�k�� ����

where the second equality follows from the fact that
�t�k� � N ��T

t���k���St� and the Gaussian proba�
bility density function� The third equality follows
from ����� ���� and ����� The factor � is included
for notational convenience�

The test is computed for each k giving the max�
imum likelihood estimation of the change time as�

�k � argmax
k

lt�k� ���k��� ����

A fault is declared if lt��k� ����k�� is larger that a pre�
determined threshold�

Note that the test is computed for each k making
it linearly increasing with time�

The above formulation is compact but it is an
o��line expression� In an on�line situation it is more
e�cient to calculate a recursive least�squares �RLS�
estimate of ���k� as�

��t���k� � ��t�k� �Lt����t�� ��T
t����t�k���

����

with the gain Lt and the estimate error covariance
P �
t given by�

Lt � P �
t���t��

T
t P

�
t���t � St�

��

P �
t � P �

t�� � Lt�
T
t P

�
t���

����

with the test statistics now given by�

lt�k� ���k�� � fTt �k���t�k�� ��
�

The GLR test is now derived and it can be imple�
mented as follows�



Algorithm � Assume that the signal model �	
 is
given and that a Kalman �lter ��
 is used�

At each time step do the following�

�� Calculate the innovations �t from the Kalman
�lter assuming no change�

�� Update the regressors �t and �t and the quan�
tity f t�k� for each t and � � k � t�


� Compute estimates of the jump magnitudes
��t�k� recursively�

�� Compute estimates of the log likelihood ratios

lt�k� � fTt �k���t�k��

	� The jump candidate is now given by

�k � argmax
k

lt�k� ��t�k���

which should be compared with a predetermined
threshold to determine if a jump should be de�
clared�

�

Algorithm � is basically the same as proposed by
Teunissen �����

Some remarks should be made about the algo�
rithm�

� The optimal test requires t parallel RLS sche�
mes in addition to the original Kalman 
lter�

� The test statistic lt�k� ���k�� at each time in�
stant is distributed as �	� ���b� �� under H��
where b is the size of � and as ���b� �� under
H�� where � � �TRt�k��� making it possible
to pre�compute the threshold given the false
alarm rate and the probability of missed de�
tection� Note that this is not possible for the
total GLR test since it includes multiple hy�
potheses�

� The choice of the threshold for the total GLR
test is tricky since it is connected to the know�
ledge of the noise variance �
�� This is however
a problem that is present with most of the
suggested integrity monitoring methods where
the test threshold depends on the noise vari�
ance�

The latter remark and the fact that there does not
exist any explicit formula for computing the thresh�
old for the GLR test makes the design somewhat
involved and one has to use simulations or real data
to set the threshold�

DECREASING THE COMPLEXITY

Since the implementation of the full GLR test in�
volves a growing bank of 
lters� it must in some
way be restricted� The most convenient way to do
this is to restrict the attention to the last M � �
time instants� i�e�� only considering change times in
the interval t �M � k � t� This window can be
further reduced by also skipping the last N units of
time only considering change times in the interval
t�M � k � k �N � The later is also motivated by
the fact that the system may not be completely ob�
servable for less than N measurements ���� or that
the test statistics may be too insensitive for detect�
ing changes if k 
 t � N � The extreme of this re�
duction is when only k � t �M � � is considered�
The latter cases will however always give an extra
delay in the detection�

If only the last time instant is considered the test
statistics would be reduced to�

�Tt S
��
t �t� ����

which is the well known ���test� proposed for in�
tegrity monitoring in the AIME test ����

Do however note that the power of the test in�
creases with increasing M �

DIAGNOSIS

When a fault has been detected the next step is
to diagnose the cause� The best way to do this�
and at the same time decrease the computational
complexity and increase the probability for detec�
tion� is to constrain the possible change directions
to lie among a 
xed subset of the states �	� or the
measurement variables� So far we have considered
possible changes in all the states and measurement
variables�

As we saw in ��� and ��� the innovations will be
biased as

�t�k� � �t ��
T
t���k���

after a state or measurement variable change� if all
change directions are considered�

If we instead only consider a constrained set of
possible change directions one could factorize Cx

and Cy as�

Cx � T x�x� Cy � T y�y� ��	�

where T x and T y are matrices of dimension n� bx
and r � by respectively� in which the columns are
the basis vectors that span the space of all possible
change directions and �x and �y will be vectors of
dimension bx � n and by � r respectively� repre�
senting the change magnitudes�

Two typical examples are when only changes in
one of the states are considered� making T x a vector



and �x a scalar� or when only changes in one of the
measurement variables is considered� making T y a
vector and �y a scalar� Since the fault occur in
continuous time we must represent the considered
states and measurement variables in the continuous
time state space model�

�x�t� � A�t�x�t� �B�t�u�t� �w�t� �

��t� t���� � � � � � � � ��T �x
y�t� � C�t�x�t� � e�t� �

��t� t���� � � � � � � � ��T �y� ����

But as the computations are done in discrete time
the T �vectors must be the sampled equivalent mak�
ing�

T x �

Z �t

�

eA�t�h dh � �� � � � � � � � ��T

T y � �� � � � � � � � ��T �
Now the innovation signature of the possible changes
could instead be expressed as�

�t�k� � �t ��
T
t���k�T�� ����

The test statistics will change accordingly to be�

f t�k�
� � T TfN �k�

Rt�k�
� � T TRN �k�T �

����

or when computed �on�line� the estimate of �� should
be computed as�

��t���k� � ��t�k� �L
�
t��t � �T

t T ��t�k��
����

The constraint will increase the �signal�to�noise�
ratio of the GLR test and for a given probability
of false alarm the probability for detection will in�
crease� If multiple cases are considered the one that
yields the highest test statistics� lt��k� ����k�� should
be chosen as the most likely fault�

ADAPTATION OF THE ESTIMATES

When a satellite range bias drift is detected� an es�
timate of the change magnitude and direction will
be given by ����� with corresponding error covari�
ance given by ����� making it possible to identify
and exclude the faulty satellite or a set of satel�
lites including the faulty one� This exclusion should
also be accompanied by a statistical measure of the
probability of false exclusion�

In addition to the exclusion we would also like to
adapt the Kalman 
lter estimate as quickly and cor�
rectly as possible� This is possible in a straightfor�
ward manner without the need for smoothing the es�
timates between the fault onset time and the present
time�

If we consider a change in the measurements it
can be seen from �	� and ��� that if we exactly know
the time instant k of a measurement variable change
�y the estimate should be corrected as�

�xcorrtjt � �xtjt ��t�k�� �t�k�
� �xtjt � �t�k��y�

����

since �t�k� equals zero in this case� If we have good
estimates of k and �x they can be used to correct
the state estimates� The uncertainty of the estimate
shall be re�ected by increasing the state estimate
error covariance by�

P corr
tjt � P tjt � �t�k�P

�
t�t�k�

T ����

For a state bias change there is no exclusion� but
rather an adaption to the new state level� From �	�
and ��� it can be seen that if we exactly know the
time instant k of a state change with magnitude �x
the state estimate should be corrected as�

�xcorrtjt � �xtjt ��t�k�� �t�k�

� �xtjt �

�
t��Y
i�k

F i � �t�k�
�
�x� ����

The state estimate covariance should also be in�
creased by�

P corr
tjt � P tjt ��
t��Y
i�k

F i � �t�k�
�
P �
t

�
t��Y
i�k

F i � �t�k�
�T

� ��
�

When using methods that do not calculate an esti�
mate of the fault magnitude one have to proceed dif�
ferently� If there are redundant measurement sources
one should exclude the faulty one and re�process the
a�ected data� For a state change the best thing
to do is to increase the covariance matrix of the
Kalman 
lter which helps the 
lter to track the new
state level faster�

COMPARISON WITH OTHER

METHODS

To demonstrate the performance of the discussed
algorithms they are compared with the commonly
used ���test �����

A fault detection procedure would be considered
as optimal if it has the shortest mean delay for de�
tection for a given false alarm rate� In order to
compare the di�erent methods the Average Run�
time Length �ARL� function has been computed
by a Monte Carlo simulation of an INS�GNSS sys�
tem� The ARL��� function is the mean delay for
detection versus the change magnitude �� Note that
ARL��� is the false alarm rate�



The probability of missed detection is also a good
performance measure� why that also have been com�
puted for the di�erent cases�

The false alarm rate has for all methods been
set to � per hour� which has been used to set the
test thresholds using simulations or explicit expres�
sions� when available� The unrealistic value of �
false alarms per hour has been used to decrease the
computational time since for some of the methods
there is no explicit expression for setting the thresh�
old�

To decrease the computation time in the Monte
Carlo simulation only the north horizontal channel
of an integrated INS�GNSS system is studied in�
stead of all three dimensions� The acceleration and
gyro errors are assumed to consist of white noise
plus a 
rst order Gauss�Markov process for the ac�
celeration bias and the gyro drift� The state�space
description is chosen to include states for accelerom�
eter bias� gyro drift and time correlated noise from
the GNSS� giving the continuous state space equa�
tion as�

�x�t� � Ax�t� �w�t�

y�t� � Cx�t� � e�t�
����

where

A �

�
������	

� � � � � �
� � � g

R
�
R

� �
� � � � � �
� � � � �

�a
� �

� � � � � �
�g

�

� � � � � � �
�gps



�������

C �


� � � � � �� �

Corresponding to the following set of states��
������	

position error
position rate error
east angular error
acceleration bias

gyro bias
correlated measurement noise



�������

Since high performance applications are considered
small errors has been simulated for the satellite nav�
igation system corresponding to di�erential GNSS
or military systems� The performance data that was
used in order to simulate the INS and the GNSS are
given in Table �� The Kalman 
lter is executed at
� Hz� The in�uence of the initial state was allowed
to die out before the acceleration bias or the GNSS
position error changed�

The following methods have been compared�

�� The ���test with using only the last time in�
stant and summed over the last �� instants�

�� The GMA test ����� both with normalized and
squared normalized innovations as test statis�
tics and with � � ��� and �����

INS

Gyro bias ����
 deg hr

corr noise ����� deg 
p
hr

time const �	�� s

white noise ����� deg 
p
hr

Accel� bias �� 	g

corr noise � 	g 
p
Hz

time const ���� s

white noise � 	g 
p
Hz

GNSS

corr noise ��� m
time const �� s
white noise � m

Table � INS and GNSS performance used in
simulations

�� The CUSUM test ��
�� both with normalized
�� � ������ ! ����� and squared normalized
innovations �� � �� �� ! ��� as test statistics�


� The GLR test as described in the last sections�
windowed with M � �� and ��� The con�
sidered faults have not been constrained but
changes in the full state vector nave been con�
sidered�

They have all been tested on the following changes�

�� Accelerometer bias jump with eight di�erent
jump magnitudes between 
�� 	g and � g�

�� Measurement drift with eight di�erent drift
rates between ��� m s and �
 m s�

��� di�erent noise realizations were simulated for
each change magnitude�

The ARL function from the simulations with the
accelerometer bias jump is plotted in Figure � and
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Fig� �� Average delay in detection of state bias
change�
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Acceleration bias jump

test method jump magnitude

�� 	g

GMA CUSUM 


�� ��
�� ���� �
GLR �M���� �
GLR �M���� �

Measurement drift

test method drift magnitude
��� m s ��� m s

GMA CUSUM �� ��
�� 
� ��
�� ���� �� �
GLR �M���� �
 �
GLR �M���� �� �

Table � Number of missed detections in
simulations

for the measurement drift in Figure 
� Note that
the horizontal axes are scaled logarithmically� The
di�erent GMA and CUSUM tests performed almost
identically and worse than the other tests why only
the one that performed best is given for comparison�
As can be seen the GLR�test performed best of the
test methods on small change magnitudes and it
performed slightly better than the ���test when the
same number ���� of time instants were used� The
GLR test with M � �� did however get a slightly
larger ARL for detection of measurement drifts with
larger magnitudes� That is a prize one may have to
pay for the advantages of diagnosis and adaption�
The GLR test did not miss any detections of ac�
celerometer bias jumps� but the other methods did
with the smallest jump magnitude� as can be seen in
Table �� In the second case with the measurement
change all methods did miss some detections with
the smallest drift magnitudes�

The conclusion that can be drawn from these
simulations is that if one is looking for small or

slowly drifting faults the test would be more power�
ful if multiple time instants are considered� If multi�
ple time instants are considered the use of the GLR
test will help in decreasing the delay for detection�

These simulation have only compared the detec�
tion phase but with the GLR test one would also
yield a method for diagnosis and adaption�

CONCLUSIONS

The use of integrated INS � GNSS navigation sys�
tems have been proposed for solving the integrity
requirements of high precision navigation applica�
tions�

The position estimate in an integrated naviga�
tion system is usually calculated using an error state
Kalman 
lter� By using the Kalman 
lter innova�
tions as test statistics all past and present measure�
ment are used to monitor the integrity� This means
that there always will be enough redundancy for
integrity monitoring and the need of a minimum
number of satellites and a su�cient geometric con�
stellation are circumvented�

The use of integrity monitoring methods based
on hypothesis testing using the likelihood ratio and
the use of speci
c tests for each type of considered
fault are recommended�

The most powerful of the studied integrity mon�
itoring methods is the Generalized Likelihood Ra�
tio �GLR� test which uses the innovations of the
Kalman 
lter to compute the maximum likelihood
estimate of the change time and change magnitude�
The GLR test then uses these estimates to compute
the logarithmic likelihood of a fault versus no fault�

A comparison of the described integrity moni�
toring methods with the ���test is performed by a
Monte Carlo simulation showing that the GLR test
is best in detecting small or slowly growing faults
even when only a small and constant number of
matched 
lters are used�

A further advantage of the GLR test is that�
in addition to detecting the occurrence of a fault�
it also estimates the change magnitude and change
time� making it possible to identify the source of
the fault� exclude faulty satellites and correct the
Kalman 
lter estimates� without re�processing the
a�ected data�
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